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 DERIVATIVE VARIETIES AND THE PURE BRAID GROUP

 By D. COOPER and D. D. LONG1

 Introduction. In the light of the example of [16], which shows there is a

 braid in the kernel of the Burau representation, there has been renewed interest

 in the Gassner representation, both from the point of view of faithfulness and

 in examining the interactions between these two representations. In this paper,

 we shall show that the approach of [11] highlights the differences between these

 representations; the upshot being that in the cases n = 3,4 we might expect to

 see different behavior in the Burau representation.

 Briefly, the strategy is that one can regard a braid a as both an algebraic

 morphism acting on the representation variety of a free group and as a link in

 S3 by taking the closure v9. These ideas interact as the fixed points of the dif-

 feomorphism are precisely the representations of the fundamental group of the

 complement of v9. One can then ask questions about deformations of representa-

 tions and the Zariski tangent spaces at certain representations in the algebraic set

 Fix(u). This makes clear one of the difficulties in the problem since the Burau

 and Gassner representations arise in this context from the abelian representations.

 We use this information in two ways. Let X be the representation variety of

 the free group in to SL(2, C). We can use the fact that X is an algebraic group

 to use left translation to define a generalized derivative (,(p) for the morphism
 a at the representation p. (This is the usual derivative in the case that p happens

 to be a fixed point for a.) We then define the Derivative variety for a, denoted

 B(u), to be the Zariski closure of (,(X). The question of faithfulness can then
 be rephrased by asking about which representations map to the identity in the

 derivative variety. This has the advantage that we are considering questions which

 include irreducible representations of the link complement and that we can deal

 with both Burau and Gassner representations simultaneously.

 Standard analysis, see [17], of the fibers of the morphism f X -? B(u)

 shows that generic point preimages have dimension dimc(X) - dimc(B(cr)) so
 that if the dimension of B(a) is large then we would expect point preimages to

 Manuscript received October 19, 1990.
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 138 D. COOPER AND D. D. LONG

 have dimension less than the dimension of the abelian representations. As a first

 step in this direction we show:

 THEOREM 2.17. Suppose that a is a pure braid with hyperbolic closure and let

 R be the component of the representation variety of 7rj (S3 \ v) which contains the
 discrete faithful representation. Then the Zariski closure of $,.(R) has dimension

 n+3.

 The proof of this fact will occupy ?2 and involves Thurston's deformation
 theory together with some special facts about braids. We have the corollaries:

 COROLLARY 2.18. If a is a pure braid with hyperbolic closure, then:

 (a) dimc(B(u)) > n + 3.

 (b) For p E U, a Zariski open subset of B(), we have ,j 1(p) has dimension
 2n - 3.

 This is then combined with the results of ?3, where we do some analysis at
 the soluble representations. Letting /3 denote the Gassner representation, and Xs
 the soluble representations of the free group of rank n, we show:

 THEOREM 3.12. Suppose that a E -y3,(ker(/3)). Then (J1(I) contains a compo-
 nent in its representation variety which contains Xs, in particular, it has dimension
 at least 2n + 1.

 This result is to be compared with the well known fact (see Theorem 3.16 of

 [2] & Theorem 3.4 below) that any braid in ker(/3) acts as the identity map on

 Fn/F".

 Since 2n + 1 is greater than the dimension 2n - 3 predicted by 2.18, this

 suggests that a braid in the kernel of 13 would be unusual. This is to be contrasted
 with the analogous analysis for the Burau representation; one finds that the best

 estimate for the dimension of ' 1(I) is n + 2, and this is only greater than 2n - 3
 for n < 5; suggesting that for the braid group the cases n = 3,4 may be special.

 An analysis of the soluble representations also shows:

 THEOREM 3.10. Suppose that a E ker(/3). Then the longitude on each torus
 lies in 7ri(S3 \ a)".

 A further geometric property comes from a somewhat different direction.

 Note that the trivial braid has the property that the fundamental group of its

 complement splits over the trivial group. In ?4 we use ideas of Hatcher as well
 as the Culler-Shalen machine to show:
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 VARIETIES AND BRAID GROUP 139

 THEOREM 4.8. Let a be an element of P4 which lies in ker(3). Then the comple-
 ment of the 6- contains a closed embedded nonboundary parallel incompressible

 surface; in particular, its fundamental group splits over a closed surface group.

 In the course of proving this, we observe the following, which are perhaps

 of some independent interest:

 THEOREM 4.1. Let L be an n component link. Suppose that the representation

 variety of L has a component A which contains an irreducible representation

 and has dimension > n + 3. Then S3 \ L contains a nonboundary parallel closed

 embedded incompressible surface.

 This has various corollaries in the special cases when one can guarantee the

 hypotheses of the theorem. For example:

 COROLLARY 4.6. A homology boundary link of two or more components con-

 tains in its complement a closed embedded nonperipheral incompressible surface.

 The authors thank C. Hodgson for useful conversations.

 1. Preliminaries. In this section we collect some of the basic notions. We

 appeal to some elementary algebraic geometry, so we collect here a few facts

 we shall need, this serving the additional purpose of establishing notation. Full

 details may be found in [17] or [8].

 Let An(C) be complex space of dimension n; in this context, usually referred

 to as affine n-space. Given an ideal I in the polynomial ring with n indeterminates

 C[X1,...,X,] we define the affine algebraic set V(I) to be {x E An(C) I g(x) =
 O g E I}. Conversely, given a set S in An(C), we define an ideal in C[Xi,... ,X,]
 by setting I(S) = {f I f(x) = 0 x E S}.

 An ideal I is radical if fk E I for some k implies f E I and an ideal is
 prime if g.f E I implies g or f E I. Then Hilbert's Nullstellensatz states that

 the maps I -? V(I) and V -? I(V) establishes a bijection between radical ideals

 in C[Xi,... ,X,] and affine algebraic sets in An(C). If I is a prime ideal, we say
 that V(I) is irreducible or that V(I) is an affine algebraic variety. These are the

 building blocks in the sense that a radical ideal can be written I = P1 ... nPr as

 a finite irredundant intersection of prime ideals in just one way, with associated

 decomposition V(I) = V(P1)U... U V(Pr) into algebraic varieties, the components

 of V(I). The sets V(I) form a basis as closed sets of a topology, the Zariski

 topology on An(C).

 We shall also have to briefly refer to projective varieties. Recall that one

 defines projective space P' to be (A"+1 (C) \ 0)/ , where the equivalence relation

 is given by requiring that equivalence classes are {A(xo, ... ,xn) I A E C}. The
 theory is then set up the same way as before, save that we restrict attention to
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 140 D. COOPER AND D. D. LONG

 those ideals of C[Xl,...,X,+1] which are homogeneous, that is to say can be
 generated by homogeneous polynomials.

