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Abstract

Using elementary methods we give a new proof of a result concerning the special form of the
character of the bounded peripheral element which arises at an end of a curve component of the
character variety of a knot complement.

1991 Mathematics subject classification (Amer. Math. Soc): 57 M 25, 57 N 10.

1. Introduction

In [3] the following theorem is proved:

THEOREM 1.1. Suppose that pn is a sequence of representations of the fun-
damental group of a knot which blows up on the boundary torus T, and
which converge to a simplicial action on a tree. Suppose that there is an
essential simple closed curve C on T whose trace remains bounded. Then
linim^oo tr(pm(C)) = k + I/A where X" = 1 whenever there is a component S
of a reduced surface associated to the degeneration so that S has n boundary
components.

Precise definitions of the terms will be given below, but the rough description
is as follows. If one has a curve of characters of representations of a manifold
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with a single torus boundary component, then the method of [5] for producing
boundary slopes is to go to some end of the character variety. Two things
can happen on the boundary torus when one does this; either all the characters
remain bounded and the surface produced from the resulting splitting can be
chosen to be closed, or there is a particular simple closed curve whose character
remains bounded. We shall focus on this latter behaviour. This simple closed
curve gives the boundary slope and a natural question to ask is what the value of
the character of the closed curve at the ideal point is. The point of the theorem is
that the character has a special form and that some information about this form
is carried by the topology of a splitting surface coming from the degeneration.

As an aside, we note that the theorem shows that for a two-bridge knot only
the numbers ±1 can occur, since it is known ([6]) that the essential surfaces
in such knot complements have either one or two boundary components. It is
also known that other values are possible — the untwisted double of the trefoil
contains an ideal point where the bounded character takes on the value a> + or 1

where a> is an eleventh root of unity. But other than this, little is known. For
example, it still seems to be an open question whether a nontrivial root of unity
can arise in this way in the character variety of a hyperbolic knot.

In this paper we shall give a new proof of Theorem 1.1. In fact it is a
geometric version of one of the proofs of [3], but the fact that it avoids both
algebraic K—theory and algebraic geometry and provides a somewhat new
perspective should hopefully yield some new insights.

The point of view of this proof is that the action on a tree produced by the
techniques of [5] is approximated in a geometrical sense by the action of the
representations pm for m large. This is the idea used in [1] and also [2].

2. Main results

LEMMA 2.1. Given L > 0 and n > 0 there is a constant Kn > 0 such that
for any set of matrices A\, A2, ..., An G SL2(C) with |tr(/4,Ay)| < L, for all
1 < /, j < n then there is a point x e H3 which is moved a distance of at most
Kn by At for every i.

PROOF. The proof is by induction on n. For n = 1, the result follows from
the relationship between trace and translation length. For n — 2, suppose that
we are given a pair of matrices A, B in SL2(C). The proof proceeds by showing
that we can simultaneously conjugate A and B so that they are in the compact
subset ft of SL2(C), where:
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a b \ 1
. e SL2(C) : \a\, \b\,\c\, \d\ <2L + 2}

c a J I

If A and B have a common fixed point on the sphere at infinity, then we may
perform a simultaneous conjugacy on them to put the common fixed point at
infinity in the upper half space, then:

Furthermore, by conjugating by a diagonal matrix we may ensure that \c\, \d\ <
1. The hypothesis implies that 1/(L + 1) < \a\2, \b\2 < (L + 1) so that A, B
lie in Q.

If A and B do not have a common fixed point then there is a point z on the
sphere at infinity which is fixed by A~XB. By means of a conjugacy we can
arrange that z = 0 and that Bz = oo. Thus Az = oo also and thus A, B are
conjugate to:

The hypothesis implies that \a\2, \b\2 < L + 2. Observe that tr(AB) = ab —
c - (1/c), thus \c + ( l /c) | < 2L + 2, and so A and B lie in fi.

