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1 Introduction 

By a hyperbolic 3-manifold, we shall always mean a complete orientable 
hyperbolic 3-manifold of finite volume. We recall that  if F is a Kleinian group 
then it is said to be geometrically finite if there is a finite-sided convex 
fundamental  domain  for the action of F on hyperbolic space. Otherwise, s is 
geometrically infinite. If F happens  to be a surface group, then we say it is 
quasi-Fuchsian if the limit set for the group action is a Jo rdan  curve C and 
F preserves the components  of S ~ \ C .  The start ing point  for this work is the 
following theorem, which is a combina t ion  of theorems due to Marden  [10], 
Thurs ton  [14] and Bonahon  [1]. 

Theorem 1.1 Suppose that M is a closed orientable hyperbolic 3-man!fold. I f  
g: Sq-~ M is a lrl-injective map of a closed surface into M then exactly one of the 
two alternatives happens: 
 9 The 9eometrically infinite case: there is a finite cover lVl of M to which g l([ts 
and can be homotoped to be a homeomorphism onto a fiber of some fibration of 

over the circle. 
 9 The 9eometricallyfinite case: g,~zl (S) is a quasi-Fuchsian group. 

The dichotomy between geometrically finite and geometrically infinite is 
fundamenta l  and  despite the fact tha t  these two cases exhibit  widely different 
behaviour,  it seems to be a very difficult problem in general to find a criterion 
in terms of the image .q(S) which distinguishes them. 
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In this paper we shall give such a criterion which covers a very natural 
class of nl-injective immersions in the special case that the hyperbolic 
3-manifold is a surface bundle over the circle. To state our main theorem, we 
need some notation. Suppose that g : S q ~ M  is a nl-injective immersion into 
a closed hyperbolic 3-manifold M which fibers over the circle. The fact that 
M is a bundle gives some extra structure which comes from the presence of 
a canonical (up to isotopy) flow L~' and two canonical foliations. The flow 

comes from the suspension flow of the product structure on {fiber} x I and 
the foliations come by suspending the foliations left invariant by the mono- 
dromy of the bundle, which is pseudo-Anosov as we assume throughout that 
the bundle is hyperbolic. To exploit this extra structure, we shall also assume 
that the image g(S) is transverse to the flow. Then either suspended foliation 
induces on S a foliation, denoted .r and our first theorem is the following: 

Theorem 1.2 Suppose that M is a closed hyperbolic 3-manifold which fibers over 
the circle and that the immersion g : Sq~M is nl-injective and transverse to the 
suspension flow. Then g , (n l (S))  is geometrically infinite if  and only if ,Ns 
contains no closed leaf 

In fact, one can say much more about the structure of the induced foliation in 
the quasi-Fuchsian case. Define a foliation of a surface to be finite if it consists 
of some finite number of closed leaves and each end of every other leaf spirals 
towards one of these closed leaves. Then a sharper result is: 

Theorem 1.3 Suppose that M is a closed hyperbolic 3-manifi~ld fibers over the 
circle and that the immersion g : S , ~ M  is na-injective and transverse to the 
suspension flow. Then g ,  (nl (S)) is a quasi-Fuchsian subgroup if and only if the 
foliation ,~s is a finite .foliation. 

This seems to be the only criterion known for distinguishing the quasi- 
Fuchsian from the geometrically infinite in terms of the image of the immer- 
sion in the bundle M. Moreover,  these conditions are checkable in examples - 
in w we give an example of a surface immersed into a bundle which is shown 
to be quasi-Fuchsian by proving that the resulting foliation has a closed leaf. 

Another reason that an understanding of such immersions is interesting is 
related to the virtual Betti number of M, which by definition is 

sup{rank(Hi(mr;  IR)[ My is a finite covering ~f m }  

The conjecture is that for a closed hyperbolic 3-manifold, the virtual Betti 
number is infinite; though even going from Betti number zero to Betti number 
one is an outstanding open problem. One reason that these problems seem to 
be hard is that in general there is no way known to find a nl-injective 
immersion of a closed surface into the manifold. This gives a second reason 
that bundles are a useful class; it is possible to give constructions which 
produce many immersions of the type required by the hypothesis of Theorem 
1.3. This is done in w 
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One immediate consequence of the truth of the above conjecture would be 
that every hyperbolic 3-manifold contains an immersion of a surface 
corresponding to a quasi-Fuchsian surface group; this follows because of the 
following theorem of Thurston [16] 

Theorem 1.4 I f (M,  t? M ) is a compact oriented 3-mani[bld and !f H 2 ( M, ~ M ) has 
rank at least 2 then M possesses at least one incompressible surface which is not 
the fiber of any fibration. 

In the context of bundles, this leaves only the case of a rank one bundle not 
covered. We are able to show: 

Theorem 1.5 Every closed hyperbolic bundle over the circle contains an immer- 
sion of a quasi-Fuchsian surface. 

We conclude with a section which discusses examples. The first, alluded to 
above, is an immersion shown to be quasi-Fuchsian by these methods, the 
second example exhibits an embedded quasi-Fuchsian surface which is trans- 
verse to the flow coming from a pseudo-Anosov map. We have also included 
an appendix sketching the proofs of some of the results of [2]. 

2 Constructing immersed surfaces 

In this section we give a construction which provides a large number of 
incompressible immersions inside a bundle which are amenable to the tech- 
niques we develop in later sections. Throughout  this paper we consider 
a closed surface F and a pseudo-Anosov homeomorphism 0 of F. 

Lemma 2.1. Given any essential simple curve C c F, there is a finite cover P of 
F, a map 0 coverin9 0 and a curve C coverino C, so that C is disjoint from O(C). 
Further, C wO(C) is nonseparating on ft. 

Proof Fix an integer p > 1 and consider the epimorphism gl (F) --, Hi  (F, 7/p) 
which determines the finite covering ~Z:Fv ~ F. Observe that any simple 
closed curve element of the commutator  subgroup lifts to a nonseparating 
curve in Pp. This is easily seen since there are only a finite number of such 
curves up to homeomorphism and for each such curve one can construct by 
inspection a Zp-covering for which the curve lifts and becomes nonseparating; 
now an argument using the transfer map shows that the curve is therefore 
nonseparating in the covering Pp. 

Thus, if the given curve C separates, we may replace C by a non-separating 
curve covering it. Also notice that this covering corresponds to a characteristic 
subgroup therefore 0 is covered by a homeomorphism of Pp. We may now 
assume that C does not separate. 



258 D. Cooper et al. 

Given C suppose that [CnO(C)[ =K. Fix a curve (" covering C (it covers 
C p-to-l)  and a map 0 covering 0. Then ]Cc~O(C)I <pK,  in particular C meets 
at most pK components of n 1(0C). 

Choose a curve D c F which is simple and meets O(C) once transversally, 
and let T be a punctured torus which is a regular neighbourhood of D w O(C). 
If g=genus(F) then the index of HI(T, 7/p) in Hi(F, 7Zp) is p2g 2. Therefore 
n - ~ T h a s  p2O 2 components, let T~ be one of them. Let E('r~) be a curve in "T1 
which covers OC. Now T1 contains a cu rve / )  which has intersection number 
one with E, therefore i f  T2 is a different component of p -  1 T then E(Tl ) + E(i?2) 
as elements of Hi(P) .  Therefore there are at least pZg 2 distinct homology 
classes of curves which cover 0(C). 

It we choose p so that p2O- 2 > pK + 1 then there is at least one component 
of n ~O(C) which is both disjoint from C and not homologous to it. By 
adjusting our lift of 0 we obtain the result. []  

Lemma 2.2 ~(71 and (72 are two maps which cover 0 on an n-fold covering F of 
F, then 0"~ = O~ for some 0 < m < n. 

Proof There is a covering transformation z of P such that (7z = ~ o (71. Then 

where Ti = 0] t0 1 i is a covering transformation. Let G be the group of covering 
transformations of/V thus IGl<n. Therefore for some k and some O < m < n  
that 

T0"Cl  "~2" " "Tk ~ ~'0 "/71 T 2 "  " "~ 'k+ m~ 

which implies that 
l ~'Ck + l"Gl"f 2.. . '~k +m~ 

and then conjugating by 0 ~k+ 1) gives 

1 ~ ~0"C1"C2"  9 ""Cm_ 1 .  

Hence 

as required. [] 

Corollary 2.3 I f  ff is a finite regular cover o fF  and (7 is map covering 0 then the 
mapping tori Mo of and M y  of (7 have finite covers which are homeomorphic. 