 A map f: X -? Y is a morphism if it is the restriction of a polynomial map

 between the ambient spaces. Morphisms are continuous in the Zariski topology.

 A morphism is dominating if f (X) is Zariski dense in Y. This is not an unduly

 restrictive notion, as one may always consider the morphism to have target the

 Zariski closure of f (X).

 There is a notion of the dimension of a variety; this can be defined in several

 equivalent ways. Given a variety V we define C(V) to be the field of fractions

 of the integral domain C[X1,... ,Xn1]/I(V). Then dimc(X) is the transcendence
 degree C(V) over C. For us a crucial fact will be

 THEOREM 1.1. (See [17] Theorem 3.13)

 (a) Suppose that f: X -* Y is a morphism. Then for each y E Y, every

 component of f-1(y) has dimension as least dimc(X) - dimc(Y).

 (b) On a Zariski open subset of Y, every component of f' (y) has dimen-
 sion exactly dimc(X) - dimc(Y).

 Let Fn be the free group of rank n. This has automorphism group Aut(Fn).
 Our main interest here will be in the subgroups Bn and Pn: the braid group and
 the pure braid group. Full information about these groups and their properties

 can be found in [2]; we briefly recall the main facts to which we shall appeal.

 The n-string braid group, Bn we define to be the subgroup of Aut(Fn) gener-

 ated by the automorphisms {vi I 1 < i < n - 1 } where the action of vi is given
 by:

 Xi -) Xi+I

 Xi+1 -* (xi+l) Ixixi+i

 xj xj j i, i + 1

 If we use the symbol ?n to denote the symmetric group on n letters, then
 there is an obvious map from Bn - ?n coming from action as a permutation

 group on the set {xI,X2,... .,xn}. We now define the Pure Braid group, denoted
 Pn, to be the kernel of this homomorphism.

 These ideas interact by the use of the representation variety of the free group

 of rank n into SL(2, C) . We set X = {p I p: Fn - SL(2, C)}.
 Clearly X is an irreducible affine algebraic set and choice of a basis for

 the free group gives an identification X = Hl=1 SL(2, C) a direct product of n
 copies of SL(2, C). This shows that X has dimension 3n. Those points of X

 which correspond to isomorphisms with Fn we refer to as generic; see [11] for a
 justification of this term.
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 VARIETIES AND BRAID GROUP 141

 We also pick out the set XA of abelian representations; one checks easily

 that this has dimension n + 2 and the set Xs of soluble representations which has
 dimension 2n + 1. These are both subvarieties of X.

 We shall concentrate on the action of the group Aut(F,), which acts on X as
 a collection of algebraic morphisms by the rule that if a E Aut(F,) and p E X
 then up is the representation defined by up(w) = p(cV1w) (cf. [11]). This is used

 to give linear representations via:

 THEOREM 1.2. [11] Suppose that the representation oa E X is fixed by a

 subgroup H of Aut(F,). Then there is a linear representation of H defined by
 h -* dh,.

 There are two standard cases of this in the context of the braid groups; we

 shall be interested in the case that H is the pure braid group and the fixed represen-

 tations are allowed to run over XA. This gives a representation 13 : P, -? GL(A)
 usually known as the Gassner representation. Here A is the ring of Laurant poly-

 nomials over Z in n commuting variables. One also obtains the Burau represen-

 tation by considering the subvariety of XA given by considering representations

 with all generators mapping to the same element and linearizing.

 We also have cause to refer to the standard representation of SL(2, C) on its

 Lie algebra which is usually denoted Ad : SL(2, C) -+ Aut(SL(2, C)). If we let

 IB : SL(2, C) -* SL(2, C) be the smooth map defined by A -* BAB-1 we can
 define AdB as the derivative of IB at the {e}. Our conventions imply that the

 following diagram commutes:

 Te(SL(2, C)) TA(SL(2, C))

 tAdB t IB

 Te(SL(2,C)) Q) TBAB-1(SL(2,C))

 2. Derivative varieties. In this section we introduce the notion of derivative

 varieties in 2.3; this is the image of X under the generalized derivative map. The

 main result is 2.17 where it is shown that n+3 is a lower bound on the dimension

 of the derivative variety of any hyperbolic braid. In ?3 we will use this result to
 compare the dimension of point preimages with the ambient dimension.

 We begin with some preliminaries. Note that in our context X is an algebraic

 group defined over the complex numbers. For p E X, we define the left translation

 map Lp : X -* X by Lp(oa) = oa.p. Then given a diffeomorphism f : X -* X we
 may use the derivative of this map to translate the map

 T p(X) p T f (p)(X)

 and obtain a canonical map at the identity which we denote by c4(df ) defined
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 142 D. COOPER AND D. D. LONG

 by the following diagram, where e denotes the identity in the Lie group X:

 T~~(X) df p

 TP(X) T f Tp)(X)

 tdL-j tdLj-1

 T e(X)

 We shall suppress the Lie algebra notation for Te(X) as the maps in which

 we will usually be interested will not preserve the Lie algebra structure. The map

 ,(dfp) will be called the generalized derivative of f at p. In the case that f
 actually fixes p this gives the usual derivative in the sense of smooth topology.

 We shall actually do better than the lemma which follows (see Theorem 2.8);

 but it is worth observing that there is much information in the maps ,(df p) even
 for a diffeomorphism:

 LEMMA 2.1. Suppose that f : X -+ X is a diffeomorphism with the property

 that for all p E X we have that ,(dfp) = Id and f(e) = e. Then there is a
 neighborhood U of {e} on which f is the identity map.

 Proof. Given a vector v E Te(X) we define the left invariant field by the rule

 that vp = dLp(v). For a small neighborhood V of 0 E Te(X) it is a standard result
 that the flow lines of these vector fields define a diffeomorphism exp: V -+ U,

 where U is a small neighborhood of the identity in the group X. For f as in the

 statement of the lemma we have that dfp(vp) = dfPdLp(v) = dLf(p)(v) = Vf(p) so
 that f preserves left invariant fields. If now x is any point very close to the iden-

 tity we may find a vector v so that the flow line through {e} of the field defined

 by v runs through x. Denote this flow line by v: [0, 1] X, where v(O) = e
 and v(1) = x. It satisfies the differential equation du/dt = v v(t) with initial

 condition v(O) = e. Applying the chain rule, we see that f v(t) also satisfies this

 equation and initial condition, so by uniqueness we have that f v(t) = v(t), so that

 f(x) =x. D

 COROLLARY 2.2. Suppose that f E Aut(F,) satisfies the hypotheses of 2.1.
 Then f is the identity automorphism.

 Proof. It is shown in [11] that the only f which is the identity on a neigh-

 borhood of {e} is the identity automorphism.

 Definition 2.3. Suppose that a E Aut(F,). Then we define a map ? X X
 Aut(Te(X)) by (,(p) = ,(dap).

