
Math 8, Summer 2012
Practice Final Solutions

Short Answer

1. Precisely define what it means for a set A to be uncountable.

A few equivalent answers:

• There does not exist an injection A→ N
• There does not exist a surjection N→ A

• A is infinite but there is no bijection A→ N

2. Precisely define what it means for a function f : R→ R to be convex.

For all x, y ∈ R and 0 < t < 1 we have f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

3. Geometrically describe the set of all complex z so that z4 Re(z) = z4 Im(z).

Let z = reiθ to get either r = 0 or e8iθ = tan θ. In the latter case, e8iθ ∈ R, so 8θ = nπ for some
n ∈ Z. Also, cos(nπ) = tan(nπ/8); checking n = 0, 1, . . . , 15 gives only n = 2, 10. From z = 0 or
z = reiπ/4 or z = re5iπ/4 for arbitrary r, we see the solution is the line y = x through the origin.

4. Let A1, A2, A3, . . . be a collection of countable sets. Which of these need not be countable?

(a) A1 −A2

(b)

∞⋃
n=1

An

(c) A1 ×A2 ×A3 × · · ·

(d)

∞⋃
n=1

(A1 ×A2 × · · · ×An)

(e) None of the above

(c) is the answer. For example, there is a bijection P(N)→ {0, 1} × {0, 1} × {0, 1} × · · ·



5. How many distinct z ∈ C satisfy ez = 16?

(a) 0

(b) 1

(c) 2

(d) 4

(e) Infinitely many

(e) is the answer. There is at least one answer since eln 16 = 16; there are infinitely many because
ez+2inπ = ez for any integer n.

6. Find the minimum value of (sinx secx tanx) + (cscx cosx cotx) for 0 < x < π/2.

Let f(x) = sinx secx tanx. When 0 < x < π/2 we see that f(x) > 0, so the AM–GM gives

(sinx secx tanx) + (cscx cosx cotx) = f(x) +
1

f(x)
≥ 2

with equality if and only if f(x) = 1 for some x. Since f(0) = 0 and f(x)→∞ as x→ π/2, the
intermediate value theorem guarantees that f(x) = 1 at some x, so the answer is 2.

7. What is the real part of (1 + i
√

3)2012?

(1 + i
√

3)2012 = 22012(1/2 + i
√

3/2)2012 = 22012e2012iπ/3 = 22012e2iπ/3 = 22012(−1/2 + i
√

3/2).
The answer is 22011.

8. Does there exist a set S so that
|N| < |S| < |P(N)|

(a) Yes, R works

(b) Yes, Q works

(c) Yes, but the set is nearly indescribable

(d) No

(e) How the hell should I know!?

The answer is (e). Really. The so–called Continuum Hypothesis is independent of the typical
(ZF) axioms of set theory. The question is undecidable in that framework and can be taken to
be either true or false without contradiction.



Problems

1. A real number α is called algebraic if there exists a polynomial p(x) with integer coefficients so that p(α) = 0.
Let A be the set of real algebraic numbers. A real number that is not algebraic is called transcendental. For
centuries mathematicians were unsure whether transcendental numbers exist. Prove that transcendental
numbers exist.

Proof. Let n,m ∈ N. Let An be the set of x ∈ A which solve a polynomial equation p(x) = 0 with the degree
of p at most n. Let Bnm be the set of x ∈ An which satisfy a polynomial equation p(x) = a0+a1x+· · ·+anxn
with each |ak| ≤ m. If we consider such a polynomial, then there are 2m + 1 choices for each coefficient,
giving (2m+1)n+1 polynomials. Each has at most n roots, so there are no more than n(2m+1)n+1 elements
in Bnm. Hence Bnm is finite.

Any element x ∈ An solves some polynomial equation p(x) = a0 + a1x + · · · + anx
n = 0. If we let

M = max{|a0|, |a1|, . . . , |an|}, then x ∈ BnM . That is,

An =

∞⋃
m=1

Bnm.

Since An is a countable union of finite sets, An is countable.