In what follows we shall assume that C is a simple closed curve on F which 
is disjoint from OC and that CwOC does not  separate. Let F_ be the surface 
obtained by cutting F open along C and OC and then compactifying. Thus 
~?F_ has four components C+, C_,  OC+, OC_ where the signs are chosen so 
that 0 takes the + side of C to the + side of OC. Now define S to be the surface 
obtained from F_  by identifying C+ with OC_ via 0 and similarly identifying 
C_ with OC+. Thus S is an orientable connected surface. 
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We now introduce a standing definition: M is the mapping torus of 0. We 
regard M as the space obtained from F x [0, 1] by identifying (x, 1) in F x 1 
with (Ox, 0) in F x 0. Projection of F x [0, 1] onto the second factor induces 
a map of M to the circle which is a fibration with fiber F. The infinite cyclic 
covering of M given by this fibration is thus identified with F x IR and the 
group of covering transformations is generated by r(x, t)=(Ox, t+ 1) where 
x ~F  and t e N .  The foliation of F x [0, 1] by intervals has image in M a one- 
dimensional foliation which we denote by 5e called the suspension flow on M. 

Lemma 2.4 There is an immersion g : S ~ M which is transverse to 5O. 

Proof The inclusion F ~ M gives a map 1 : F_ -* M to which it is equal on 
the interior of F_ .  We now isotope 1 along the flow 5O in annulus neighbor- 
h o o d s o f C + , C  t o o b t a i n a m a p g ' : F  ~ M which is transverse to so and so 
that g ' (C+)= O(C~). A more precise description of this isotopy follows. 

Let A+ be an annulus in F with one boundary component C+ and 
h:C+x[O,  1 ] ~ A +  a parameterization so that h ( C + x l ) = C + .  Let 
k :Fx[O ,  1 ] ~ M  be the quotient map. Then g' is defined on A+ by 
g'(h(x, t))=k(h(x, t), t). We define g' in a similar manner on an annulus 
neighborhood of C_,  and on the complement of these two annuli g' = s. 

It is clear that g' and ~ are isotopic in M by an isotopy having the property 
that the track of each point during the isotopy lies in a single flow line of • .  
Then g' factors through a map g : S --, M which is transverse to the suspension 
flow. [] 

Remark. This is special case of a more general construction. Start with a finite 
cover p : F  ~ F and two sets of simple closed curves Ca ,..., C, and D~ ..... D, on 

which are mutually disjoint and such that their union does not separate F. 
We also require that p(Di)=Op(Ci) for each l<_i<_n. The composition of 
p with the inclusion of F ~ M may be homotoped to an immersion h : F ~ M 
transverse to 5 ~ Let F_ be the surface obtained from F by cutting along the 
two collections of curves and compactifying as before to get a surface with two 
boundary curves (Ci)+ corresponding to each C~ and two boundary curves 
(D~)+ corresponding to each D~. Let l : P  ~ M be the immersion obtained 
from h, then as before we isotop ~ along the flow in an annulus neighborhood 
of each (Ci)+ to obtain a map g' such that g'(Ci)+ =(D~)T. Let S be the closed 
surface obtained from F b y  identifying (Di)+ with (Ci)+ via 0. As before there is 
an immersion g : S --, M of S transverse to 5O. 

Lemma 2.5 The immersion g : S ~ M constructed above is nl-injective. 

Proof There is a fibration M ~ S ~ with fiber F and this determines an infinite 
cyclic c o v e r i n g ~  --, M. There is an induced infinite cyclic covering S of S and 
a map ~ : S --* M covering g. Suppose that ? is an essential loop in S which is 
null homotopic  in M. Then 7 lifts to a loop ~/in S. 
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Using the identification of /~ with F x P. we define the subsurface 
S. = O- 1 (F x [ -  n, n]) of S. We may push g(S) slightly in the direction of the 
flow 5e to arrange that 9(S)~F x 0 consists of two curves parallel to C. Then 
the boundary of S. consists of two parallel curves on F x n and another two 
parallel curves on F x -- n. Now add to OS. an annulus in F x n and another in 
F x - - n  to give an immersion 0 + :S~  ~ 2 ~  of a closed surface S+ which 
extends the immersion 0IS.- This immersion is also transverse to 5 ~ 

The composition of the projection pl : F x IR --, F and O. + is an immersion 
of a closed surface into another surface and is therefore a covering 
and so zh-injective. We may choose n large enough that } is contained 
in S, and this implies that pxO+(~) is essential in F and therefore in M, a 
contradiction. [] 

Theorem 2.6 Every closed hyperbolic surface bundle over the circle contains an 
immersion of a quasi-Fuchsian surface. 

Proof By 2.2,2.1,2.3 we may pass to a finite cover of the given bundle in 
which we may construct an immersion of a surface g : S ~ M as described in 
Lemma 2.4. F rom 1.1 we see that either this surface is quasi-Fuchsian (in 
which case we are done) or else there is a finite covering p : ~r ~ M to which 
the immersion g lifts to an embedding 0, and this embedding is a fiber in some 
fibration of ~r over the circle. 

By Thurston's theorem 1.4 if the rank of Hz()~I) is at least two there is an 
embedded surface V which is not a fiber of any fibration of M. A theorem of 
Heil [8] asserts that in a closed irreducible orientable 3-manifold, an embed- 
ded nonseparating surface with non-trivial normalizer is a fiber of a fibration. 
Therefore nl V must have trivial normaliser and so cannot be geometrically 
infinite. It follows from Theorem 1.1 nl V is quasi-Fuchsian. 

It  therefore suffices to show that the lift of the fiber F of M (which we 
denote F) and the embedding 0(S) represent linearly independent classes in 
H2(fi~r). 

To  prove this we note that there is a loop ~ on S such that g~ is dual to the 
fiber F. Thus 0(~) is a dual class to the fiber f'. However since this loop lies in 
the 2-sided surface ,~(S) it can be pushed off this surface, and thus cannot be 
a dual  loop for the homology class of 0(S). Thus F and 0(S) are linearly 
independent homology classes as required. [] 

Remark. We remark that in general one cannot expect to find a closed 
embedded quasi-Fuchsian surface in a hyperbolic bundle whose homology has 
rank one. As discussed in the introduction, whenever the homology has rank 
greater than one, there is always such a surface, in fact it can be chosen to be 
nonseparating. 

F o r  example, consider the 2-bridge knot K = 63 which has 2-bridge normal 
form 5/13 (see [7]). It is alternating, and its Alexander polynomial is monic of 
degree four, f rom which it follows that this knot is fibered with fiber a once- 
punctured surface of genus 2. It is easy to check that 0/1-surgery on S 3 \ K  
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produces a hyperbolic manifold which fibers over the circle, and necessarily 
has rank one homology. Let M denote this manifold. Suppose that M did 
contain a closed embedded quasi-Fuchsian surface (such a surface must 
separate since H2(M) is cyclic). Because S3\K contains no closed embedded 
incompressible surfaces, it follows that there is, in addition to the fiber, 
a separating surface in S3\K with slope 0/1. However, this is impossible from 
the results of [-7] which describes all incompressible and boundary incom- 
pressible surfaces in 2-bridge knot complements. 

3 Finite foliations 

In this section we develop the general picture of rq-injective immersions which 
are transverse to the flow. Our point of view is to work in the universal cover 
of M and flow a pre-image of the immersed surface 0(S) into a reference copy 
1 ~ of the universal cover of F. We prove that this image is all of P if and only if 
the immersed surface is geometrically infinite. We show that in the geomet- 
rically finite case that the image is a convex set bounded by lifted leaves of the 
invariant foliations on F. Finally, we examine the foliation on this convex set 
and show that the induced foliation on q(S) is finite in a certain sense. 

Now let zc : )~ --* M be the universal cover and 5~ the lifted flow on M. Let 
P be a component of 7r- ~F so that F is a plane which meets every flow line of 

once transversely. Thus we may identify M/5~ with F by flowing a point in 
M until it meets/7. Let q5 : M ~ F be the resulting map which identifies flow 
lines to points. 

Let 9:So~M be any ~- inject ive  immersion of a closed orientable surface 
S into M which is everywhere transverse to the flow LP. The results of the 
previous section show that such immersions are easily constructed. Let S be 
the universal cover of S and 0: S--* M a map covering 0. 

The measured foliations for 0 we denote by (,~-+,/~+) and (.~- , /~-) 
respectively. Our convention for these foliations will be the mnemonic one (as 
opposed to the convention used by dynamicists) - t h e  action of 0 on the 
measure of an arc c~ transverse to .~- + is defined by #+ (0e)=2/~ + (e), where 
2 > 1 is the dilatation. This pair of measured foliations determines a singular 
Euclidean structure on F, and makes F into a complete metric space. This 
metric space is locally isometric to the Euclidean plane except in a neighbor- 
hood of the singularities of the foliations. The metric at a k-prong singularity 
has a cone angle of ( k -  2)m Since k > 2 the metric is non-positively curved. It 
follows that between any two points in F there is a unique shortest arc in any 
homotopy class. Such an arc is called a geodesic and is a Euclidean geodesic 
away from the singularities. A short geodesic arc in a neighbourhood of 
a singularity consists of two Euclidean arcs each having an endpoint on the 
singularity. The angle between these two arcs is at least zr. 

The stable and unstable foliations on F lift to F and thus the singular 
Euclidean structure also lifts to a complete metric on ft. The action o f ~  M on 
/~r preserves the flow ~ and therefore induces, via ~b, an action on F. In this 
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section we shall examine the action of the surface group ~z~ (S) on the surface 
F. (Here, as in all that follows, we shall suppress reference to the map g,  in the 
context of fundamental groups.) As a first step we will examine the subset ~b(S) 
of t7. This set is clearly invariant under ~ (S). 