 The Zariski closure of the image of , we call the Derivative variety of a,
 denoting this by B(uf).
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 VARIETIES AND BRAID GROUP 143

 One checks easily that , is a morphism and that B(u) is irreducible. Notice
 that an elementary application of the chain rule shows that the image does indeed

 lie inside Aut(Te(X)). One interpretation of Lemma 2.1 is that B(cr) is a single

 point only in the case that a = Id.

 Example 2.4. Consider the automorphism v: F2 -* F2 given by u(x) = xyx

 and v(y) = xy. Using this basis to identify X with SL(2, C) x SL(2, C) we see

 that if p = (M1,M2) we have the block matrix:

 (f()=0I +AdMIM2 Adml

 Remark 2.5. In fact, knowledge of (,(p) for all p E X determines a when
 a E Aut(F,). The proof is similar to that of 2.1, so we only sketch it. Fix some
 point p; we wish to determine v(p). Let /3: [0, 1] -+ X be a smooth path with

 p3(0) = e and 3(1) = p. Define the vectors {vt} by the rule

 d/3
 dt = dLO(to)(Vto).

 dtt=to

 Then applying the chain rule to the path oj3 we see that

 dt 3 = duo(to)dL/(to)(vto) = dLag(to)( (da73(to)) (vto) = dLa0(t)or(i3(to))(vto). dt t=t0

 It follows that if we set wto = f,(13(to))(vto); the hypothesis implies that all
 these vectors are determined once we know { vt. Then the path v/3(t) satisfies
 the differential equation y(t) = Wt ay(t) with initial condition -y(O) = e. Again, by
 uniqueness it is the only such path and v(p) is recovered as v/3(1).

 A coarse invariant of B(a) is its dimension. Even this is of interest since

 as explained in ?0, we would like to know that very few abelian representations

 map to the identity under the map (,. If we could show dimc(X) - dimc(B(u)) <
 dimc(XA) this would be true for generic points.

 We are interested in analyzing the image of the map , in the case that the
 automorphism a lies inside the pure braid group. In this case we have extra infor-
 mation coming from certain invariance properties special to this group. The first

 of these comes from the map 7r : X -+ SL(2,C) given by ir(M1,M2,... ,Mn) =
 MI,.. , Mn. Then it is an elementary property [2] that a E Pn implies that for
 all p E X we have irp = 7r(up). Differentiating this condition gives:

 dire = dlr p)d?p
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 144 D. COOPER AND D. D. LONG

 and translating this condition to the identity we see:

 (1) d7rpdLp = di7r,(p)dL,(p)((dap)

 LEMMA 2.6. If p = (M1,... , Mn) then d7rpdLp has matrix given by

 (1, Adm1, Adm1M2, 9 .. * AdM 1M2 ..Mn-1 )

 Proof. Consider the tangent vector in the j-th component as coming from a

 small path vt left translated to p that is, we seek to find the image of (MI,...,

 vtMj,... ,M,). This is given by M1 ... vtMj... Mn. Differentiating and trans-
 lating back to the identity in the target, we see that (0, O, . . ., v;, ... , 0) maps to

 AdMIM2...Mj(Vj). This implies the result. O

 This has the following consequence for the sequel:

 COROLLARY 2.7. Suppose that a E P,. Then if ((dap) = I, we have p = o(p)
 up to signs. In particular,

 (a) There is a K depending only on n for which p = aK(p).

 (b) If no Mj has trace zero then p = v(p).

 In fact, we show something slightly stronger:

 THEOREM 2.8. Suppose that a E Pn. Then ((dap) and p determine c(p) up to
 signs.

 Proof. By equation (1) we have:

 (I, AdM I, AdM1 M2, * . . AdMIM2 ... Mn-l(d(p)F'

 = (I, AdaMI, AdM gM2,9 * , AduMIUM2 ...cMn-1)

 Expanding, we see that MI,... M, and ((dapu l are given, we can find
 an expression for AdOMI. This expression determines uMI up to sign. Similarly,
 we may determine aM1IcM2 up to sign, hence aM2. Continuing in this way we
 determine every aMj for 1 < j < n - 1; and aM, is determined by the condition
 that M I ...M, = a(M1 ...Mn). ?

 Remark 2.9. Part (b) of Corollary 2.7 follows from 2.8 since for P, we have

 that each Mj is conjugate to its image o(Mj) so that unless the trace of Mj is
 zero its sign is also determined.
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 VARIETIES AND BRAID GROUP 145

 COROLLARY 2. 10. Suppose that a E P,. Then for generic p, ,(dup) determines
 a :X -)X.

 Remark 2.11. Contrast this with what we would like to know, namely, that

 for abelian p, ,(dup) determines a.

 Corollary 2.7 shows that the points in which we are interested lie inside the

 fixed set of the diffeomorphism. We use this as follows. Suppose that a is a pure

 braid on n strands, we denote the closure of this braid by v9; this is an n-strand

 link in S3. Then one finds easily that a presentation for its fundamental group is

 given by:

 G(U.) = (xi,... ,Xn I xi = .xl. ,xn = 'Xn)

 When 6. is a hyperbolic link, we may use the deformation theory of Thurston

 to examine the dimension of B(u). From henceforth, we suppose that this is the

 case. This is justified by the following simple lemma:

 LEMMA 2.12. Let N be any normal subgroup in Pn other than the center. Then
 N contains braids whose closure is a hyperbolic link in S3.

 Proof. It is shown in [10] that such an N always contains elements which

 represent pseudo-Anosov mapping classes of the punctured disc. Let oa be one
 such and set M(u) to be the mapping torus of v; this is a hyperbolic manifold

 with n + 1 torus boundary components. One of these corresponds to the 0D2 x S1

 and we wish to cap off the S' factor with a disc in order to get a closed braid in

 S3. This corresponds to (0, 1) surgery on the cusp-unfortunately this may fail
 to be a hyperbolic manifold. However, deformation theory [18] Theorem 5.8.2

 implies that for very large k, (0, k) does have a singular hyperbolic structure

 which may be de-singularized in a branched covering. It follows that the braid

 a k has hyperbolic closure, as was required. a

 We see that Fix(u) is an affine algebraic subset of X; decompose it into its
 irreducible components Fix(u) = Fo UF1 U ... UFn. The connection with the map
 ( is given by:

 LEMMA 2.13. Suppose that p E Fix(u). Then the Zariski tangent space

 Tp(Fix(u)) is a subspace of ker((,(p) - Id).

 Proof. (See [19].) Consider the image of a smooth path (v(l)txl,.. , v(j)txj
 . v(n)txn) which lies inside the fixed point set. Differentiating the condition

 that this path satisfies the relations ux- = xY gives the result.
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 146 D. COOPER AND D. D. LONG

 Remarks 2.14. (a) This is also a smooth fact: If f : X -? X is a diffeo-

 morphism then the same proof shows that if x is a smooth point of Fix(f) then

 Tx(Fix(f)) is a subspace of {v E TX(X) I dfx(v) = v}. Notice that we really only
 need 2.13 for smooth points.