Given a point x in H3 the function which assigns to a pair of matrices (A, B)
the maximum of the hyperbolic distance of x from Ax and from Bx is continuous,
and therefore bounded on £2 x £2. Since the existence of a point x satisfying the
conclusion is invariant under conjugacy, the result for n = 2 follows.

Suppose inductively that the result is true for any set of (n — 1) matrices with a
constant Kn_\. Given a set of n > 3 matrices satisfying the hypothesis, let x, be
a point moved a distance at most Kn_\ by the matrices {A;- | 1 < y < n, ,/ ^ /}.
Define C, to be the convex hull of the finite set [xj\j ^ i) and consider the
goedesic triangle T with vertices {x\,x2,x?,}. The radius of the largest circle
which may be inscribed in a geodesic triangle is 2 ln[(l + \/5)/2] thus there is
a point y which lies within this distance of each side of T. Each C, contains at
least two vertices of T, and therefore at least one edge of T. Therefore v lies
within a distance of 21n[(l + V5)/2] of C,. The vertices of C, are moved at
most a distance of Kn-\ by the matrix At, therefore every point of C, is moved
at most a distance Kn-\ by At. This uses the fact that the distance between a
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point and its image under an isometry, is a convex function. Thus the distance
ofy from Aty is at most #„_, + 41n[(l + V5)/2].

COROLLARY 2.1. Suppose that G is a finitely generated group and that we
are given that pn : G —> SL2(C) is a sequence of representations which have
characters xn = trace o pn which converge weakly to a function x- Then there
is a subsequence pni and matrices Aj e SL2(C) such that Aj.pnrAyl —> p and
trace o p = x-

PROOF. Choose a finite set of elements {a\,a2, • • • ,up} which generate G,
then by Lemma 2.1 we have that for n sufficiently large there is xn in H3 which
is moved a distance at most Kp by pa, for i = 1, 2, • - •, p. After conjugating
each pn, we may arrange that xn — x for every n. The subset Q of SL2(C)
consisting of elements which move x a distance of at most Kp is compact. Thus
there is a subsequence as claimed.

The set X(G, SL2(C)) of characters of representations of a group G into
SL2(C) is given the weak topology. This coincides with the topology induced
by an embedding of X(G, SL2(C)) into a finite dimensional Euclidean space
given by using the traces of a (large enough) finite set of elements of G. If G is
finitely generatated it follows from Corollary 2.1 that X(G, SL2(C)) is a closed
subset of Euclidean space. (See [5].)

LEMMA 2.2. Suppose that G is a finitely generated group and pn : G —>
SL2(C) is a sequence of representations with the property that for every a € G,
tr(pna) —»• ±2asn —> oo. Then after changing each pn by a suitable conjugacy,
a subsequence of{pn] converges to an abelian representation.

PROOF. By Corollary 2.1, we can conjugate a subsequence of the pn so that
this subsequence converges to a representation p for which tr(pa) = ±2 for
every a in G. The image of p consists entirely of parabolic elements and {±/}.
If two of these parabolics have distinct fixed points, then a large power of one
times a large power of the other is hyperbolic, which contradict the hypothesis.
Thus p is reducible, and so can be conjugated to be upper triangular. Now a
sequence of conjugacies by suitable diagonal matrices makes p converge to a
diagonal representation.

We now study degenerations of knot complements. Let M be the complement
of a knot and pn : TZ\{M) —• SL2(C) be a sequence of representations. We
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say that this sequence blows up if there is an element a e it\ (Af) such that
trace(/>Ba) —*• oo. We assume that the projectivized length functions which
they determine converge to some projectivized length function and further,
that all these representations lie on a curve in the representation variety. The
consequence of this assumption is that the limiting projectivized length function
comes from an action of Tt\ (Af) on a simplicial tree F rather than an R-tree.

We shall assume that n\ (Af) acts on F without inversions and that if an edge e
in F is incident to a vertex v then stab(e) is contained in but not equal to stab(u).
Let e be an edge of F; we construct a properly embedded surface 5 in Af from e
as follows. Let M be the universal cover of M and choose an equivariant map

/ : M —• T.