Definition 3.1 A leaf box is a compact convex subset of F bounded by finitely 
many segments of stable and unstable leaves. I f  a leaf box contains no singularity 
then it has 4 sides. Otherwise it contains precisely one singularity, say k-prong, 
and has 2k sides. An e -leaf box neighborhood of a point x in F is a leaf box which 
contains an e-neighborhood of  x. 

We will use the notation L(~I(S), S~(M))  for the (usual) limit set for the 
action of the subgroup ~,(S) on the 2-sphere at infinity. 

Lemma 3.2 Suppose g : Sq-~ M is incompressibly immersed transverse to the 
flow S .  Then each flow line of ~L~ meets OS at most once. 

Proof The proof falls in two cases: 
Case A. The group ~1(S) is quasi-Fuchsian. 
Since ~1(S) is quasi-Fuchsian the map 0 extends to a continuous map 
~: S w S ~ ( S ) ~  ~IwS2(~4) .  Since S is transverse to ~ ,  an oriented flow line 
{ to ~ always crosses OS in the same direction. Again using the fact that ~zl (S) 
is quasi-Fuchsian, there is a self homeomorphism ~. of the closed ball 
~IwS~j(lVl) which takes the limit set of ~I(S) to a round circle. 

We will make use of the following from Cannon Thurston [2]. There is 
a natural identification of S~(~t)  with the space obtained by taking two 
copies D +, D-  of P w S 1 (/7) and making the following identifications. The two 
points, one in each ofD -+ , corresponding to a single point in S~ are identified. 
Each leaf(regular or singular) of,~- + is identified to a point in D + . Also each 
leaf (regular or singular) of ,~ is identified to a point in D - .  Let 
q+-:D -+ ~ S2~(~t) be the quotient maps. 

Cannon and Thurston also show that each flow line { is a quasi-geodesic 
in the hyperbolic metric. Now ( = x  x IR for some point x in /7. The limit 
points o f (  on S2(M) are q+-x. The map h + : / 7 ~  S~,(]~) given by inclusion 
into D + followed by q+ is continuous, and equals the map obtained by 
sending a point x in/7 to the limit point of { given by flowing along E in the 
forward direction, h -  is similarly defined by flowing backwards. Observe that 
the image of F under h + is ~ ( M )  invariant. We appeal to the following 
lemma: 

Lemma 3.3 The image h + (/7) is an N-tree 

Proof An N-tree is a (nonempty) metric space with the property that (i) Any 
two points are joined by a unique arc and (ii) With the induced metric this arc 
is isometric to an interval. 
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If we take two distinct points,  p~ and Pz in the quotient  space h + (F), then 
these correspond to a pair of leaves in F. To construct  an arc in h + (F) which 
connects them without  backtracking,  choose any embedded arc c~ in F run- 
ning between the relevant leaves. Notice that  if two points on c~ are sufficiently 
close together, then they cut out  a subarc  e~ which can be isotoped to an arc 
e* which lies inside a leaf of .~- . This can be done without  changing the 
leaves which the endpoints  of e~ lie on. Notice tha t  the arc e* embeds into the 
quot ient  space h + (F) since it is impossible for a leaf of Y + to meet c~* more 
than  once as the leaves are geodesics in the affine metric on F. 

By subdividing a r andom arc joining a pair of leaves in F, we see that  any 
two points in h+(F)  can be connected by an arc. One sees easily tha t  if the 
points are connected by a very short  arc in P then in fact after projection into 
h+(F)  the points are connected by a unique arc, whence a subdivision 
argument  shows that  any two points in h + (F) are connected by a unique arc. 
Further ,  in an obvious way, we may use the measure of these arcs to produce 
a metric on h+(l~), which is therefore an P, tree. [ ]  

We claim that  if B is any leaf box in P then h + (B) is not  contained in the 
quasi-circle L(nl(S), $2~07I)). The reason is that  h+(B) contains an interval 
I and if this interval is contained in L(nl(S), S2~(M)) we can use the action of 
nl  (S) to cover the quasi-circle by a finite number  of intervals and deduce that  
the entire quasi-circle embeds inside the image of h +. However, this is 
a contradict ion since by the Lemma, h + (F) is an N-tree. This proves the claim. 

Let B be any compact  leaf box, since h + is cont inuous  there is an open 
subset B ' c  B with h+(B ') disjoint from L(nl(S), $2(;~1)). By repeating this 
a rgument  with h we see tha t  B' contains a leafbox B" so tha t  h + (B"), h -  (B") 
are both  in the domain  of discontinuity of 9.~(S). 

Suppose then that  the flowline x x IR meets 0(S) more than once, then by 
transversality the same is true for y x IR provided that y s P  is sufficiently close to 
x. The above argument shows that we may choose y so that  both endpoints of 
(~_ y x IR are in the domain of discontinuity for .q. ~ (S). Choose small closed disc 
neighbourhoods of the endpoints of ( which lie inside the domains of discontinu- 
ity and use these to attach a 1-handle to ~IwSZ(M) to form a solid torus T. 

The existence of ~ shows that  the closure of 0(S) either represents the 
generator  of H2(T, ST), or represents the zero element, depending on whether  
the endpoints  of f lie in distinct or the same components  of the domain  of 
discontinuity. It is also clear tha t  the cocore of the 1-handle also represents the 
generator  of this group. 

However  the union of#  and the core of the 1-handle is a 1-cycle in Twhich  
has algebraic intersection number  at least two with O(S), but  intersection 
number  one with the cocore. This contradiction completes the proof of Case A. 
Case B. The subgroup rq(S) is geometrically infinite. 
The proof  is similar in spirit. As observed in the introduction,  g(S) becomes 
homotop ic  to a fiber S' in some finite covering M* of M. 

Suppose that  if we lift to the covering Ms corresponding to the subgroup 
rt~ (S), the lift ~ of some flowline y meets the image of the lifted map  9s : S ~ Ms 



264 D. Cooper et al. 

more than once. To prove the theorem, it suffices to show that this cannot 
happen. It is well known that the periodic points of a pseudo-Anosov are 
dense, thus closed flow lines are dense. So by transversality there is a nearby 
flow line to ~7 which meets 9s(S) more than once and with projection in M* 
a closed flowline. Thus we may assume that 7 is closed. 

We claim that ~ defines a element of HZ(Ms). This falls into two cases: If 
7 lies in the (normal) subgroup ~1 (S)< rq (M*), then it lifts to Ms and visibly 
defines such a cohomology class. If not, then n = [7] 4=0 in rcl(M*)/rcl(S)'~7/ 
thus the flowline ~ is invariant under z" where z is the covering transformation 
of the cyclic covering Ms -~ M*. Hence ~ is a properly embedded 1-submani- 
fold in Ms with one end in each end of Ms. Thus ~ defines such a cohomology 
class in this case also. 

By construction ,~ meets 9s(S) always with the same orientation. Clearly 
[gs (S) ] = [S' ] as classes i n / / 2  (Ms). However ~7 defines an element of H 2 (ms) 
and we see that ( i ,  S ' )  is either zero or 1, since S' separates. On the other 
hand, by choice of,7, (~7, 9s(S)) is at least two. This contradiction completes 
the proof of Case B. [] 

The above result implies that 0 is an embedding of S into/Q. In the interest of 
notational simplicity we will use 0 to identify S with 9S except where this is 
likely to cause confusion. 

Corollary 3.4 The,flow map (~[S is a homeomorphism orS  onto its image. 

Corollary 3.5 The action of ~1 (S) on dpS is.free and properly discontinuous. 

Here, and elsewhere, the metric we use on P is the singular Euclidean 
metric given by the measured foliations. We shall use several results concern- 
ing geometrically infinite groups due to Cannon and Thurston which are 
contained in [2]. For  the convenience of the reader we include an appendix 
sketching the proofs of some of these results. 

Recall that [2] introduces a certain singular Solv metric. This is a metric 
on M which is a Riemannian metric on the complement of the suspension of 
the singularities of the measured foliations on F. It is defined as follows. If 
(~-+,/~ +), ( ~ - , / , - )  are the measured foliations on F and )o > 1 is the stretch 
factor of the pseudo-Anosov 0 then /~-+(0ct)=A-+~/t-+(~). Here ce is any arc 
transverse to the measured foliations. 

A singular Riemannian metric on F x [0, 1] is defined by 
ds 2 = 2-  2Zdx2 + 22Zdy 2 + dz 2. 

Here x ,y  are local coordinates along the measured foliations (~,~+,/t+), 
( ~ - - , # - )  respectively, and z is the coordinate in [0, 1]. The map 
(x, 1)~--, (0x, 0) of F x 1 --* F x 0 is an isometry of this metric. Thus M inherits 
a singular Riemannian metric. 