 (b) The calculation of 2.13 shows that the subspace ker((, (p) - Id) represents
 the cocycles Z1(G(69); Adp) (see below) and in general this subspace can be larger

 than the dimension of the Zariski tangent space to the variety Fix(u)-what is

 really measured by the cocycles is the Zariski tangent space to the scheme defined

 by the presentation of G(&f). However we do have equality in a special case:

 THEOREM 2.15. Suppose that 99 is a hyperbolic link. Then for a Zariski open set

 of points on the component containing the complete structure we have ker((Ff(p) -

 Id) = Tp(Fix(u)).

 Proof. There are two points here. Firstly, it is shown in [17] that for any

 irreducible algebraic set F, there is a Zariski open set U in F on which the

 dimension of the Zariski tangent space agrees with the dimension of F as defined

 in ? 1. These are the smooth points of F. Further, two components of Fix(u) may
 meet, but they can only do so in a proper subvariety. Thus there is a Zariski open

 subset U in Fi coming from the intersection of the smooth points of Fi which
 do not meet the rest of Fix(u). On such points the Zariski tangent space is the

 object which one would expect, via, say smooth topology. These considerations

 have nothing to do with the component containing the complete structure.

 The second point is that we need to show that ker((,(p) - Id) actually gives
 the Zariski tangent space. Here we need to use the fact that we have a spe-

 cial component and the proof requires some group cohomology, for which we

 reference [4].

 We recall the outline here. Suppose that p: r -, SL(2, C) is a representation

 and ...- M -+ Z[f] -+ Z -+ 0 is a projective resolution. Then composing
 p with the adjoint representation Ad : SL(2, C) -? S12 we can form a chain
 complex of Z[f]-modules {Hom(Mi, s12)} from this resolution; the action on the
 first factor being the usual one, the action on the second being twisted by Adp.

 The cohomology groups H*(f; Adp) are defined to be those of this complex.

 We need little concerning these cohomology groups other than the fact that they

 satisfy Poincare duality and that if M is a K(7r, 1) then H*(f; Adp) = H*(M; Adp).

 As above we let M be the exterior of the pure link coming from v-. Then we
 have an exact sequence coming from the map induced by inclusion i: OM M:

 -, H1(M; Adp) -, H1(OM; Adp) -, H2(M, OM; Adp) -, H2(M; Adp) -

 The fact that we need is that if p is the complete representation then Mostow-

 Weil rigidity gives H2(M, OM; Adp) -+ H2(M; Adp) is the zero map. This im-
 plies that H1(AM;fAdp) A + H2(M,A M; Adp) is surjective and by duality that
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 VARIETIES AND BRAID GROUP 147

 H1(M; Adp) -+ H1Q(OM; Adp) is injective. If M has n torus boundary compo-
 nents, it is easy to see that H1 (OM; Adp) = C2- so that by duality again, the
 image of H1 (M; Adp) has dimension n; since this group was injected it follows

 that dimc(H1(M; Adp)) = n. Since H1(M; Adp) = Z1(M; Adp)/B1(M; Adp) we

 have that dimc(Z1 (M; Adp)) = n + 3. As we observed above, representations give

 rise to cocycles, so that we have Tp(Fix(u)) < Z1 (M; Adp). Since the left-hand
 side of this inequality is known ([18] Theorem 5.6) to satisfy n + 3 < Tp(Fix(u))
 we have equality at the complete representation.

 The usual considerations show (see [18]) that for all representations -y on the

 component sufficiently near to the complete structure we have H2(M, OM; Ad'y) -+

 H2(M; Ad-y) is the zero map and a Zariski denseness argument completes the
 proof. n

 Now let R C Fix(u) be the component which contains the discrete faithful

 representation of the link group G(69). Notice that we do not work with rep-
 resentations up to conjugacy here so that the deformation theory of Thurston

 ([18] Theorem 5.6 & 5.8.2) implies that dimc(R) is at least n + 3. In fact, one

 deduces from Weil [19] or Mostow rigidity that since R contains the complete

 representation, dimc(R) = n + 3; see also the proof of 2.15. It follows that:

 COROLLARY 2.16. For a Zariski open subset U of R we have dimc(ker((, (p) -
 Id)) = n + 3.

 Now we consider the map , restricted to R. Our aim will be to show that
 (,(R) has large dimension:

 THEOREM 2.17. The Zariski closure of (F,(R) has dimension n + 3.

 The proof of this fact will occupy the rest of this section. We first draw some

 corollaries:

 COROLLARY 2.18. If a is a pure braid with hyperbolic closure, then:

 (a) dimc(B(u)) > n + 3.

 (b) For p E U, a Zariski open subset of B(f), we have F, 1 (p) has dimension
 2n - 3.

 Proof. Part (a) is clear and (b) follows directly from Theorem 2.17 and 1.1.

 This already has the following consequence. We have already observed that

 dimc(XA) = n + 2. For n = 3,4 we have that 2n -3 < n + 2, so that we would

 expect there to be an abelian representation which does not map to the identity
 matrix; that is to say, ur does not lie in the kernel of the Gassner representation.

This content downloaded from 128.111.64.145 on Fri, 17 Jun 2016 21:33:44 UTC
All use subject to http://about.jstor.org/terms



 148 D. COOPER AND D. D. LONG

 We shall clarify this situation by doing somewhat better in ?3.
 We now embark on the proof of 2.17. To do this we must use extra structure

 coming from the nature of the automorphisms. To this end we define a map

 tr: X -+ C' given by:

 tr((Mi , . . . 9Mn)) = (tr(MI), ... ., tr(Mn))

 where tr denotes the usual trace map in SL(2, C). Again we easily have that for

 u E Pn tr = tr o a so that

 dtrpdLp = dtr,pdL,p o ((dup).

 We shall be interested in the case that p E R, so that up = p where we may

 rewrite this as dtrpdLp(I - ((dup)) = 0 or in other words

 Im(I - ((dup)) C ker(dtrpdLp).

 It is therefore the analysis of the map tr: SL(2, C) -? C which is our next

 task. Recall that the Lie algebra of SL(2, C) is generated as a C vector space by

 eR=[0 -1] eu=0 0 ] and eL=[1 0].

 We shall always use this ordered basis in the calculations which follow.

 LEMMA 2.19. Let A be the SL(2, C) matrix

 a b

 c d

 Then dtrAdLA: Te(SL(2, C)) -+ C has matrix [a - d, c, b].

 Proof. If v is a vector in the Lie algebra, then the given map can be computed

 by consideration of tr(vA).

 COROLLARY 2.20. dtrAdLA has critical points only when A is central.

