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QUASI-ISOMETRIES OF HYPERBOLIC SPACE
ARE ALMOST ISOMETRIES

DARYL COOPER

(Communicated by James E. West)

Abstract. In this paper we show that for n > 3 a quasi-isometry of hyperbolic

«-space H" to itself is almost an isometry, in the sense that the image of most

points on a sphere of radius r are close to a sphere of the same radius. To

be more precise, the result is that given K > 1 and e > 0 there is a ô > 0

such that the image of any sphere of any radius r under any Ä-quasi-isometry

lies within a distance of S of another sphere of radius r, except for the image

of a proportion e of the source sphere. We illustrate our result with a quasi-

isometry of H" for which the image of a sphere is the analog of an ellipsoid in

Euclidean space. There is no corresponding result when n = 2 . This failure is

illustrated by lifting to the universal cover a surface difFeomorphism which is

not isotopic to an isometry.

Introduction

An example of how quasi-isometries arise in topology is obtained by lifting a
homotopy equivalence between compact Riemannian manifolds to the univer-

sal covers. This is the starting point for Mostow's proof of the rigidity theorem
for hyperbolic manifolds [Mos2]. This theorem asserts the uniqueness, up to

isometry, of a hyperbolic structure on a closed manifold of dimension n > 3. In

dimension 2, these hyperbolic structures are not unique but are paramaterised
by a finite-dimensional Teichmüller space [Ab]. The reason for the difference be-
tween dimension 2 and higher dimensions is that quasi-conformal maps of Sm

are absolutely continuous with respect to Lebesgue measure, provided m > 2

[Mosl], but quasi-symmetric maps of Sx need not be absolutely continuous. In

this paper we point out another consequence of (uniform-) absolute continuity;

namely that a quasi-isometry of M" , n > 3, almost preserves distance in a very

strong sense (1.4). The corresponding statement for H2 is false, for example a
pseudo-Anosov difFeomorphism of a hyperbolic surface lifts to a quasi-isometry

of H2 which increases the distance d between typical points by an average

amount which is unbounded as d increases (2.2). We give an outline of the

proof of the main theorem: Given a quasi-isometry, there is a quasi-conformal
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extension to the sphere at infinity. A quasi-conformal map is differentiable a.e.,

and is therefore closely approximated by a linear map near a.e. point at infin-

ity. At a.e. point the derivative is non-singular because quasi-conformal maps

are absolutely continuous. The behaviour at infinity determines the image of

a point in H" to within an error which depends only on the quality of the

quasi-isometry. This is because a point is determined by the intersection of two

geodesies, the images of which are quasi-geodesics, and so are determined to

within a bounded error by the behaviour at infinity. A hyperbolic translation

can be chosen to have almost the same linear approximation near a given point

at infinity. Thus the quasi-isometry is approximated by a translation, near the

given point. To obtain a bound on this translation distance (at most points)

depending only on K and e but not the particular AT-quasi-isometry we use

the fact due to Reimann [R] that a ^-quasi-conformal map is a(K)-Holder

continuous on the level of measure theory (1.3). This completes the outline.
The proof given here makes vital use of the conformai structure on the sphere

at infinity, but perhaps there is a different proof using only hyperbolic geometry.

The conformai structure at infinity is not as useful for non-constant negative

curvature spaces, but it seems likely that a different proof in the constant curva-

ture case might yield a version of ( 1.4) for quasi-isometries of negatively curved
spaces.

1. The main RESULT

Definition. A A"-quasi-isometry (K > 1) is a map between metric spaces <p :

(X ,dx) —► (Y, dy) having the following properties:

(1) Vx,x'£X dx(x,x')>K*>   K~x<df^ <K.

(2) Vy G Y 3x£X dY(<px, y) < K - 1.

When convenient we shall supress the constant K which determines the

quality of the quasi-isometry. Notice that a 1-quasi-isometry is just an isometry.

More general definitions can be made (see, for example, [Th]). The notation

Sr(x) is used for the sphere of radius r in H" centered on x . If Q is a subset

of a metric space X, N¿(Q) is the neighborhood of Q consisting of all points

in X lying within a distance ô of fi. A quasi-geodesic is the image of the

real line under a map which is a quasi-isometry onto its image. Quasi-geodesics

have the property that they closely track geodesies:

(1.1) Proposition ([Can]). Given K> 1 there is a constant Cx > 0 depending
only on K such that if <j> : M" —► H" is a K-quasi-isometry, then for every geodsic

y there is another geodesic y' such that </>(y) lies within a distance Cx of y'.