The universal cover of M is identified with /~ x IR and the metric on 
M induces a metric on 2~t. Furthermore the suspension flow 2 agrees with the 
product structure on F x ~ thus flow lines are geodesics on which x, y are 
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constant. The local z coordinate in M is covered by a global z coordinate on 
P x IR given by projection onto the second coordinate. The components of 
~z-~(F) are the horizontal planes F x n for integers n. We will use the term the 
height of a point w in M to m e a n t h e z  coordinate of w, which is therefore also 
the (signed) distance of w from F = F x 0. 

We wish to choose a nice neighborhood of each point in S. Given a point 
xeS,  there is a lift Y e A  which lies within a distance 1 o f f  x 0. Given a (simply 
connected) neighbourhood U ~ S of x, choose the lift U of U which contains .~. 
We will say that U is an q-leaf box neighhourhood of x if the flowed image 
~b(U) ~ F x 0 is an q-leaf box neighbourhood of 4'(x). 

We observe that the compactness of S implies that there is an e (S)>0 so 
that every point of S has an e(S)-leafbox neighbourhood. The following result 
implies that points on S with ~b image in/~ which are near to the frontier of qSS 
are a great height above or below F. 

Corollary 3.6. Given a point ,'~ in S suppose that y• is a point in Frontier(~S) on 
the same leaf of ,~ +- as dp(~). Define d ((pY, y+_) to be the distance in ff between 
O(x) and y+. Let z(Y) be the height qf ~. Then d(~r y_+)>e(S)2 ~'l~) i. 

Proof Let e(S)>0 be a leaf box constant provided by the above paragraph. 
Denote the universal covering projection of S by ~s : S ~ S. Let U be an e-leaf 
box neighbourhood of ~s(Y) in S and let 0 be the component  of ~ s l ( U )  
containing Y. We may do a homotopy ofg  to arrange that U is contained in F, 
this homotopy is covered by a homotopy of ~ which changes the height of all 
points by a uniformly bounded amount namely 1. This changes the estimate 
below by some multiplicative factor L with 2-1 < L < 2. 

Using the singular Solv metric on M above we see that ~bU is a leaf box 
centered on ~bY which has a half-width in the ,~-+ direction of 6 = e2 -vzl~. Since 
this leaf box is contained in ~bS it does not contain y in its interior and so 
d(,h~, y+)> 6. [] 

Definition 3.7 We will call a closed subset P of  F a polygon/f: 
 9 P is a homeomorphic to a closed disc minus part of its boundary 
 9 The frontier of P is a union of (possibly infinitely many) bi-infinite 

geodesics. 

There is a unique geodesic in the singular flat structure between any pair of 
points in if, thus one may talk of convex sets in P and we see that a polygon is 
convex. It follows as usual that any convex set is a disc minus part of its 
boundary. 

Definition 3.8 Define A =-A(S) to be the closure in ff of c~(S). 

We further define a regular leaf polygon to be a polygon such that each side is 
a leaf of.~ --+ which is regular on the inside, that is to say, if there is a singularity 



266 D. Cooper et al. 

on some side ( then there are only two prongs of the singularity which lie in 
the polygon, and these are contained in g. 

Proposition 3.9 A(S) is a regular leaf polygon. 

Proof Since A is visibly path-connected, it suffices to show that the frontier of 
A consists of geodesics each of which is regular to the inside and completely 
contained in the frontier of A. 

Let y be a point in the frontier of A and let .'~ be a point in S such that ~bY is 
a very small distance d from y. Let U a n d / ]  be the leaf box neighborhoods of 
rrsY and ~ used in Corollary 3.6. Then qS~ has one dimension, say the stable 
leaf direction, of order d or smaller and therefore the other dimension, the 
unstable leaf direction, is of order d ~ or larger. This is because vertical 
displacement in M changes stable and unstable dimensions by reciprocal 
factors. Thus the segment of the unstable leaf through qS(s contained in A is 
very long. As d ~ 0 we see that the closed set A must contain a bi-infinite 
unstable leaf(  through y. Furthermore, g' is the limit of regular leaves in A and 
is therefore regular on the inside of A. 

We claim that # is contained in the frontier of A. Suppose that there is 
a point z on r with the property that the segment ~;~ of c ~ is maximal with 
respect to being in the frontier of A. Let w be a point on { very close to z and in 
the interior of A. Now W~ is contained in the unstable leaf ( so by Corollary 
3.6 there is a point  ffeS a large distance below w. Let !7 be a leafbox 
neighborhood of ~ then ~b17 intersects U and it follows that there is a point 
v near z such the flow line through v meets S twice, once far above F in U and 
once far below F in 17. But this contradicts Lemma 3.2. []  

An element of nl F gives an isometry of F. Since M is fibered, the fundamental 
group gl  (M) is an HNN extension of the fiber group and the stable letter acts 
on/V by some lift 0 of 0. Thus we see that the action of ~ n l ( M )  in local 
coordinates using the lifted measured foliations is multiplication by 2-"  in the 
stable direction and multiplication by 2" in the unstable direction. Here n is 
the image of ~ under  the homomorphism g~ M --* Z given by the fibration of 
M with fiber F. The action of n l (F)  extends to the circle at infinity S~j(F) for 
F, as does the map 0 so that the action of n~(M) extends to an action on 

Suppose that G is a subgroup of ~ ( M ) .  We will temporarily use the 
1 notation L (x, G) for the set of accumulation points in F w S ~,(F) of the orbit of 

x under G. The subgroup ~ (F) of ~a (M) is precisely the subgroup which acts 
by isometrics. If G is a subgroup of ~a(F) then an easy argument shows that 
L(x, G) is independent of the choice of a single point x. 

However if (3 is not contained in ~ (F) then this need not be the case. For  
example if G is the cyclic group generated by 0 and if this map has a fixed point 
p in F then L(p, G)=p. Let (+ and E- be the stable and unstable leaves 
containing p. Then if x+p is a point on one of these leaves then L(x, G) 
consists o fp  plus some or all of the limit points of that leaf on S~(ff). Finally if 
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x does not lie on either # + then L (x, G) contains at least one limit point S ~ (/7) 
of both d + and ( - .  

We will use the following two notions of limit set which are independent of 
the choice of point x. 

Definition 3.10 The isometric limit set IL(G; S~(/7)) of the subgroup G of 
7~1 ( M ) is L ( x, G c~ n 1 ( F ) ). The finite limit set of G is L (G; F) is the set of points in 
~7,fixed by some non-trivial element of G. 

Since n l (S)c~ nl (F)Vnl(S) is a nonelementary group acting on 17 as a dis- 
crete group of isometrics the isometric limit set of ~1 (S) is a subset of the circle 
at infinity of/7. It is of interest to us because: 

Lemma 3.11 IL (nl (S); S ~ (/7)) is nl (S)-invariant. 

Proof Standard arguments show that 

IL(rrl(S); S~(/7))=closure({Fix(7)lT~za(S)c~Tr~(F)}) 

If ~qe~l (S), then 9(Fix(y))= Fix(9 .7 .9  1) and the result follows. [] 

We will use the notation L(A, S~(/7)) for the limit points of A in S!~,(/7). 

Theorem 3.12 A(S) is the convex hull of lL(Tzl(S); S~(/7)). 

Proof We will write C for the convex hull of IL(~zI(S); S[ (P) )  and A for 
A(S). Since A is invariant under n~(S) it follows that L(A, S~.(/7))~_ 
IL(rq(S); S~.(/7)). Since A is a polygon it is convex and therefore contains C. 

From Corollary 3.5 ~zl(S) acts freely, properly discontinuously on q~(S). 
Since C is the convex hull of a subset of S~(/7) it is a polygon. Suppose that 
C is a proper subset of A then there is some point x on some geodesic side d of 
C contained in the interior of A. It follows that ( lies in the interior of 
A otherwise, since A is a regular leaf polygon, f would exit A. 

Thus the orbit of ( under ~1(S) is in the interior of A. Define C + to be 
int(C) together with the orbit of/ ' ,  this is convex (hence simply connected) and 
invariant for the action of ~l(S). Moreover, since C + is contained in the 
interior of A, ~1(S) acts freely and properly discontinuously on C +. Thus 
C +/~a (S) is a surface with boundary whose fundamental group 7~ 1 (S) is that 
of a closed surface, an absurdity. []  

Corollary 3.13 
L (A(S); S ~ (/7)) = IL (~1 (S); S ~z, (1~)), 

With these results in hand, we may characterise the geometrically infinite case: 

Theorem 3.14 The.Jollowin(j are equivalent: 
1. The surface group Xl (S) is ,qeometrically infinite. 
2. IL (~1 (S); S ~,(F)) = S }. (F). 
3. A(S)=F. 
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Proof Suppose that n~(S) is geometrically infinite. Then by Theorem 1.1, 
there is a finite covering of M such that the surface S is homotopic to an 
embedding and is the fiber of a fibration. This covering corresponds to 
a subgroup G of finite index in ha(M) therefore 

IL(G; S~(F))=IL(nl(M); S ~(F))=S~(F).~ ~ ~ 

Now n~(S) is a nonelementary normal subgroup of G so that 

IL(7~I(S); S~(ff))=lL(G; SI (F)). 
as required. Thus (1) implies (2). 