Make / transverse to the midpoint of e. Then 5 = f~\e) is a properly
embedded 2-sided surface in M, possibly not connected. After performing
compressions on 5 by equivariantly homotoping / we may assume that all
components of S are planes. We assume that the action of TTI(M) on F has no
common fixed point. Let F be a component of S which separates M into two
components M+ and M_. Then:

7Ti(M) = 7T,(M+) *niiF) 7T!(M_).

For some choice of F this decomposition is non-trivial. We have that n\{F)
is contained in stab(e) and there are finite collections of vertices vf of F with
7Ti(M+) contained in the group generated by the union of the stab(v,+), and
similarly for the minus sign.

PROPOSITION 2.1. With the above assumptions, each pn may be replaced by
a conjugate so that there is a subsequence of pn\s\ab{e) which converges to an
abelian representation.

PROOF. If y e nx{M) has the property that trace(/on()/)) is bounded as n ->•
oo, we will say that y remains bounded. By [4], y remains bounded if and
only if y stabilizes some vertex of F.

We apply Corollary 2.1 to the sequence of representations /on|stab(v+) to get
a representation p+ of stab(i>+) and At e SL2(C) such that
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Apply Corollary 2.1 to the sequence of representations pn.|stab(v_) to get a
representation p_ of stab(v_) and Bj € SL2(C) such that

If every element y e stabO)hastr(p+y) = ±2 then Lemma 2.2 gives the result.
So we may assume there is an element y in stab(e) with trace(p+y) = c /

±2. We claim that there is an element a+ e stab(u+) — stab(e) with the property
that trace(p+a+) = a ^ ±2. Choose an element a e stab(u+) — stab(e). Note
that a,ay,ay~x e stab(u+) — stab(e) so that if any of these elements have
trace(p) ^ ±2 we are done. Otherwise set A = p+a and C — p+y, then from

tr(AC) +tr(AC-') = tr(A)tr(C)

we see that ±2tr(C) = ±2 ± 2, but tr(C) = c ^ ±2 hence tr(C) = 0. Now

tr(A2C) +tr(C) = tr(A)tr(AC),

thus tr(A2C) = ±4. If a2y is not in stab(e) we are done. Otherwise we can
replace y in the above argument by a2y to conclude that a3y will do.

Similarly, we can assume there is a_ e stab(v+) — stab(e) with tr(p_a_) ^
±2.

Consider the action of a+ anda_ on the tree F. These elements stabilize
different vertices of F and do not stabilize the edge between them, so the
element a+.a_ acts as a non-trivial hyperbolic translation on T (see [4]). Thus
tr(pn(a+.a_)) -> oo as n ->• oo. It follows that the non-parabolic elements
pn(a+) and pn(a_) have axes which are moving away from each other in H3.
By a sequence of conjugacies, we may arrange that Fix(pn(a+)) is converging
to 0 and Fix(pn(a_)) is converging to oo.

Now consider any element p1 e stab(e). Then Pa±fi~l e stab(v±) since
stab(e) c stab(u±). This implies that the axes of pn(fia+p~]) and pn(a+)
remain within a bounded distance of each other, since they are elements with
trace bounded away from ±2 and their product is in stab(v+) and so has bounded
trace. Similarly for the minus sign. It follows that for n large, pn(/0 moves 0
and oo by a very small amount. Thus pn ()3) converges to a diagonal matrix as
n —>• oo.

Suppose that M is a connected 3-manifold and F is a surface properly em-
bedded, but possibly not connected, in M. We do not assume that either M or



96 D. Cooper and D. D. Long [7]

F is orientable; we do not assume that F is incompressible. We show how to
construct an action of 7i\ (M) on a tree from this data.