 One sees easily that one can recover a finite number of SL(2, C) matrices

 from any 3-tuple of complex numbers {o a, $, y}, and that the only matrices giving

 rise to {O, 0, 0} are central. Our information will come from ker(dtrAdLA). One
 cannot recover the matrix A from this; only its fixed points:

This content downloaded from 128.111.64.145 on Fri, 17 Jun 2016 21:33:44 UTC
All use subject to http://about.jstor.org/terms



 VARIETIES AND BRAID GROUP 149

 LEMMA 2.21. Suppose that ker(dtrAdLA) C T,(SL(2, C)) = C3 is two-dimen-
 sional. Then one can recover the fixed points of A for the action by fractional

 linear transformations on C.

 Proof. Consider the inner product on C3 given by (oa,3, -y) (at, /', y') =
 aau' + 33' + 'y'. This form is not positive definite, but it is nondegenerate, so that

 for any subspace W we have dim(W) + dim(WL) = 3.
 Then the map dtrAdLA can be considered as taking the inner product with

 the matrix [a - d, c, b]. This vector cannot be recovered from the subspace

 ker(dtrAdLA) but it can be recovered up to scaling by a complex number as

 the orthogonal complement of ker(dtrAdLA). The fixed points for the action of A

 on C satisfy

 az+b
 z +

 cz+d

 that is to say cz2 + (d - a)z - b = 0. Thus simultaneous scaling does not alter the

 fixed points. ?

 Provided we adopt the appropriate convention for the case of coincident fixed

 points, notice that any two-dimensional subspace of Te(SL(2, C)) gives rise to

 a nonzero vector defined up to scaling and hence a pair of fixed points for a

 1-parameter subgroup of SL(2, C).

 COROLLARY 2.22. Suppose that A, B E SL(2, C). Then Fix(A) = Fix(B) if and

 only if ker(dtrAdLA) = ker(dtrBdLB).

 If we return to the context of the map tr: X -_ Cn we see that if p =

 (p(xi), ... , p(xn)) then ker(dtrpdLp) = e1 ker(dtrp(x,)dLp(x1)) and this subspace
 has dimension 2n provided that none of the p(xi)'s is a central matrix. It will also
 be useful to observe:

 LEMMA 2.23. AdB(ker(dtrAdLA)) = ker(dtrBAB-1 dLBAB-1).

 Proof. This is the commutativity of the diagram of ?1. 0

 COROLLARY 2.24. Suppose that AdB(ker(dtrAdLA)) = ker(dtrBdLB). Then A

 and B commute.

 Proof. By 2.23 & 2.24, BAB-1 and B have the same fixed points. But then

 Fix(B) = Fix(BAB- 1) = B(Fix(A)) implies that Fix(A) = Fix(B). aD

 Our final observation before completing the proof of 2.17 comes from a slight

 variation of Theorem 5.8.2 of [18]. There it is shown that on the component

 containing the complete structure, the traces of meridians control representations
 up to conjugacy. Here we are dealing with representations and seek to control
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 these by knowledge of the map ker(dtrpdLp). In the light of our previous remarks,
 this amounts to asking about the fixed points of the meridians.

 THEOREM 2.25. In the notation established above, let G(69) = (X1** Xn I Xi =
 axi 1 < i < n) be the group of a hyperbolic link. Let R be the component of
 Fix(u) containing the discrete faithful representation and set R* to be the Zariski

 open subset of those representations for which no xj maps into the center.
 Then the map o: R* (CP2)n given by

 (Ml, . . . Mn) {[al- di, Cl, bi], . .,[an -dn, Cn bn]}

 is finite to one on a Zariski open subset of R* which contains the complete

 representations.

 Proof. It is shown in [17] that R* is can be given the structure of a (abstract)

 variety. In this structure, the map so continues to be a morphism, since this is a

 local notion.

 Let p be some representative of the discrete faithful representation and sup-

 pose for simplicity that the fixed points f j of the parabolics p(Mj) are all finite
 nonzero points. This means that the equation for the fixed points has the form

 (z - f j)2 = 0, so that the associated projective point has coordinates [2f j, 1, - f 2].
 Fix some classical neighborhood V of p inside R* and consider where the

 preimage of the point p = {[2f 1, 1, -f],.. ., [2f,n, nf2]} meets V.
 By Mostow-Weil rigidity the only representations near the complete structure

 which keep every meridian parabolic are conjugate to the complete representation.

 If ae is any representation inside V mapping to p, it must be parabolic on the

 boundary and since n > 3, all conjugacy is spent, so that ae = p. Hence we see

 that the full preimage o1 (p) is a union of components, one of which is a point,

 so that by theorem 1.1 (p-1(p) is a finite union of points and the Zariski closure

 of the image has dimension n + 3. Applying 1.1 again, we deduce that 0 is finite

 to one on a Zariski open set.

 The second clause follows from [17]. There it is shown that if we define for

 x E R* a function e(x) = max{dimc(A) I A is a component of yo-%((x))} then
 the set Sn = {y I e(y) > n} is closed. We have just seen that e(p) = 0 so that
 there are both Zariski and classical neighborhoods of p on which so is finite to
 one. E

 One interpretation of this result is that for most representations on the compo-

 nent containing the complete structure, one cannot vary the representation with-

 out changing the fixed set of at least one Xj; or equivalently without changing

 ker(dtrp(x j )dL p(x j ))

 Remark 2.26. Notice that in general, one can vary irreducible representations

 without varying the fixed points. An example comes from the Borromean rings: If
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 one component is removed, then what remains is a pair of two unlinked circles. It

 follows that if we map one of the generators to the identity matrix, then the group

 becomes free of rank two. However there are many curves of representations

 of this latter group which do not move the fixed points of the images of the

 generators.

 Proof of 2.17. Suppose that the theorem were false and the map ( R

 (,(R) drops dimension. By Corollary 2.16, there is a Zariski open V in R for
 which dimc(ker((,(p) - I) = n + 3 for all p E V. By theorem 2.25, there is
 a Zariski open V' for which variation in the representation causes at least one

 ker(dtrp(xj)dLp(xj)) to vary. Finally, there is a Zariski open V" on which p(xi) does
 not commute with p(xj) i ] j for every representation in V".

 Choose some fixed p E v n v' n V"; R is irreducible so that this set is

 nonempty open. By theorem 1.1, every component of ( 1((a(p)) has dimension

 at least dimc(R) - dimc((,(R)) > 0 so that we may choose at least a curve C so
 that p E C C (a (p)). Further, we may arrange a small classical neighborhood

 W satisfying p E W C V n v' n v".
 What we have now achieved is that for all aG E W n c:

 (a) The subspace lm(,(a() - I) is independent of ae and has dimension
 2n - 3.

 (b) ker(dtrc,dLc,) has dimension 2n.

 We have already observed that we always have lm(I - ((dap)) C ker(dtrpdLp)
 and the dimensions involved clearly make this situation very restrictive.