Now suppose that n~(S) is not geometrically infinite so that n~(S) is 
quasi-Fuchsian. Suppose that A =/~. The set ~b(S) is open and has frontier 
a union of leaves, thus ~b(S)=F, it therefore follows that S meets every 
flowline. 

We now argue in hyperbolic space. Each component of n-~ gS in the 
universal cover has limit set a quasi-circle. Fix some component S. Fix some 
closed fiowline C in M which defines some free homotopy class containing 
a unique hyperbolic geodesic 7c in the hyperbolic metric on M. Notice that the 
immersed annulus coming from the free homotopy shows that any pre-image 
7c of ?c in M lies within a bounded distance of some pre-image of C. 

However nl(M) has dense limit set in the 2-sphere at infinity, so we may 
choose some element ~ of n~ (M) with a fixed point off the quasi-circle defined 
by S. Translating 7c by a large power of ~ gives a pre-image of 7c which is 
a large distance from S. From this it follows that some pre-image of C misses 
S. This contradicts our assumption that A = ft. Thus (3) implies (1). 

The implication (2) implies (3) follows directly from Theorem 3.12 [] 

Since the surface S is transverse to L- a, the suspended foliations 12Y -+ induce 
foliations on S which we shall denote by ffs,  usually suppressing _+. 

Lemma 3.15 Let ( be a leaf of either ~ + or ~" -. The subgroup of hi(M) which 
stabilizes ( is either trivial or infinite cyclic. 

Proof Let H be the stabilizer of (, then H contains no non-trivial element of 
nl(F) otherwise the image of(  in F would be a compact leaf contradicting the 
fact that 0 is pseudo-Anosov. Thus the projection of H into nl(M)/n~(F)~-71 
is injective. [] 

Theorem 3.16 I f  the surface group nl(S) is geometrically infinite, then ~ s  
contains no closed leaf 

Proof By Theorem 3.14 the polygon A=ff=qSS, so by Corollary 3.5 nl(S) 
acts freely on F. However, if ~-s contains a closed leaf (, the covering 
translation z corresponding to [(]  enl(S) stabilises some pre-image • of { in 
ft. Thus z must be some lift of some power of the pseudo-Anosov by the 
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argument in the proof of Lemma 3.15. But then r or ~-1 is a contraction map 
of ~7, and so has a fixed point on it, contradicting that g~(S) acts freely. [] 

Our next goal is to show that in fact the converse to this theorem holds and to 
gain more information about the foliations in the case that the surface group 
in quasi-Fuchsian. This requires some preliminary work. As our interest is 
now the case that rq (S) is quasi-Fuchsian, throughout what follows we shall 
assume that this is the case, in particular, that the polygon A is a proper subset 
of P by 3.14. As already observed, the action of rq (S) on S gives rise to a free, 
properly discontinuous action on 4,(7)= int(A). Our next task is to examine 
the extension of this action to the closure of qS(~), that is to say, A. 

Lemma 3.17 Let {I,},~z be a collection of disjoint closed intervals in S x then 
the space obtained by identifyin9 each interval to a point is homeomorphic to 
a circle. 

Proof This is a well known fact; we sketch a proof. It suffices to replace S 1 by 
the unit interval. We do this by cutting open S i at a point not contained in 
any of the given intervals. We will define a continuous funct ionffrom the unit 
interval to itself. Define f ( 0 ) = 0  and f ( 1 ) =  1. Then define f on l , = [ a . ,  b.]  
inductively to be I f (L)  +f(R)]/2 where L is the closest point to the left of I ,  at 
which f has already been defined and R is the corresponding point on the 
right. Set X =  U I , ,  then f is defined and monotonic increasing on X, we 
extend f over cl(X) by f (y)= sup{f(x) 4x~X x <y}, clearly this extension is 
continuous and monotonic. The complement of cl(X) is open, so we may 
extend f continuously by a linear map over each open interval in the comp- 
lement. It is easy to check that f is continuous, monotonic, and a point 
pre-image is either one point or some I, .  Thereforef  induces a homeomor- 
phism to the unit interval from the unit interval with each I ,  identified to 
a point. [] 

According to Cannon and Thurston [2] there is a continuous map 

CT:~uSL(P)  --, D u SL(~) 

extending the inclusion of/~ into _~. The map CT identifies two points on S 1 
if and only if they are limit points of the same leaf of the stable or unstable 
foliation. We will call a point x of S~(t ~) injeetive if CT-l(CTx)=x. Thus x is 
injective if and only if it is not the endpoint of any leaf in the stable or unstable 
foliation. 

Let ~?A be the frontier of A in P w S ~ (if). Since A is convex, ~?A is a circle. 
In the case that nl(S) is quasi-Fuchsian, L(A; S~(F)) is nowhere dense in 
S I (F) ;  for example this follows from 3.13 and 3.14. Thus the sides of A in P are 
dense in 0A. Let OA/~ be c~A with each closed side of A identified to a point. 
A side/( of A is contained in leaf o f ~  + or o~- and therefore the two endpoints 
of E on S~(P) are identified to a single point in S2(M). 
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Lemma 3.18 Suppose that hi(S) is a quasi-Fuchsian then CT(S~c~OA)= 
IL(nl(S),S2(,~I)) and CT induces a homeomorphism h:QA/~ 
IL(nl (S),S 2 (I~I)). 

Proof By Lemma 3.17, we have that (?A/~is a circle. Suppose that h identifies 
two distinct points x, y~t?A/~. Then x, y separate 0 A / ~ i n t o  two arcs I~, 12 
and we show below that there are two injective points zl ~I~ and 2 2 E 1 2  . Thus 
CT(OA-{zl ,  z2 )) is a circle with two distinct points removed hence is not 
connected. But (0A - {zl, z2 }) /~ is the union of two intervals, and the map CT 
identifies a point x in one interval with a point y in the other interval, thus 
CT(OA-{Zl,  Zz}) is connected yielding a contradiction. 

First we establish the existence of one injective point on 0A. Let ~ be an 
essential closed curve representing some element of g,n~(S)c~n~(F). Then 
a line ( in i ff which covers c~ has two limit points on SI.(F) and it is clear that 
these points are limit points of A and therefore lie in 6A. Now it is well known 
that a leaf of the stable or unstable foliations on F cannot limit on the 
endpoints of any closed curve; for example this follows from the proof of [3] 
Lemma 4.5. Let x be one of the limit points of # then x is injective. 

We claim that the injective points have dense image in c3A/~, and this will 
complete the proof. Now n~(S) acts on ~A and it is clear that this action 
preserves the property of a point being injective. The closure of the orbit of 
x under nl(S)c~nl(F) is IL(nl(S),S~(P)) which by Corollary 3.13, is 
L(A, SI(F)). Thus injective points are dense in the complement in OA/~ of 
the countable set which is the image of the sides of A. Hence injective points 
are dense in OA/~. [] 

Lemma 3.19 Every regular and every singular leaf in the interior of A(S) has at 
most one limit point on S ~ (F), the other limit points are on sides of A (S). 

Proof Let ( be a leaf o fo  ~ •  and suppose that (c~int(A) has two distinct limit 
points x, y on S~. A side f '  of A is a leaf which is regular on the A side. 
Suppose that x and y are limit points of ( '  also. Then the bi-infinite leaves 
# and ( '  in F are parallel. Then the bigon B they bound in P is foliated as 
a product. The image of B in F is an annulus foliated by circles, but there are 
no closed leaves in the invariant foliations of a pseudo-Ansosov. Therefore 
x '  and y have distinct images in c~A/~and so by the previous lemma 
CT(x) 4: CT(y). But this implies x and y are not  limit points of the same leaf (, 
a contradiction. [] 

Recall that a group action is said to be wandering if every point p has 
a neighbourhood U so that gUc~U+d? for only finitely many g. 

Lemma 3.20 Each side of A contains at most one point fixed by some non-trivial 
element of n 1 (S). The action of nl (S) on A - L (nl (S), F) is free and wandering. 

Proof Suppose that ~en~(S) has a fixed point x in some leaf ( in the 
boundary of A. Then c~ preserves A and therefore stabilizes E. It follows that 
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must be some lift of some power of the pseudo-Anosov and that x is the lift 
of some periodic point. However a leaf can contain at most one periodic point 
and this gives the first statement. 

We have already seen in Theorem 3.12 that the action of ~1(S) is free and 
properly discontinuous on int(A), so acts freely on A - L  (zt 1 (S), if). Moreover  
to show that the action is wandering we need only consider point x in 
OA-L(rq(S), F). 

Since A is a regular polygon we may choose a neighbourhood V of x in 
A to be a quadrilateral, one side of which is an arc of t" and the other 3 sides 
are arcs in ~- - and ~ +. For  the sake of definiteness we shall suppose that f is 
contained in a leaf in ~ + thus the two arcs ill,  f12 of ~V adjacent to f are in 
~ ' -  and the remaining arc of ~3V is in ~ + .  We may choose V so small that 
there is no singularity in the interior of V and using Lemma 3.15 we may 
arrange that the orbit of V under the stabilizer of ? is disjoint from V. Refer to 
Fig. 1. 