Let F\, F2, • • •, Fn be the components of F and M\, M2, • • •, Mm be compon-
ents of M — F. Let n : M —• M be the universal cover of M. We construct
a graph F by assigning one vertex to each component of n~{ (M — F) and one
edge to each component of n~l(F). The edge corresponding to the component
F, of 7r~'(F,) is incident to the vertex corresponding to the component Mj of
Tt~l(Mj) if the closure of M, contains F,. We must show that every edge is
incident to precisely 2 vertices. To see this, note that there are either one or
two components of M — F adjacent to F,. If there are two components, the
result is clear. If there is only one component of M — F adjacent to F,, say
Mj, then there is a loop in Mj U F, which meets F, once transversely. Thus this
loop is essential, and hence in M there are two distinct components of n~\Mj)
whose closure contains F,. It is clear that the action of ii\ (M)onM by covering
transformations induces a simplicial action on F.

Next we show that F is a tree. There is an embedding / : F —>• M such
that the image of each vertex of F lies in the component of 7r"'(M — F) to
which it corresponds, and so that the image of each edge of F intersects once
transversely n~x F in the component to which it corresponds. Observe that there
is a neighborhood of F, in M which is a product / x F,•. This is because F, is
properly embedded in M, and if F, is one-sided in M then there is a loop in M
which meets F, once transversely, which implies that this loop is non-zero in
Hi (M; Z2). However M is simply connected, giving a contradiction. Therefore
Ft is 2-sided in M. There is a retraction r : M —> i(V) defined by sending
a product neighborhood / x F, of F, onto the edge to which it corresponds by
projection onto the / factor, and sending a component of 7T~' (M — F) with these
product neighborhoods removed to the vertex of i(T) to which it corresponds.
Since M is simply connected, it follows that /(F) is simply connected.

Now suppose that the boundary of M contains an incompressible torus T
and that some component S of F meets T in an essential loop a. We now
assume that F is incompressible and contains no boundary parallel disc. The
incompressibility of F means that every component of 5 D T is essential in T,
and therefore parallel to a. Let f be a component of n~lT. This implies that
each Tt\{Mi) injects into Tt\{M), and thus M, is simply connected. It follows
that M, meets T in a connected, but possibly empty, set.

We choose a base point x e T and set x = n(x) in order to identify rt\ (M, X)
with the covering transformations of M; then f is stabilized by TT\(T, X). Let
C\, C2, • • •, Cn be the components of T n S which are all parallel to a, labelled



[8] Roots of unity 97

in the order they go round T. The components of TI~\C\ U- • UC«) are parallel
lines on f. It follows that each component of f — n~x (Cx U • • • U Cn) meets a
distinct component Mj of M — F and thus corresponds to a distinct vertex in F.
Thus the image of T under r is a line I in F, and r : 7 —>• I can be chosen to
be a submersion.

We now assume that 5 can be transversely oriented, that is, S is 2-sided in M.
Choose two arcs, one in 5 and the other in T — S, from C, to Ci+i with the same
end points. The union of these two arcs is a loop y,. Push y, off S using the
transverse orientation. We now assume that [S] — 0 G H2(M, dM; Z2). From
this it follows that when the loop y, is pushed off 5 it must intersect S an even
number of times. This implies that if C, is isotoped along T to Ci+\ then the
transverse orientations of 5 along C, and Ci+\ are opposite.

Each line C, in f n jr~'S lies in a component of 7r~'(S), thus the edges of
F corresponding to the family of lines T C\ n~lS are in the same orbit under
ni(M, x). Given a pair of adjacent lines C,, Ci+\ in T n ^" ' (C, U C1+)), let
e,, e,+i be the corresponding edges in F. Orient I and use this to orient each
edge on 1. Let T : n\(M, X) —> Aut(F) be the action of it\{M, x) on F. We
will write xY for r(y). Then for some <5, e nx(M, x),

(1) xSi(ei) =-ei+u

where the minus sign means with orientation reversed. This follows from the
discussion of transverse orientations of surfaces above because an orientation of
an edge e, corresponds to a transverse orientation of the corresponding surface
S. We remark for later use that 5, is in the free homotopy class of the loop y,
constructed above.