Any element x ∈ A solves a polynomial equation p(x) = 0. If the degree of p is n, then x ∈ An. This shows

A =

∞⋃
n=1

An.

Since A is a countable union of countable sets, A is countable.

Suppose there were no transcendental numbers. Then R = A is countable, a contradiction. Hence tran-
scendental numbers exist (and are in fact far more numerous than algebraic ones).



2. Let a1, a2, a3, . . . be an infinite sequence of real numbers, not all zero. Prove Carlson’s second inequality:

(a1 + a2 + a3 + · · · )4 ≤ π2(a21 + a22 + a23 + · · · )(a21 + 4a22 + 9a23 + · · · ),

with equality if and only if the right side is infinite.

Proof. If either sum on the right side is infinite, we have (
∑
ak)4 ≤ ∞, which is true. So now assume

both sums on the right are finite. Let α, β > 0 be unspecified parameters to be chosen later. Using
Cauchy–Schwarz on the vectors (1/

√
α+ βk2) and (ak

√
α+ βk2) gives( ∞∑

k=1

ak

)2

≤

( ∞∑
k=1

1

α+ βk2

)(
α

∞∑
k=1

a2k + β

∞∑
k=1

k2a2k

)
(?)

Note that, since 1/(α+ βx2) is a decreasing function of x on (0,∞),∫ ∞
0

dx

α+ βx2
=

∞∑
k=1

∫ k

k−1

dx

α+ βx2
>

∞∑
k=1

[k − (k − 1)]
1

α+ βk2
=

∞∑
k=1

1

α+ βk2

This integral is easy to evaluate analytically using arctangent. This gives

∞∑
k=1

1

α+ βk2
<

π

2
√
αβ

.

Inserting this into equation (?) gives( ∞∑
k=1

ak

)2

<
π

2
√
αβ

(
α

∞∑
k=1

a2k + β

∞∑
k=1

k2a2k

)

Since this is true for all positive α, β we can choose

α =

( ∞∑
k=1

k2a2k

)1/2( ∞∑
k=1

a2k

)−1/2
and β = 1/α to get ( ∞∑

k=1

ak

)2

< π

( ∞∑
k=1

a2k

)1/2( ∞∑
k=1

k2a2k

)1/2

,

which squares to yield the result.



3. Given z, ζ ∈ C such that |z| < 1 and |ζ| = 1, define the Poisson kernel (of the disk) as

P (z, ζ) =
1− |z|2

2π|z − ζ|2
.

Prove that ∫ 2π

0

P (z, eit) dt = 1.

(a) Take the series
∞∑

n=−∞
r|n|ein(θ−t)

and rewrite it as two infinite series—one from n = 0 to n =∞ and one from n = −1 to n = −∞.

(b) Sum the two (now geometric) series you found to show that

P (reiθ, eit) =
1

2π

∞∑
n=−∞

r|n|ein(θ−t).

(c) Swap sum and integral (assume this is valid—it is, but we don’t have the background to prove it) to
finish the proof.

Proof. First note that

∞∑
n=−∞

r|n|ein(θ−t) =

−1∑
n=−∞

r|n|ein(θ−t) +

∞∑
n=0

r|n|ein(θ−t)

=

∞∑
n=1

(
rei(t−θ)

)n
+

∞∑
n=0

(
rei(θ−t)

)n
=

rei(t−θ)

1− rei(t−θ)
+

1

1− rei(θ−t)

=
1− r2

(1− rei(t−θ))(1− rei(θ−t))

=
1− r2

|1− rei(t−θ)|2

=
1− r2

|e−iθ|2 · |eiθ − reit|2

Since |e−iθ| = 1 and r = |reit| we have

P (reiθ, eit) =
1

2π

∞∑
n=−∞

r|n|ein(θ−t).

Notice that if n 6= 0, ∫ 2π

0

ein(θ−t) dt =
ein(θ−t)

−in

∣∣∣∣2π
0

= 0,

though if n = 0 the integral evaluates to 2π. Finally we have∫ 2π

0

P (reiθ, eit) dt =
1

2π

∞∑
n=−∞

r|n|
∫ 2π

0

ein(θ−t) = 1.