Finally we choose V so that length(ill) is very small compared to the 
distance of x from every side of A other than t ~. 

Suppose now that z(V) meets V for some z~nl  (S). By choice of V it follows 
that ~ does not stabilize t ~. Thus z(V) meets a side z(C) of V other than t ~. It 
follows that z(fli) is much longer than ill. If we now lengthen fll slightly the 
images z(fli) move towards t ~ very rapidly and so will eventually leave A; 
a contradiction. []  

Lemma 3.21 Let f be any side of A then stab(f)~Z. 

Proof By Lemma 3.15, the stabilizer of a leaf is 7Z or trivial, so suppose that 
f is a side of A and that stab(Y) is trivial. 

Without  loss, assume that t ~ is an unstable leaf and let A' be the union of 
interior(A) and the orbit of t ~ under nl(S). Set Y=A'/rr 1(S). It follows from 

FrontleI(A) 

/ t  ~ .,,~, iliiilJ~i[~#l,.l 
o.V x 

Fig. 1 
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Lemma 3.20 that the map A' ~ Y is covering map and so Y is a nonclosed 
surface which however may fail to be Hausdorff. We shall show that we may 
combine Lemma 3.19 together with the assumption that the stabiliser of f is 
trivial to deduce that Y is Hausdorff. But this implies that nl(S)~-rq(Y ) is 
a free group, contradicting the fact that S is a closed surface, not S 2. 

To show that Y is Hausdorff, it suffices to show that given two distinct 
points x, y in A' there are neighborhoods U of x and V of y, such that the 
nl(S)-orbit  of U is disjoint from V. By Corollary 3.5 the action of n~(S) on 
int(A) is free and properly discontinuous. Therefore it suffices to consider the 
case that x lies in some side of A which we may assume to be Y. Let fx, fy be 
the intersection of the stable leaves through x, y with A'. By Lemma 3.19 f r 
has at most one limit point z on S ~. 

There are a finite number of elements in ha(S) which move any endpoint 
of fx onto a specified side of A' because stab(f) is trivial. Therefore we 
may focus attention on those elements ct of ha(S) with the property that 
~(Ex) does not have any endpoint on a side which also contains an endpoint 
of dy. 

Choose V so every stable leaf through V meets a side of A containing an 
endpoint of dy. This is possible because f r has at most one limit point which is 
not an endpoint on some side of A. We may choose V so that there is a positive 
lower bound 5 to the distance between every point in V and every side of A not 
containing y. We may choose U so that the diameter of U is small compared to 
& Suppose that ~ Z  and aU meets V, let d' be the side of A' which contains ax 
then the distance of ax from V is much larger then the diameter of U therefore 
a expands the stable sides of U. Refer to Fig. 2. 

I 

Fig. 2 
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Then ex is very close to z and ctU contains a segment Ix, w] of a stable leaf 
running from c~x to a point weV. By enlarging U slightly, we see that w hits 
a side of A' containing an endpoint of (~,. But this is absurd. [] 

We may now prove our promised converse to Theorem 3.16. We shall define 
a foliation to be finite if it consists of a finite number of closed leaves and every 
other leaf spirals towards one of these closed leaves at every end. The reason 
for the terminology is that a foliation is finite if and only if the lamination 
obtained by straightening it has only a finite number of leaves. Finite foli- 
ations also arose in Fenley [5] in the context of depth 1 foliations of 
3-manifolds. Nonetheless, the connection between Theorem 1.3 and Fenley's 
remains unclear. In particular, even if the surface in Theorem 1.3 is embedded 
and is a compact leaf of a depth 1 foliation, it is not proven that the two 
theorems give the same finite foliation, though presumably this is the case. At 
any rate, the methods are somewhat different. 

Theorem 3.22 Let ~ ~ , ~ s be theJbliations on S obtained by intersecting with 
S the suspension ofthefoliations o~ +, ~- on F. If~z I (S) is quasi-Fuchsian then 
these are finite foliations. 

Proof We recall that it is a consequence of our work thus far that the fact that 
the surface group is quasi-Fuchsian shows that the polygon A is not the whole 
disc and that each component of the frontier is a leaf of either the stable or 
unstable foliation, regular to the inside and has cyclic stabiliser. 

We first observe that there is a closed leaf in ~ s  + corresponding to each 
side of A which is (contained in) an unstable leaf of ,~. This is because if #, is an 
unstable side of A then by Lemma 3.21 there is a non-trivial element ~ of nl(S) 
which stabilizes (u. Now c~ must have a fixed point x on ( , ,  let f~ be the 
intersection with A of the stable leaf through x. Then Es must be regular in 
A and have a limit point on S ~ (F) because Es is stabilized by ~. The pre-image 
under the flow map q~ of (s in S projects to a closed leaf in , ~ .  

Let (~ be the intersection with A of any stable leaf in F, and suppose that 
E; contains no singularity. By Lemma 3.19, #; has at least one limit point on an 
unstable side f ,  of A. Let Es be the leaf constructed above for E,. Then the leaf 
in S corresponding to ( ;  is asymptotic in one direction to the closed leaf 
corresponding to Es. 

We have just shown that the foliation Y s  ~ has the property that every 
regular leaf is asymptotic in at least one direction to a closed leaf. Therefore 
the corresponding lamination has this property for every nonclosed leaf. 

Now it follows from [3] Lemma 4.6 that a leaf of a geodesic lamination 
which accumulates on a closed leaf is isolated, and we deduce that every 
nonclosed leaf of this lamination is isolated. Every isolated leaf is the side of 
some principal region of the complement of the lamination. Therefore if 
g=genus(S) then there are at most 120-12 isolated leaves and at most 3g-3 
closed leaves. Moreover, an isolated leaf must accumulate in either direction 
on some non-isolated leaf which must therefore be a closed leaf. It follows that 
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in the laminat ion either end of every nonclosed leaf accumulates to a closed 
leaf, so that  in the universal cover, a lift of any nonclosed leaf must  share bo th  
endpoints  with the lift of a closed leaf. Since endpoints  are not  changed in 
the passage from foliation to lamination,  we deduce that  the foliation is 
finite. [ ]  

4 Two examples 

Example 1. We construct  an example of an immersion into a hyperbolic 
bundle of the type that  we have been discussing and use our results to show 
that  the immersion is quasi-Fuchsian.  In order to make  this as simple as 
possible, we construct  a pseudo-Anosov map  of a genus two surface which 
moves a curve disjoint from its image. The method is tha t  of [9], but  for the 
convenience of the reader, we develop it from first principles. 

Let 0' : T' ~ T'  be an Anosov diffeomorphism of the torus T'  --- IR 2/;g x 2Z.  
Let 7 be an arc embedded in T'  with endpoints  Xo and  xl which are fixed 
points of O' and let p : F ~ T' be the 2-fold branched  cover of T' branched over 
Xo,Xl using the b ranch  cut 7. Then 0' is covered by a homeomorph i sm 
O:F---, F, and 0 is pseudo-Anosov.  To see this, let ,~+(T ' ) ,  Y (T') be the 
invar iant  measured foliations on T', then the pull-back of these via p to F gives 
two measured foliations ~.~ +(F), ~ (F) on F. These foliations each have two 
4-prong singularities, one lying above each of Xo, x l. The transverse measures 
on F are also obtained from those on T' by pull-back, and  it is clear tha t  in 
local coordinates  the action of 6 is isometrically conjugate to the action of 0', 
where the metrics involved are those determined by the measured foliations 
on F and  T'. Therefore the eigenvalues of 0' and  0 a r e  the same. In part icular  
this implies tha t  no power of 0 can stabilise any finite curve system and 0 is 
therefore pseudo-Anosov.  

Now suppose that  there is a free or ienta t ion  preserving involut ion ~ on T'  
which commutes  with 0' and swaps Xo with x~. Then T =  T'/T is also a torus 
and 0' covers a map  0 on T. Fur thermore  F is a 4-fold irregular branched cover 
of T branched  over the single point  x0 = x l  in T. 

We will now apply this construct ion in a part icular  case. We will regard 
T =  IR2/7/2 and let 0 be the linear homeomorph i sm on Tinduced  by the l inear 
map on 1112 with matr ix  

Define two simple closed curves m, ( on T to be the images of the x-axis 
and  y-axis respectively. Let r(m), ~(() be the Dehn  twist a round  these curves, 
then ll) 
thus 0 is isotopic to the product  of Dehn  twists z( ( ) -2z(m) 2. 
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Observe that a Dehn twist z(~) "p about the core curve ct of an annulus 
A lifts to an n-fold covering .,1 of A to give a Dehn twist z (~  p about the core 
curve ~ of .4. We can use this observation to calculate the lift of any mapping 
class of a compact surface to a branched or unbranched cover of that surface 
by expressing the mapping class as a product of Dehn twists. 