Now suppose that

T ' : 7 T , ( M , X ) —> Aut(F')

is a simplicial action without inversions on a simplicial tree F'. Then there is an
equivariant map

/ : M —• F'

which is transverse to the midpoints of all edges of F', and this map may be
chosen so that every component of the pre-image under / of the midpoints of
the edges of F' is an incompressible 2-sided surface F in M. This surface F
in M projects to a 2-sided incompressible surface F in M. (The condition that
the action is without edge inversions is equivalent to F being 2-sided.) We may
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apply the construction above to F to get an action

T :7r,(M,jc) —• Aut(r)

on a tree T. Clearly the map / factors as f = f or, where / : F —> F" is an
equivariant map.

Suppose now that 7T\(T, X) stabilizes no vertex of V. There is a line t in
F" which is stabilized by n\(T,x). We claim that / may be chosen so that
f\t is injective. T is a plane on which Ji\(T, X) acts freely with quotient the
torus T. f\T covers a map T —> i.'/m(T, x) = Sl, which is homotopic to a
submersion. Lifting this homotopy gives a it\ (T, x)-equivariant homotopy of
f\f. This can be used to give a homotopy of / on all of M by using a small
collar neighborhood of f. This homotopy may then be done equivariantly to
each component of n~l(T).

Let e'j = f(ei) and e'i+i — f(ei+\), then since f\l —• £' is an an equivariant
simplicial homeomorphism it follows from equation (1) that

(2) <(*;) = -4+ 1.
Let 5 be a component surface of F which we assume is oriented. Use this
orientation to orient the boundary components C\, C2, • • •, Cn of 5. The base
point x is chosen on C\, and let c\, c2, • • •, cn be elements of ^ ( S , x) which
correspond to the oriented boundary components of 5. Thus C\.c2. ••• .cn is a
commutator in TC\(S, X). Since C, and C,̂ .1, are isotopic on T, the elements c,
and c,̂ .1, are conjugate so there is an element 5, e 7i\ (M, x) with 5, .c, .S~x — c,̂ 1,.
Clearly the covering transformation of M corresponding to <5, sends S, to 5,+i
and thus 5, satisfies (1) and hence (2).

DEFINITION. Suppose that n\ (M) acts on a tree, then a surface F in M is
called a reduced surface associated to the action if it is associated to the action
and has the minimal number of boundary components.

We can now give a proof of Theorem 1.1.

PROOF OF THEOREM 1.1. Let 5 be a component of a reduced surface associated
to the limiting action on a tree. We continue to use the notation C\,c2, • • • ,cn

used above for elements of TZX (S, X) corresponding to the boundary components
of 5. Thus n\(S, x) is a subgroup of stab(e) for some edge e of P. Let A be a
limiting eigenvalue of pn(C).

If the surface S does not separate, then 5 must be a Seifert surface for the
knot and have a single boundary component. The last sentence of this proof



[10] Roots of unity 99

gives the result in this case. Thus we may assume that 5 separates, and thus has
an even number of boundary components. By Proposition 2.1 we may assume
that pm|stab(e) converges to a diagonal representation p so:

/°(c-) = I n -i-i I for all/

where e, = ± 1 . If A = ±1 there is nothing to prove. Otherwise for m large
pm(c,) has trace bounded away from ±2 and therefore the endpoints of the axis
of pm(c,) are converging to 0, oo. NowthereisS, e rt\{M) with^.c,.^,"1 = c,̂ 1,,
and 8j satisfies (2), hence /om(5,) almost switches 0 and oo. It follows that pm(c,)
and pm(ci+\) are almost equal, and hence that all the e, are equal.

The homotopy class y = c\ .c2. • • • .cn is a commutator; therefore by Propos-
ition 2.1, p(y) = I, hence A." = 1.
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