Math 8, Summer 2012 Practice Exam 2 Solutions

Short Answer

1. Given $n \in \mathbb{N}$ evaluate $\sum_{k=0}^{n} \frac{1}{(n-k)!(n+k)!}$.

Call the answer A. Make the terms look like binomial coefficients:

$$
A=\frac{1}{(2 n)!}\left(\binom{2 n}{0}+\binom{2 n}{1}+\cdots+\binom{2 n}{n}\right)
$$

Use symmetry:

$$
\begin{aligned}
A+A & =\frac{1}{(2 n)!}\left(\binom{2 n}{0}+\binom{2 n}{1}+\cdots+\binom{2 n}{n}\right)+\frac{1}{(2 n)!}\left(\binom{2 n}{n}+\binom{2 n}{n+1}+\cdots+\binom{2 n}{2 n}\right) \\
& =\frac{1}{(2 n)!}\left(2^{2 n}+\binom{2 n}{n}\right)
\end{aligned}
$$

The answer is half of this number.
2. Billy claims to have an a data compression algorithm that takes any 100 -bit string of 0 s and 1 s and reduce its size to 50 bits. Explain to Billy why he must be destroying information; that is, there must be two different strings that get compressed into the same result.

The pigeonhole principle guarantees that if $2^{100} 100$-bit binary strings are compressed into 2^{50} 50 -bit strings that some 2 distinct strings will be compressed into the same result. If we can't undo the procedure, we've lost information.
3. In how many ways can we divide 6 students into 2 nonempty groups? The groups are functionally identical, except for the people in them.

We want the Stirling number $S(6,2)$. We can divide the students into 2 groups in $2^{6}=64$ ways. However, 2 of these ways produce an empty group, leaving only 62 ways. We've tacitly assumed the groups are distinct, so dividing by 2 gives 31 ways.
4. A relation \simeq is called injective if whenever x, y, z in the underlying set satisfy $x \simeq y$ and $z \simeq y$, it must follow that $x=z$. Give an example of such a relation.

A lazy answer is standard equality, $=$, on any set. Another lazy example is the empty relation on any set. A better answer is $x \simeq y$ if and only if $x, y \in \mathbb{R}$ and $x=e^{y}$.
5. Precisely define what it means for a relation \sim on a set S to be antisymmetric.

For all $x, y \in S$ we have $x \sim y$ and $y \sim x$ implies $x=y$.
6. Given an equivalence relation R on a set S, precisely define S / R. $S / R=\{[x]: x \in S\}=\{\{y \in S: y \sim x\}: x \in S\}$, the set of equivalence classes.
7. Give a combinatorial defintion of $\binom{n}{k}$ (no formulas)
$\binom{n}{k}$ is the number of k-element subsets of an n-element set.
8. How many two-element subsets $\{a, b\}$ of $\{1,2, \ldots, 50\}$ satisfy $|a-b|=5$?

The only subsets are $\{1,6\},\{2,7\},\{3,8\}, \ldots,\{45,50\}$, so there are 45 such sets.

Problems

1. Let S be a nonempty set and $\operatorname{Aut}(S)$ denote the set of all bijective functions $S \rightarrow S$. Given functions $f, g \in \operatorname{Aut}(S)$ define $f \sim g$ if and only if there is $h \in \operatorname{Aut}(S)$ so that $f \circ h=h \circ g$. Prove that \sim is an equivalence relation on $\operatorname{Aut}(S)$.
Remark: In group theory, when $f \sim g$ we say the two functions are 'conjugate'.
Proof. Let $i: S \rightarrow S$ denote the identity map and note that $i \in \operatorname{Aut}(S)$. Given $f \in \operatorname{Aut}(S)$ we have $i \circ f=f \circ i$, so $f \sim f$. This shows \sim is reflexive.
Given $f, g \in \operatorname{Aut}(S)$ so that $f \sim g$, find $h \in \operatorname{Aut}(S)$ so that $f \circ h=h \circ g$. Since h is bijective h^{-1} exists and is also bijective. We find that

$$
h^{-1} \circ f=h^{-1} \circ f \circ h \circ h^{-1}=h^{-1} \circ h \circ g \circ h^{-1}=g \circ h^{-1},
$$

so we conclude $g \sim f$. This shows \sim is symmetric.
Given $f, g, \varphi \in \operatorname{Aut}(S)$ so that $f \sim g$ and $g \sim \varphi$, find $h_{1}, h_{2} \in \operatorname{Aut}(S)$ so that $f \circ h_{1}=h_{1} \circ g$ and $g \circ h_{2}=h_{2} \circ \varphi$. Then we have

$$
f \circ\left(h_{1} \circ h_{2}\right)=h_{1} \circ g \circ h_{2}=\left(h_{1} \circ h_{2}\right) \circ \varphi .
$$

Since the composition of bijections is bijective, $h_{\mathrm{o}} h_{2} \in \operatorname{Aut}(S)$. This shows $f \sim \varphi$ and \sim is transitive.
2. Let $F(n, k)$ denote the number of surjective functions $\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, k\}$. There is no simple formula for computing $F(n, k)$ in general, but we have a recurrence relation:

$$
F(n+1, k)=k \cdot F(n, k-1)+k \cdot F(n, k)
$$

First figure out $F(n, n)$ and $F(2,1)$ directly. Then use the recurrence relation and induction to prove for all integers $n \geq 2$,

$$
F(n, n-1)=\binom{n}{2} \cdot(n-1)!
$$

Remark: As an extra challenge, use combinatorial reasoning to prove $F(n, k)=k!S(n, k)$, where S denotes the Stirling number of the second kind.

Proof. First note that any surjection from $\{1,2, \ldots, n\}$ to itself is a permutation. That is, $F(n, n)=n$!. Furthermore, $F(2,1)=1$ since there is only one function $\{1,2\} \rightarrow\{1\}$, and it is surjective. Now we proceed with the induction. The base case we've already addressed, so assume that

$$
F(n, n-1)=\binom{n}{2} \cdot(n-1)!
$$

for some integer $n \geq 2$. Using the recurrence relation we have that

$$
\begin{aligned}
F(n+1, n) & =n \cdot F(n, n-1)+n \cdot F(n, n) \\
& =n\binom{n}{2} \cdot(n-1)!+n \cdot n! \\
& =\frac{n(n-1)}{2} \cdot n!+n \cdot n! \\
& =\binom{n+1}{2} \cdot n!
\end{aligned}
$$

completing the induction.
Remark: To see the relationship to Stirling numbers, consider the following. To build a surjection from an n-element set to a k-element set, first divide the n elements into k nonempty indistinguishable groups in $S(n, k)$ ways. Then assign each group to a different element of $\{1,2, \ldots, k\}$ in k ! ways.
3. Let n be a positive integer. Given an integer $k \leq n$ define the $D_{n}(k)$ to be the number of ways to permute n students so that exactly k objects end up in their starting positions. Prove that

$$
\sum_{k=0}^{n} k \cdot D_{n}(k)=n!
$$

Proof. Imagine n students seated in a row. Some number of them rearrange themselves in the chairs; choose one student who doesn't move and hand her a shiny new toy. There are $D_{n}(k)$ ways to arrange students wherein k students don't move. After that pick a student to receive a toy in k ways. The total number of ways to do all of this is $\sum_{k} k D_{n}(k)$.
Alternatively, pick a student to receive a toy in n ways. Then permute the other students arbitrarily in $(n-1)$! ways. The total number of ways this can occur is $n \cdot(n-1)!=n!$. Having counted the situation in two ways, the two counts must be equal.