Now we form the 2-fold cover p~ : T'  --* T by unwrapping in the ~ direc- 
tion, more formally this is the cover corresponding to the subgroup C = 
(~2, m> of n 1 (T). Let ~7= P l-1C and let n~l, m2 be the 2 components of p -  1 (m). 
Then z(~)-2 is covered by z(~)-1 and z(m) 2 is covered by z(~l )  2 z(r~2)2. There 
are 2 possible choices for each of these covering maps, we will choose all maps 
to fix a specified pre-image of the origin. Then 0 ' =  z(~)-1 z(~l)2z(rn2)2. 

Finally we form the branched cover P2 : F ~ T'. A fundamental domain for 
T'  is the rectangle R = [0, 1] x I-0, 2] in F, 2, and we choose 7 to be the vertical 
arc in this rectangle {(0, t ) : 0 < t <  1} thus Xo=(0, 0) and xl  =(0, 1). We label 
r~l, ffz2 so that r~  is ~ x [0, 1] of R and then ml is  89 x [0, l] .  Thus 7 is disjoint 
from r~l and meets /~/2 once. 

Thus P2 ln~l has two components which we label M1, M~ and P2 linE has 
one component which we label M 2. Also P2 i f  has two components L, L' .  It 
now follows that 

O=z(L )- lz(L')- lz(M1)2z(M'l)2z(M2). 

The curves M1, M'~, M2, L, L' on F are shown in Fig. 3. 
Let ~k : F ~ F be the branched covering involution associated to the 2-fold 

branched cover P2 : F ~ T'. Since ~k is an isometry of the metric on F deter- 
mined by the invariant measures for 0 it follows that O = ~, o/~ is also pseudo- 
Anosov. 

Lemma 4.1 The curve M1 is disjoint from O(M1)"~L'" M'I. 

Proof. We will use the above factorisation of 17 as a product of Dehn twists. 
Since M1, M~, M E a r e  disjoint, Dehn twist about these curves do not move 
M1. Furthermore L and L' are disjoint and therefore Dehn twist about these 
curves commute. Since Ml  is disjoint from L' we see that 

OC=z(L) - i  MI=L "M1. 

Fig. 3 
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Referring to Fig. 3, it is easily seen that ~k(L. M1) =L '   9 M~ is disjoint from M~. 
Thus 6)MI is disjoint from MI as claimed. We remark that M1 may be 
replaced by M~ in this argument. []  

We now wish to calculate the invariant foliations on F. This is done by 
exhibiting a fundamental domain ~ for the universal cover ff of F. Now F is 
a 4-fold branched cover of T, and we can choose ~ so that it is mapped 
injectively onto its image in the universal cover ~ 2  of T. A choice for this 
image of ~ is shown in Fig. 4A. 

It consists of 4 fundamental domains for T, each of which is a unit 
square with corners in Z 2. The branch points x0, xl are lattice points and 
therefore the singularities of the foliations on F correspond to some of the 
corners of ~ .  

We now use the construction in Lemma 2.4 to define a surface S(F, C, 0). 
Let C=MI this curve in F has image {(0, t):0=<t=<l} and OC has image 
{ ( l+ t ,  2 t -  2) : 0__< t__< 1}. Take a copy of F and cut F along C and OC to 
obtain F _ .  Then we cross-join C• and OC~ to get S(F, C, O) and an 
immersion ff:S ~ M where M is the mapping torus for O. 

Notice that the foliation on S is obtained by taking the foliation on F, 
restricting to F_ and  then glueing using O to get S. The identification of 
C• with 6)C~ corresponds in ~ to identifying (0, t) on C to (1 + t ,  2 t -2 ) .  

Theorem 4.2 The induced foliations on the surface S(F, C, O) have closed leaves, 
therefore S is quasi-Fuchsian. 

J 

Fig. 4 
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Proof The eigenvalues of 0 are 2+ =(3__ 2,~/2) and the corresponding eigen 
vectors are v_+ =(1,(1_+~//2)). The foliation with eigenvector v+ is shown in 
Fig. 4B. Inspection of this figure reveals that every flow line starting on OC+ 
in N ends in some proper subset of Cv_. In particular, this implies that there is 
a closed leaf on S which meets C+ exactly once. It follows from Theorem 3.22 
that immersion S is quasi-Fuchsian. 

This theorem also implies that the other foliation also has a closed leaf; 
finding this closed leaf is left as an (easy) exercise for the reader. []  

Example 2. One question raised by our results is the question of when an 
embedded quasi-Fuchsian surface can be isotoped so as to be transverse to the 
flow 5 ~ This seems to be unresolved in general, although some partial results 
are presented by Mosher in [11]. In particular his Weak transverse surface 
theorem gives a sufficient condition for when a 2 dimensional homology class 
contains such a representative. Here we give a simple construction for embed- 
ded quasi-Fuchsian surfaces which are tranverse to the flow associated to the 
suspension of a pseudo-Anosov map. An example of a quasi-Fuchsian surface 
which is transverse to a flow on a compact manifold is given in [12], but the 
flow in this case is not the suspension flow of a pseudo-Anosov map. 

Of course such an example cannot exist without some restrictions, for we 
have the following well known observation from the theory of dynamical 
systems: 

Lemma 4.3 Suppose that S is an embedded surface transverse to the.foliation 
~Lf and that S meets every flowline at least once. Then S is a fiber of a fibration 
of M. 

Proof For  the purpose of this proof  it is convenient to think of the foliation 
5~ as the orbits of a flow {~b,} on the manifold M. The main claim is that every 
point flows forward onto S; once this has been established it will follow that 
M can be reconstructed as the mapping cylinder of the first return map S --. S 
and thus that S is a fiber in a fibration of M. 

To this end, given any point pe M  define W (p) to be the set of all possible 
accumulation points of the set {qSt.(p) [ t, ~ ~} .  Since M is compact, this set is 
nonempty. Then the set W(p) is actually invariant under the flow, since if 
qeW(p) and any K is given, ckr(q)=lim,~ ~ dpr(qS,~ ~ (qSK+,,(p)) 
and the righthandside lies in W(p) by definition. Thus W(p) is a union of 
flowlines. 

Suppose that we were able to choose some p so that the forward orbit did 
not meet S. Since S meets the flow transversely, it follows that the set W(p) 
does not meet some neighbourhood of S, and we deduce that there is 
a flowline which does not meet S, a contradiction. [] 

Thus an embedded surface which is transverse to Lf meets every flowline if 
and only if it is geometrically infinite. In fact it follows from results of Fried 
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[6] that any embedded surface transverse to the suspension flow of a pseudo- 
Anosov map associated to fibration F ---, M ~ S 1 must lie in the closure of the 
face of the Thurston norm containing [F] .  

The reason is that Fried proves that one can characterise the representat- 
ives of such a face as those embedded surfaces with positive intersection 
numbers with a finite number of (carefully chosen) closed flowlines. Therefore 
if S is any embedded surface transverse to Y ,  then for any positive integer n, 
the class [nS+F] meets every flowline and in particular all the closed orbits, 
so must lie in the interior of the face containing IF] .  From this it follows that 
[S] lies in the closure of the face. 

We now show how to construct examples of embedded surfaces which are 
transverse to the suspension flow of a pseudo-Anosov, but are quasi-Fuchsian. 
The above remarks show that such a surface is in the boundary of the face of 
the Thurston norm containing the fibration. 

We need the following construction: Suppose that 0: S ~ S is a pseudo- 
Anosov map which has the property that one can find a nonseparating 
oriented simple closed curve C with (a) C is disjoint from O(C) and (b) With the 
given orientations C and O(C) represent the same nonzero class in HI(S). 

Under  these circumstances, we may form an embedded surface S which is 
transverse to the flow in the following way: Let So be one of the subsurfaces of 
F whose boundary components are C and O(C). Regard this as a subsurface 
So x {0} c F  x {0} c F x I and adjoin an annulus C x I. This surface then 
closes up to be an orientable surface in M, which one sees easily can be made 
transverse to the flow. 

We claim that this surface is actually incompressible; in fact we show the 
stronger fact that it is a Thurston norm minimising representative of the 
homology class. The reason is that if we do double curve sums with F, then we 
obtain a new surface transverse to the flow - so that although this new surface 
may be disconnected, it cannot involve any 2-sphere components. Therefore 
the Euler characteristic of S + nF is •(S) + n)~(S). If we sum with enough copies 
of F we obtain a class lying in the fiber face, which is thus an integral multiple 
of a class represented by a fiber. It follows that for very large n, S+nF is 
a Thurston norm minimising surface. However, if the surface S were not norm 
minimising, we could replace it by a representative with smaller Euler charac- 
teristic and double curve sum with the same number of copies of F to lower 
the Euler characteristic of S + nF, a contradiction. 

