
Math 8, Summer 2012
Practice Exam 2 Solutions

Short Answer

1. Given n ∈ N evaluate
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Call the answer A. Make the terms look like binomial coefficients:
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Use symmetry:
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The answer is half of this number.

2. Billy claims to have an a data compression algorithm that takes any 100–bit string of 0s and 1s and reduce
its size to 50 bits. Explain to Billy why he must be destroying information; that is, there must be two
different strings that get compressed into the same result.

The pigeonhole principle guarantees that if 2100 100–bit binary strings are compressed into 250

50–bit strings that some 2 distinct strings will be compressed into the same result. If we can’t
undo the procedure, we’ve lost information.

3. In how many ways can we divide 6 students into 2 nonempty groups? The groups are functionally identical,
except for the people in them.

We want the Stirling number S(6, 2). We can divide the students into 2 groups in 26 = 64 ways.
However, 2 of these ways produce an empty group, leaving only 62 ways. We’ve tacitly assumed
the groups are distinct, so dividing by 2 gives 31 ways.

4. A relation ' is called injective if whenever x, y, z in the underlying set satisfy x ' y and z ' y, it must
follow that x = z. Give an example of such a relation.

A lazy answer is standard equality, =, on any set. Another lazy example is the empty relation
on any set. A better answer is x ' y if and only if x, y ∈ R and x = ey.



5. Precisely define what it means for a relation ∼ on a set S to be antisymmetric.

For all x, y ∈ S we have x ∼ y and y ∼ x implies x = y.

6. Given an equivalence relation R on a set S, precisely define S/R.

S/R = {[x] : x ∈ S} = {{y ∈ S : y ∼ x} : x ∈ S}, the set of equivalence classes.

7. Give a combinatorial defintion of
(
n
k

)
(no formulas)(

n
k

)
is the number of k–element subsets of an n–element set.

8. How many two–element subsets {a, b} of {1, 2, . . . , 50} satisfy |a− b| = 5?

The only subsets are {1, 6}, {2, 7}, {3, 8}, . . . , {45, 50}, so there are 45 such sets.



Problems

1. Let S be a nonempty set and Aut(S) denote the set of all bijective functions S → S. Given functions
f, g ∈ Aut(S) define f ∼ g if and only if there is h ∈ Aut(S) so that f ◦ h = h ◦ g. Prove that ∼ is an
equivalence relation on Aut(S).

Remark: In group theory, when f ∼ g we say the two functions are ‘conjugate’.

Proof. Let i : S → S denote the identity map and note that i ∈ Aut(S). Given f ∈ Aut(S) we have
i ◦ f = f ◦ i, so f ∼ f . This shows ∼ is reflexive.

Given f, g ∈ Aut(S) so that f ∼ g, find h ∈ Aut(S) so that f ◦ h = h ◦ g. Since h is bijective h−1 exists
and is also bijective. We find that

h−1 ◦ f = h−1 ◦ f ◦ h ◦ h−1 = h−1 ◦ h ◦ g ◦ h−1 = g ◦ h−1,

so we conclude g ∼ f . This shows ∼ is symmetric.

Given f, g, ϕ ∈ Aut(S) so that f ∼ g and g ∼ ϕ, find h1, h2 ∈ Aut(S) so that f ◦ h1 = h1 ◦ g and
g ◦ h2 = h2 ◦ ϕ. Then we have

f ◦ (h1 ◦ h2) = h1 ◦ g ◦ h2 = (h1 ◦ h2) ◦ ϕ.

Since the composition of bijections is bijective, h◦h2 ∈ Aut(S). This shows f ∼ ϕ and ∼ is transitive.



2. Let F (n, k) denote the number of surjective functions {1, 2, . . . , n} → {1, 2, . . . , k}. There is no simple
formula for computing F (n, k) in general, but we have a recurrence relation:

F (n + 1, k) = k · F (n, k − 1) + k · F (n, k).

First figure out F (n, n) and F (2, 1) directly. Then use the recurrence relation and induction to prove for
all integers n ≥ 2,

F (n, n− 1) =

(
n

2

)
· (n− 1)!

Remark: As an extra challenge, use combinatorial reasoning to prove F (n, k) = k!S(n, k), where S denotes
the Stirling number of the second kind.

Proof. First note that any surjection from {1, 2, . . . , n} to itself is a permutation. That is, F (n, n) = n!.
Furthermore, F (2, 1) = 1 since there is only one function {1, 2} → {1}, and it is surjective. Now we proceed
with the induction. The base case we’ve already addressed, so assume that
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)
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for some integer n ≥ 2. Using the recurrence relation we have that

F (n + 1, n) = n · F (n, n− 1) + n · F (n, n)
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=
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completing the induction.

Remark: To see the relationship to Stirling numbers, consider the following. To build a surjection from an
n–element set to a k–element set, first divide the n elements into k nonempty indistinguishable groups in
S(n, k) ways. Then assign each group to a different element of {1, 2, . . . , k} in k! ways.



3. Let n be a positive integer. Given an integer k ≤ n define the Dn(k) to be the number of ways to permute
n students so that exactly k objects end up in their starting positions. Prove that

n∑
k=0

k ·Dn(k) = n!

Proof. Imagine n students seated in a row. Some number of them rearrange themselves in the chairs; choose
one student who doesn’t move and hand her a shiny new toy. There are Dn(k) ways to arrange students
wherein k students don’t move. After that pick a student to receive a toy in k ways. The total number of
ways to do all of this is

∑
k kDn(k).

Alternatively, pick a student to receive a toy in n ways. Then permute the other students arbitrarily in
(n− 1)! ways. The total number of ways this can occur is n · (n− 1)! = n!. Having counted the situation
in two ways, the two counts must be equal.


