
 
Representing Knot Groups Into SL(2, C)
Author(s): D. Cooper and  D. D. Long
Source: Proceedings of the American Mathematical Society, Vol. 116, No. 2 (Oct., 1992), pp.
547-549
Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/2159765
Accessed: 17-06-2016 21:40 UTC

 
REFERENCES 
Linked references are available on JSTOR for this article:
http://www.jstor.org/stable/2159765?seq=1&cid=pdf-reference#references_tab_contents 
You may need to log in to JSTOR to access the linked references.

 
Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

http://about.jstor.org/terms

 

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted

digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about

JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to
Proceedings of the American Mathematical Society

This content downloaded from 128.111.64.145 on Fri, 17 Jun 2016 21:40:03 UTC
All use subject to http://about.jstor.org/terms



 PROCEEDINGS OF THE
 AMERICAN MATHEMATICAL SOCIETY
 Volume 116, Number 2, October 1992

 REPRESENTING KNOT GROUPS INTO SL(2, C)

 D. COOPER AND D. D. LONG

 (Communicated by Frederick R. Cohen)

 ABSTRACT. We show that if a knot in S3 has nontrivial Alexander polyno-
 mial then the fundamental group of its complement has a representation into
 SL(2, C) whose image contains a free group of rank two.

 Since the advent of Casson's invariant, one of the intriguing aspects of repre-
 sentations of the fundamental groups of three-dimensional Z-homology spheres
 is the question of whether the group of every such homology sphere other than
 S3 has an irreducible representation into SU(2). This is also of considerable
 relevance to Floer-Donaldsen theory. The question in this generality seems to
 be some way from resolution (one corollary is the Poincar6 conjecture!). How-
 ever we may retreat to a weaker question by observing that if this were true then
 every homology sphere obtainable by surgery on a nontrivial knot in S3 has
 an irreducible representation into SL(2, C) and in particular, an affirmative
 answer implies that every nonabelian classical knot group has such a represen-
 tation. This latter question also arises naturally in the context of [CS, CC].

 In this note we prove the following

 Theorem 1. Let K be a knot in S3 whose Alexander polynomial is not identically
 1. Then G(K) = 'r4(S3\K) has a representation into SL(2, C) whose image
 contains a free group of rank two.

 The reason for specifying that the image contain a free group rather than only
 requiring that it be nonsoluble is that we wish to rule out the rather uninteresting
 case of dihedral representations that although irreducible are guaranteed by the
 condition that AK (-1) $ 1 . Such representations are elliptic and already exist
 in SU(2).

 We also remark that the condition on the Alexander polynomial guarantees
 that G(K) has a representation into SL(2, C) that is soluble and nonabelian,
 (see [BZ] or [R]) and a natural way to try and prove Theorem 1 would be
 to show that any such representation can be deformed to an irreducible one.
 However our proof does not proceed in this way and it remains an interesting
 open question whether a knot in S3 can have all its soluble representations
 being isolated.
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 One interpretation of Theorem 1 is that the Alexander polynomial is a strictly
 weaker invariant of knottedness than the A-polynomial of [CC].

 Corollary 2. If K is a knot in S3 with nontrivial Alexander polynomial, then it
 has nontrivial A-polynomial.

 Various special cases are also of interest, for example we have

 Corollary 3. The group of every fJbered knot in S3 has a representation into
 SL(2, C) whose image contains a free group of rank two.

 Corollary 2 follows immediately from Theorem 1, since the latter guarantees

 a representation that by [T], has to lie on a component of representations of
 complex dimension at least 1, so that there is at least one factor in the A-
 polynomial of K.

 Proof of Theorem 1. We note that a calculation from the presentation (see [BZ])
 reveals that the theorem is true for torus knots and it is certainly true for hy-
 perbolic knots.

 It follows from Thurston's hyperbolisation theorem that we can suppose K
 contains a nonboundary parallel incompressible embedded torus, so that K is a
 satellite knot. By Alexander's theorem, every torus embedded into S3 bounds a
 solid torus on at least one side and it follows that K contains an incompressible
 torus T that separates the knot complement into two pieces, one of which is
 an atoriodal knot complement in S3 and the other of which is a solid torus
 containing the knot K. Observe that since the exterior knot is atoriodal, it has
 a representation of the required sort.

 As usual we define the algebraic (resp. geometric) winding numbers of K
 inside the solid torus to be the minimal number of algebraic (resp. geomet-
 ric) intersections of K with a meridian disc of the solid torus. Note that the
 geometric winding is strictly larger than zero since T is incompressible.

 There are now two cases. Suppose that the algebraic winding number of K
 is nonzero. Then we see easily that we may extend a random irreducible repre-
 sentation of the exterior knot across to K by using an abelian representation of

 7r, (D2 x S1 \K) ; the representation of G(K) so obtained satisfies the conclusions
 of the theorem provided the representation of the exterior knot did.

 We are therefore reduced to the case that the algebraic winding number of K
 inside the solid torus is zero. Mark T using the longitude-meridian pair coming
 from the exterior knot. We may re-embed into S3 so that it is unknotted and so
 that the longitude on T now bounds a disc in S3. The embedding yields a new
 knot, which we denote K1 . Notice that the winding number condition ensures
 that K has a Seifert surface lying entirely inside D2 x S1 and our choice of
 embedding implies that the Seifert form of K1 using this Seifert surface is the
 same as that of K. Whence K1 also has the same Alexander polynomial as
 K, and in particular K1 is knotted.

 Further, there is a degree one map from the complement of K to the com-
 plement of K1 so that there is a surjective homomorphism G(K) -? G(K1), so
 that if we can prove the theorem for the knot K1 , we will be done.

 We may repeat the above argument to obtain a chain of knots K, K1,
 K2, ... all of which have the same Alexander polynomial, with the property

 that either K, has a representation of the required sort and hence so does K,
 or we may form K,+, . We conclude the proof then by a result of [S] where
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 it is shown that a chain of the above type cannot extend indefinitely without
 eventually terminating in the unknot. Since the Alexander polynomial condi-
 tion excludes this last possibility, we must eventually reach a knot group for
 which we can find a representation and we are done.
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