We shall now give a construction for examples of the type promised above. 
Suppose that F is a hyperbolic orbifold with underlying topological space 
a torus, and that O:F--* F is a pseudo-Anosov map with the properties 
described above as well as the property that it fixes at least one of the cone 
points. (We shall show below that such examples may be constructed rather 
easily.) The surface So of the paragraph above must be a topological annulus 
with some number of cone points. This number cannot be zero or all, 
else (looking to the other homology cobordism in F if necessary) we find a 
free homotopy between C and O(C) which is impossible for a pseudo-Anosov 
map. 
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Form the orbifold M containing the surface S as above, choosing as So the 
side of the homology cobordism which does not contain a fixed cone point. 
Note that this guarantees that the closed flowline through this cone point 
misses the surface S. By passing to a torsion free subgroup of finite index, we 
find a surface with all the promised properties, which misses the full preimage 
of this flowline and therefore is quasi-Fuchsian. 

It remains to verify the existence of such maps. One example which one 
can compute explicitly comes from using the monodromy of the Borromean 
rings. One finds in this case that there is a curve which is moved disjoint from 
its image, so that by doing appropriately large (0, k) surgeries, all the above 
hypotheses can be arranged. 

More generally, such examples may be constructed as follows. We 
refer to Fig. 5A: This depicts a surface F which is a torus with a single 
boundary component glued to a sphere with at least four boundary compo- 
nents. 

Choose a pseudo-Anosov map of the braid group of the disc and denote it 
by ~. We also have a map of F to itself which we shall denote by p,; it is an 
element of the braid group of F which is constructed by moving the first 
puncture around F and back to its starting position along a path such as 
that indicated by ~ in Figure 5A. With the choice of path shown it is clear that 
the image of the curve C under the composition p ~  is the curve denoted in 
Fig. 5B by O(C). In order to arrange that the other curve on the torus is moved 
into the disc part we should choose some other path ~ using the second 
puncture. It is clear our choices can be made so that O=p~p~ is pseudo- 
Anosov and carries the curve C to the curve O(C) as shown in Figure 5B. 
Filling in the punctures on F will now give the orbifold example which was 
promised. 

B @ 

Fig. 5 
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5 Appendix: The Cannon-Thurston map 

For the convenience of the reader, we will review part of the work of Cannon 
and Thurston on geometrically infinite surfaces [2]. Let M be a closed 
hyperbolic 3-manifold which fibers over the circle with fiber F and pseudo- 
Anosov monodromy O:F--*F. Let 2>  1 be the stretch factor for 0 and 
(o ~ +, p +) and ( ~ - ,  # - )  the stable and unstable projectively invariant meas- 
ured foliations for 0 respectively. If c~ is an arc transverse to these foliations 
then 

~-+ (0(Z) = ~+1 t/+ (~). 

This means that 0 contracts segments of stable leaves and expands segments of 
unstable leaves. Both these foliations have the same singular points Y which 
are finite in number, and we denote the punctured surface obtained by 
removing the singularities by F * = F - J .  The measured foliations define 
a Euclidean metric dt on F*  as follows. We adopt the convention that (x, y) 
are local coordinates on F* where: 
 9 x is constant along a leaf of .~- - 
 9 y is constant along a leaf of ~ + 
Thus #+ is locally dx and # -  is locally dy. Using these local coordinates 
0 expands the x direction and contracts the y direction and is given locally by 
the matrix 

relative to local xy  coordinates around w e F *  and Ow. The metric completion 
of F* is a singular Euclidean metric on F. A neighborhood of a singular point 
in F corresponding to a k-prong singularity of both ~ § and ~ is isometric 
to the metric space obtained by taking a k-fold branched cover of the 
Euclidean plane branched around the origin and then quotienting by the 
isometry x ~ - x .  

ds 2 = 2 -  2Zdx 2 + 22z dy 2 + d22 

where z is the coordinate on [0, 1]. This is a Solv metric, see [13] and is chosen 
so that the map 

F* x 1 --* F*  x 0 (w, 1)~-*(0w,0) 

is an isometry. This induces a Solv metric on F * x  I/(w, 1)-(0w, 0) and the 
metric completion of this is a Solv metric with singularities on M. 

Since M is compact, the metric ds on M and the hyperbolic metric dh on 
M are Lipschitz related thus there is K > 1 with 

K - l d h < d s < K d h .  

Lifting these metrics to the universal cover 

7 t : M - - m  

the same comparison applies to the lifted metrics. 



Bundles and finite foliations 281 

Let d, be a regular leaf of ~-+ in the universal cover F of F. Given a point 
w in F there is a unique dt geodesic 7 in P which contains w and is orthogonal 
to (. This is because dt has non-positive curvature. Let ~r(w) be the point of 
intersection of 7 and ~ then the map 

p:/7__, ( 

is called orthogonal ~ojection onto ( and does not increase dt distance. We 
identify P x IR with M and extended the above map to 

p : F x I R ~ d x l R  p(w,t)=(pw, t). 

The formula for the Solv metric on M shows that this map also does not 
increase ds distance. It follows that the shortest path in P x IR between two 
points in ( x IR lies in ( x IR. Thus ( x IR separates P x IR into two components 
with closure A and B with the property that they are ds convex in the following 
sense. Given two points in A a shortest path between them lies entirely in A. 
We call A and B the half-spaces associated to d. 

Fix a hyperbolic metric on F then use this to identify P with IH z. Now 
identify IH 2 with the interior of the closed unit disc B z and identify IH 3 with 
the interior of the closed unit ball B 3 in the usual way. We will use de for the 
Euclidean metric on both B 2 and B 3. A continuous map 

f : / ~ - .  IH 3 

has a continuous extension to 

f :  B 2 ~ B 3 

if and only i f f is  uniformly continuous with respect to the Euclidean metric de. 
We will apply this to the m a p f w h i c h  covers the inclusion of F into M. 

Let c be the center of B 2 and let # be a leaf of Y •  in F which does not 
contain c. Let A be the half-space associated to f that does not contain c. 
Suppose that the ds distance between c and A is D. If x and y are two points in 
A and 7 is a ds-shortest path between them, then 7 is contained in A and so l7  
is contained in f(A). Now f), lies within some distance L of the unique 
hyperbolic geodesic 3 betweenfx andfy .  Since ~ is ads  shortest path a n d f i s  
a K quasi-isometry it follows that J~/is a K-quasi-geodesic and so L depends 
only on K. Thus the distance offc from 6 is at least D/K-L.  For D sufficiently 
large it follows thatfA is contained in a set of small de-size. This implies thef i s  
de-uniformly continuous. 

Thus the inclusion F ~ / ~  has a continuous extension to the circle at 
infinity. Since ~zl(F) is normal in zh(M) they have the same limit set, thus 
S~(P)  maps onto S~,(/~). We claim that two points in S I ( F )  have the same 
image if and only if they are limit points of the same ,~-+-leaf. Let { be a leaf 
~- +, the formula for the singular SoN metric restricted to ( • IR is 

ds 2 = ~ -  2Z dx2  + dz  2. 

Suppose that Ix2 - x l [  is large then the ds distance between two points (Xl, 0) 
and (x2, 0) on ( •  0 is approximately 2 log~ [XE-X~[. An approximation to 
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a ds-shortest  pa th  7 between them consists of two vertical intervals 
x ix  [ 0 , 1 o g ; , I x z - x l l ]  together  with the hor izontal  segment of 
g~ x logalx2 - x l ]  between xl  x logz I x 2 - x l l  and xz x logz I x 2 - x l l .  If xl  and 
x2 are a large ds distance from c then 7 is also a large distance from c. It follows 
that  f7 is a large dh-distance f romfc  and since]i- is a lmost  a K-quasi-geodesic 
it has small de diameter  in B 3. This proves the if par t  of the claim. Next we 
prove the only if par t  of the claim. 

Let 2 +, 2 -  be regular leaves @ +, Y -  respectively which intersect in 
a point  x. The intersection of a half space associated with 2 + with one for 2 is 
called a quarter  space and  the line ~ = x  x IR is called the axis of the quar ter  
space. There are 4 quar ter  spaces associated to 2+, 2 -  and two of these which 
intersect only in # are called opposite quar ter  spaces. 

Lemma 5.1 Suppose that A', B' are two opposite quarter spaces which contain 
quarter spaces A, B respectively in their interiors. Then A and B have disjoint 
closures in the sphere at infinity. 

Proof The proof  involves showing there is a compact  subset K of _M such 
that  every dh-geodesic segment with endpoints  in A and B meets K. [ ]  

Assuming this consider two points a, b on S ~ (/7) which are not  limit points of 
the same leaf. There  are quar ter  spaces A, B as in the lemma such that  aecl(A) 
and becl(B) and this proves the claim. 

Let 2 + be a regular leaf of ~-  § then the ds-metric restricted to 2 + x IR is 
the hyperbolic metric and the lines 2 + x t are horocycles which curve upwards. 
A vertical line x x IR is a d s  geodesic which is o r thogona l  to these horocycles 
and therefore converges in the upwards  direction to the point  at  infinity where 
these horocycles limit. 

This shows that  the map  which flows a point  on ff x 0 upwards to the 
sphere at infinity is the map  which sends a point  xe/7 to the point  on the 
sphere at  infinity to which the Cannon -Thur s ton  map  sends the leaf 2 + 
conta ining x. 
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