 By choice of V', we know that as ae varies over W n C the subspace

 ker(dtradLa>) must vary in at least one of its components, without loss of gener-

 ality the first component has ker(dtrax? dLax,) varying. We need to observe:

 LEMMA 2.27. lm(I - S(d%a)) cannot contain a nonzero vector of the form
 (0, . .. . 0, v, 0, . .. 0).

 Proof. Exactly as for tr, we also have lm(I - ((dua)) C ker(d7ra>dLa>). Now
 Lemma 2.6 shows that a vector of the form of the statement never lies inside

 ker(d7ra>dLa). a

 Let { vi, v2, ..., }2n-3 be a basis for Im(I - ,(dop)) this subspace being fixed
 throughout what follows.

 Let pi: Ta(R) -+ C3 be the projection of the tangent space onto the i-th
 factor. Considering each vj as an element of eV ker(dtra(xi)dLa(xi)) we see that

 since ker(dtrax dLax,) is not constant over W, the intersection is at most one
 dimensional so that pl(vj) are all multiples of some fixed vector in the first
 factor. By doing row operations, we may obtain a new linearly independent set

 (which we relabel) {Vl, V2, ..., V2n_31 which has pl(vj) = 0 for j > 2.
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 We now work with the set { v. ..., n-3} a linearly independent set of 2n -4

 vectors which lie in e= ker(dtr,(Xi)dL,(Xi)) a subspace of dimension 2n - 2.
 Observe that the phenomenon of the above paragraph can only happen at most

 once again; for if it happened twice, by doing row operations twice, we could

 find 2n - 6 independent vectors lying in n - 3 two-dimensional kernel factors;

 so we would have equality and hence a vector of the form (0, ... , 0, v, 0,. ., 0),

 which is forbidden by 2.27.

 There are two cases, basically identical. We do the first. Suppose that {p2(vj)}
 contains a basis for the second factor. By reordering, we may suppose that

 {P2(4), P2(43)} is a basis. By row operations we may find a linearly independent
 set, again renamed {v2,..., e~n-3} so that p2(v1) = 0 for j > 4. Continuing in
 this way, we reduce the number of vectors at each stage by two, and the dimen-

 sion of the subspace they live in by two. We began with 2n -4 vectors in n - 1

 factors of dimension two, so that if we perform this operation n - 3 times we

 have two vectors v and w whose only components lie in two kernel factors; that

 is, they have the shape v = (0, .. ., 0, vl, v) and w = (0, .. . 0, W1, W2). The set

 { vi, w1 } must be linearly independent, else we are done as above. Consideration
 of the map of 2.6 shows that since v and w must lie in ker(dirpdLp) it must be

 that vi = -Adp(xni)(Q) and w1 = -Adp(xIn-)(W2). It follows that {V,w2} is an
 independent set, and Adp(xn-i)(ker(dtrPXndLPXn)) = ker(dtrpxn_idLpXn-1).

 However 2.24 now implies that p(xn) and p(xn_1) commute which contradicts
 our choice of p. O

 3. Soluble representations. Recall that we have denoted XA to be the

 abelian representations. Part of the source of the difficulty comes from the fact

 that these are part of the singular variety of the soluble representations. In this

 section we attempt to clarify this difficulty. To do this we must first analyze the

 way that the abelian representations lie inside the soluble ones.

 First let us consider an easy case. Consider the representation p* of the free

 group of rank n given by

 P*(xi) = 0 /] (X2) [alq ]

 and p*(xj) = Id for j > 2.

 LEMMA 3.1. If p, q # ?1 and a 7 0, then p* is a smooth point of Xs.

 Proof. We shall show that we can parameterize all the soluble representations

 nearby p* as a complex manifold of dimension 2n + 1, from which the result will

 follow.

 Notice that since the elements in the first two coordinates have a unique

 common fixed point, if p is soluble and nearby, there is a unique point fp fixed
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 by the image of p which has to be close to 0. Then there is a unique parabolic

 transformation fixing identity which carries this fixed point to 0, namely

 I1 -fp
 0 1

 Conjugating p by this parabolic gives a representation which fixes 0 and has

 entries very close to those of p* so it has the form

 ai 1/Pi

 where Pi is close to p, P2 is close to q, etc.

 The required parametrization is p {f pf, p1,a,. Pn an }

 The same proof shows:

 LEMMA 3.2. Suppose that p is a soluble nonabelian representation. Then p is

 a smooth point of Xs.

 This fails for an abelian representation consisting of hyperbolic elements,

 since soluble representations nearby may fix either of two points. But this is the

 worst that can happen generically:

 LEMMA 3.3.

 (a) Let

 Ai= Ai ?
 Ai= l/Ai

 and consider the representation p = {A1, A2, . . . , An } where none of the Ai = ?1.
 Then the set of soluble representations near to p with common fixed point near

 O forms a manifold of dimension 2n + 1.

 (b) In the notation of ?2, the tangent space of the representations of (a)
 has a basis:

 { 0,0, , eR, ... , 0} where the nonzero entry is in the i-th place for
 all 1 < i < n

 { 0,0, , eL, ... , 0} where the nonzero entry is in the i-th place for
 all 1 < i < n

 together with the vector {(1 - A2)eu, (1 - A2)eu,...,(1 - A2)eu}.

 Proof. For (a) we may use the same parametrization as in 3.1. Given (a), we
 need only show that the given tangent vectors can all arise and then we have
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 shown that they form a basis as they are visibly linearly independent. The first n

 vectors come from deformations of the form {Al, A2, A(t)Ai, .. , AAn} where A(t)
 is smooth path of diagonal matrices running through Id. The second n vectors

 come from a path of the form

 IAi O
 [a(t) 1 /Ai

 in the i-th place, where a(t) is a smooth path through 0.

 None of the above deformations has moved the 0-fixed point. This gives the

 last vector: we simultaneously conjugate all the entries by

 1 f(t)]

 10 11

 An easy calculation shows that this gives the final vector. o

 Denoting the small neighborhood of 3.3(a) by XS(p, 0), we also have XS(p, ??)

 and clearly the tangent spaces of these two manifolds taken together span TP(X).
 Further since both contain Tp(XA), a space of dimension n + 2, we see from the
 dimension formula for vector spaces that XS(p, 0) and XS(p, oo) are transverse

 and that Tp(Xs(p, O)) nTp(Xs(p, oo)) = TP(XA). From this analysis it follows that:

 THEOREM 3.4. The braid a E ker(o) < Pn if and only if Fix(u) contains Xs.

 Proof. If a fixes Xs, then for every generic p E XA infinitesimal paths in

 XS(p, 0) are fixed so that dup acts as the identity map on Tp(Xs(p, 0)). Similarly
 for Tp(Xs(p, oo); taken together these spaces span Tp(X) and a E ker(O3).

 For the converse let us note that a E ker(/3) means that for any fixed abelian
 representation, a acts as the identity to first order nearby. More formally, in the

 notation of [11], the representations {exp(xi)Ai,...,exp(xn)An} are mapped to
 {exp(x1 + o(xi))Ai, .. , exp(xn + o(xi))A }.

 However, in the special case that all the xi are multiples of eu (or all multiples

 of eL) we see that since AdAi(eu) = A?eU there are no higher order terms when one
 comes to use the Campbell-Baker-Hausdorff formula (this is just saying that the

 elements in a one parameter subgroup commute) and therefore if a representation
 in this subspace is fixed to first order, it is fixed exactly. Further, exp(ageu) =

 I + ageU so that

 exp(ateu)Ai= [i0 a/Ai J

 so that for generic choices we obtain the generic soluble representation into

 SL(2, C).
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 Putting these observations together, we see that if a E ker(3) then it fixes a
 generic point of Xs, hence fixes all of Xs, as was required. El

 Remarks 3.5. (a) In Theorem 3.16 of [2], it is shown that a E ker(3) implies
 that u(xi) = Ai xi )A-' 1 < i < n, where we may assume that each Ai lies in
 [ker(ae),ker(a)] and a : Fn- H(Fn) is the abelianization map. Any soluble
 representation into SL(2, C) is metabelian, in particular, kills all such Ai so that
 this gives the forward implication of 3.4.

 Further, we also have:

 LEMMA 3.6. The generic soluble representation into SL(2, C) is a faithful

 representation of the free metabelian group.

 Proof. A result of Magnus [15 cf. [13] p. 28] shows that if {si} and {ti}
 1 < i < n are commuting and invertible polynomial elements then

 Si t ?1

 is a faithful representation if the free metabelian group Fn/F"; one sees easily
 that if we divide all the entries of the i-th image element by the square root of

 its determinant we obtain a determinant one representation which is easily seen

 to be faithful. El

 Whence theorem 3.4 gives an alternative proof of Theorem 3.16 of [2]. We

 also see that the proof of 3.4 gives:

 THEOREM 3.7. ([1] & [14]) Aut(FnIF") has a faithful linear representation
 by linearizing at the generic abelian representation.

 (b) It is also worth noting that the analogous idea for the Burau representation

 gives much less information here. In this case, the same argument only shows that

 the link group has all soluble representations with all of the generators having

 the same diagonal entries; a variety of dimension n + 2.

 An alternative formulation of 3.4 is:

 COROLLARY 3.8. Let a be a braid in Pn. Then a E ker(3) if and only if the set
 of soluble representations of G(99) consists exactly of the soluble representation

 of the free group of rank n.

 Remark 3.9. This can happen for links other which are not pure braids; see [6]

 and references therein.

 It is shown in [2] that for a braid in the kernel of the Gassner representation

 the linking number of any two components is zero; hence every component Li of
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 the link has an associated longitude Ai on the i-th torus which is the boundary of
 a surface embedded in the complement of the link. From 3.4 we deduce easily a

 new piece of information:

 THEOREM 3.10. Each Ai lies in G(8)".

 Proof. Because of the above observations we have that Ai lies in G(6f)'. Hence
 for every soluble representation p we have tr(p(Ai)) = 2. It follows that p(Ai) is
 either the identity or a parabolic. However a parabolic cannot commute with a

 hyperbolic element. It follows that on the Zariski open set where none of the

 meridian generators has trace ?2 we have p(Ai) is the identity. Hence p(Ai) is
 the identity on all of Xs.

 The result now follows from 3.6. O

 Let Xs be the soluble representations which fix ox; that is to say, upper

 triangular matrices in SL(2, C). This is a subvariety of Xs left invariant by Pn.

 Unfortunately, the assignment a -+ &(dap) is not a homomorphism for p E Xs
 since the general representation in Xs is moved. However we can easily analyze

 this situation. If M is the SL(2, C) matrix

 p a

 O 1/p

 then the action of AdM on the ordered basis {eu, eR, eL } is given by the matrix

 p2 _2ap -a2
 0 1 a/p .

 O O 1/p2

 From this we easily see that if we choose the ordered basis (the nonzero entry

 is in the i-th place) {{0,O, ,eu,...,O} 1 < i < n, {0,0, ,eR,...,0} 1 <

 i ? n, {0O0, ,eL,... ,0} 1 < i < n} for the tangent space Tp(X) at a general
 representation p in X*, then the matrix for ,(dap) has the block matrix form:

 [(f]** ** 1
 (*) [[/[(] ** I 0 V]

 0 0 [131(a)] J

 where /3(u) is the standard Gassner representation and f1 (a) is the Gassner rep-

 resentation with the usual variables pi replaced by 1/pi.

 Definition 3.11. If G is a group, we set -yk(G) to be the k-th term of the lower

 central series of G. Notice that if G contains a free group of rank two, then -yk(G)
 is nontrivial.
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 THEOREM 3.12. Suppose that a E -y3,(ker(C3)). Then ((dap) = Id on all of Xs.

 Proof. Let a be any nontrivial element of ker(,3). By Theorem 3.4, Fix(u)

 contains Xs; in particular, the assignment a -* &(dup) is now a representation
 of ker(f3). Consideration of the matrices of (*) shows that since a lies in ker(3)

 (and hence ker(31)) all the matrices ,(dap) are 3n x 3n upper triangular, hence
 nilpotent of class 3n. It follows that for every braid a in -y3n(ker(3)) we have that

 ,(dap) is the identity matrix. [z

 We may combine this result with the calculation of 2.17 and 1.1. We see

 that for such braids there is a component in ( 1I() of dimension 2n + 1 which is

 always larger than the expected dimension of the preimage i.e. 2n - 3.

 Again it is worth noting that the relevant calculation for the braid group yields

 less information. The same kind of proof shows that if we pass to an element of

 -y3n(ker(Burau)) then this fixes all soluble representation with the same diagonal
 entries (see Remark 3.5(b)) and we obtain a component of dimension n + 2 in

 (1(I) However if n > 5 we have n + 2 < 2n - 3.

 This suggests a uniformity in the Gassner representation for all n, while for

 the Burau the n = 3,4 appear to be special.

 4. Closed incompressible surfaces. In this section we show:

 THEOREM 4.1. Let L be an n component link. Suppose that the representation

 variety of L has a component A which contains an irreducible representation and

 has dimension > n + 3.

 Then S3 \ L contains a nonboundary parallel closed incompressible surface.

 This is perhaps of independent interest and has some corollaries which we

 discuss at the end of the section. Our application in this context will be to obtain

 a closed incompressible surface in the complement of a four strand braid lying

 in the kernel of the Gassner representation.

 In order to prove this theorem, we shall use some ideas of Hatcher [9] for

 which we need to introduce some notation. Recall that the weighted simple closed

 curves on a torus are parametrized by (a dense subset of) projective lamination

 space which is a real projective line Pl. For a manifold with n torus boundary
 components curve systems in the boundary lie in the n-fold join P1 * P1 *... *P1 =
 S2n-1. An incompressible, 0-incompressible surface gives rise to a point on this
 sphere. In [9], it is shown that the set of points so obtained forms a dense set in

 a polyhedron of dimension < n. To prove 4.1 we observe:

 PROPOSITION 4.2. One can find simple closed curves Ci on Ti so that the
 projective class of A1C1 + A2C2 + * * + A4 C AX > 0 is never a boundary slope.
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 Proof. This is essentially general position, but some mild degree of care is

 necessary. We begin by briefly recalling how Hatcher's proof in [9] goes, since

 we shall use some of these ideas.

 The starting point is the Floyd-Oertel theorem (see [7]), namely there are a

 finite number of branched surfaces with the properties: (a) Every essential surface

 is carried by one of these branched surfaces. (b) Every surface carried by one of

 these branched surfaces with nonnegative weights is essential. It clearly suffices

 to deal with the case of a single branched surface, 13. One then observes that the

 boundary of 13 is a branched 1-submanifold in OM (which we refer to as a union

 of train tracks, although this is not strictly correct, as there may be bigon regions

 inside some of the boundary tori) which give rise to a collection of open cells in

 each Pl. One may also orient these train tracks so that if S is carried by B, the

 orientation induced on aS by these train tracks in H1 (OM) gives the class of aS

 in S2n-1, namely forget orientation and projectivize.

 Then given two surfaces S 1 and S2 carried by B we may form a new surface
 S1 +S2 which is also carried by B by double curve sum. This induces a sum on the
 boundary curves compatible with the train tracks. The theorem of [9] is proven

 by observing that with (train track induced) orientations, the intersection number

 aS1 aS2 = 0 so that the cell of curves carried by the boundary train tracks is a
 self-annihilating subspace of H1(SM) hence has dimension < n. Projectivizing

 proves the result.

 To prove Proposition 4.2 we proceed as follows. Fix curves C C,... ,C so

 that C* lies in the i-th torus. Our claim will be that by small adjustment of this

 collection we may find a set with the properties of the proposition.

 It clearly suffices to do this for one branched surface at a time. Fix such a B

 as above. The above proof shows that it defines a cell in Pl * Pl *... * Pl with at
 most n linearly independent vertices { v1,. . ., vn } so that every point in the cell
 is a positive linear combination of the vi's. Each vi is defined by some projective

 class, the t-th one being of the form vt = [C1,t, C2,t, . . ., Cn,t] where it is possible
 that the extremal vertices are actually represented by foliations, though this does

 not affect the argument.

 It is also possible that some of the vertices do not meet some of the tori;

 again this only involves a few more words. Further, it could also happen that

 there is a torus which none of the vertices meet; in this case we are reduced

 to the case of n - 1 tori and there are in fact only n - 1 independent vertices.

 Henceforth we suppose that this does not happen.

 A small initial adjustment arranges that none of the C1 is a multiple of
 Cp,q for any p,q. Recall that we want to arrange that the projective class of

 A,C* + A2C* + + AnC* is never in the cell defined by nonnegative linear
 combinations of the { vt}.

 Let us consider the nonnegative solutions to the equation A1C1,1 + A2C1,2 +

 ** + ~AnCl,n = aeC*, for some nonnegative ae. We see easily that the set of such
 solutions forms a linear cone V1 in Rn and that it is a proper subset of Rn by our
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 initial adjustments. (In particular, this uses that all of the vertices do not miss the

 first torus.) It could be empty-for example if C7 is not carried by the train track.

 In this case we are already finished. Note that in order for a linear combination

 of { vt} to hit a point whose first co-ordinate is projectively C* (or zero) we must

 clearly choose some point on the plane V, in R'.
 Now fix some random point on this graph and consider these value substituted

 into the equation AlC2,1 +A2C2,2+ +AnC2,n+ If this yields some multiple of the
 curve C* this is regarded as bad and we perturb C* slightly so that this does not

 happen. Now we consider solutions to the equation AlC2,1 +A2C2,2+... +AnC2,n =
 f3C*; this defines another linear subspace V2 as above. In order for 4.2 to fail we

 must clearly choose some values lying inside V12 = Vi n V2. Observe that our
 initial perturbation guaranteed that V12 is a proper subspace of V1. Proceeding in

 this way, we see that there is at most one linear combination of the { vt} which

 yields the projective class of Cl for all i < n - 1 and this defines a unique curve

 on the n-th torus. By perturbation, we may arrange that C* is not this curve, and

 the proposition is proven.

 Proof of 4.1. It is slightly simpler to work with the characters of representa-

 tions in A; we denote this set by Ax; since A contains an irreducible representatoin,

 Ax has dimension strictly larger than n.

 Consider the function q: Ax -+ Cn given by X {X(Ci),. X(Cn)}
 where the curves Ci are chosen as in 4.2. This is a morphism. Let Xp be the
 character of an irreducible representation. Then dimension considerations dictate

 that /-F1(Xp) has dimension at least one, so that there is a curve C through

 Xp lying inside q-51q(Xp). If we now go to infinity in C we see that this curve
 of characters must be bounded on every torus component of L, for if not, the

 bounded class would give a boundary slope lying inside the forbidden simplex

 of 4.2. Thus the results of [5] imply that L contains a closed incompressible

 surface.

 Definition 4.3. (See [6].) Let F(k) denote the free group of rank k. A k

 component link in S3 is a homology boundary link if there is a surjective map

 irI(S3 \ L) -? F(k).

 COROLLARY 4.4. Suppose that L is a link in S3 of four or more components,
 with the property that one can delete one of its components and obtain a boundary

 link. Then the complement of L contains a closed embedded nonboundary parallel

 incompressible surface.

 Proof. The hypothesis implies that there is a surjection p In (S3 \ L)
 F(n - 1). The characters of irreducible representations of the target group give a

 variety of dimension 3(n - 1) - 3 and this is strictly larger than n for n > 4. -
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 COROLLARY 4.5. Any Brunnian link of four or more components contains in

 its complement a closed embedded incompressible surface.

 COROLLARY 4.6. Any homology boundary link of two or more components

 contains in its complement a closed embedded incompressible surface.

 Remark 4.7. The hypothesis on the number of components is necessary as it

 is shown in [12] that the Borromean rings do not contain such a surface.

 We can now apply these results to show:

 THEOREM 4.8. Suppose that a E ker(/4). Then cr contains in its complement

 a closed embedded incompressible surface.

 Proof. One sees easily that if we delete one component of cr that we obtain

 a three strand braid lying in ker(33); since this representation is known to be

 faithful, we have that it is the trivial braid. Therefore we may apply 4.1 to

 deduce the result. F
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