It is well known [Mosl] that a K -quasi-isometry tj> : M" —► M" has a K2 -

quasi-conformal extension <f> to the sphere at infinity S^ ' ( quasi-symmetric
if n = 2 ). This has the consequence that the image under a /^-quasi-isometry

0 of a point x £ M" is determined to within a distance C2 (depending only

on K) by the action of (p on S^x. Indeed, choose two orthogonal geodesies

yx and y2 through x ; then there are uniquely determined geodesies y\ and y'2
such that <f>(x) lies in the intersection of the neighborhoods of size Cx around
y[ and y'2 (see Figure 1). The diameter of this intersection is bounded above in

terms of Cx and of the length of the subarc of y[ which lies within a distance
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Figure 1

2Ci of y'2 ■ The length of this subarc is bounded in terms of K because if y[

and y'2 are close along a long subarc, then there must be corresponding long

arcs on yx and 72 which are close to each other. But this would contradict the

fact that yx and y2 are orthogonal. The geodesies y[ and y2 are determined

by the images under tf> of the endpoints of yx and y2 . However it suffices to

know the images of only three of these endpoints in order to know the image

of x to within a bounded error. This is because the argument above can be

modified to use a geodesic ray orthogonal to x in place of y2. This establishes

the following lemma.

(1.2) Lemma. Given K > 1 there is C3 > 0 such that if <j> and r are any two

K-quasi-isometries of W which agree on three of the endpoints of two orthogonal

geodesies passing through a given point x in H" , then the distance between <j>(x)

and t(x) is bounded by C3.

A map (f> : M —► N between Riemannian manifolds is said to be closely

approximated by its derivative in a Ô -neighborhood of x £ M if the following

condition holds:

Vm g TxM ||u|| < Ô   =>.|| exp¿(0expx u) - <p'(x)u\\   <   ||0'(x)w||/lOOO.

Definition. We will use X(Cl) for the m -dimensional Lebesgue measure of the

subset Q c Sm of any m -sphere normalised so that À(Sm) = 1 .

Given e > 0 we claim there is a subset ß of S^- ' and constants L, I, ö > 0

with the following properties:

(1) i{S£l-Q)<e.

(2) 0 is differentiable at each x £ Q.

(3) Every directional derivative of <p is bounded in norm below by I and
above by L at every point of Í2.

(4) (f> is closely approximated by its derivative in a ¿-neighborhood of

each x £ Q.

To see this, since </> is quasi-conformal, it is differentiable a.e. [Ahl], giving con-

dition (2). The directional derivatives are measurable functions, and therefore

L exists. Also <j> is quasi-conformal, and therefore absolutely continuous with

respect to Lebegue measure [Ahl] so that the Jacobian of </> is non-zero a.e.

implying I > 0 exists and proving (3). (4) is proved by the following standard
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argument in measure theory. Given a point x £ S^1 at which <f> is differen-

tiable, there is ô(x) > 0 such that <p is closely approximated by its derivative
in a S(x) -neighborhood. For each integer p > 0 set

Vp - {x £ S^X : <f> is closely approximated by its derivative in a (l/p)-

neighborhood of x}.

Assuming for the moment that Vp is measurable, since Vp is an increasing

sequence converging to a set of full measure, it follows that for p sufficiently

large, X(S^X - Vp) < e thus £2 = Vp satisfies (4). To show Vp is a measurable

set choose a countable dense subset {a¡} of the ball of radius l/p in R"_1.

Pick a point y £ S^x and choose a trivialisation of Tt(S"~x - y). Use this

trivialisation to continuously identify a, with a point a¿(x) in the ball of radius

l/p in TXS^X. Since (j)'(x) is measurable, there is a measurable function

f:(S^-y)^R defined by

fi(x) = \\exp-x((f)expxai(x)) - <j)'(x)ai(x)\\/W(x)ai(x)\\.

Thus Vpj = {x £ S^x : f(x) < 1/1000} is measurable, and it follows that
Vp = f|/^i Vp,¡ : ± {y} is measurable. This establishes that Q exists with the

above properties.

Fix a point x £ HF1 and compose </> with an isometry so that (¡>(x) — x.

Choose coordinates in the Poincaré disc model so that x is at the origin. Let
Q be the subset of S^x with properties (l)-(4) (relative to Lebesgue measure

X on S^x given by the chosen coordinatisation). Given any point a £ ÍÍ,

let yx be the geodesic in H" through x ending on a. By replacing <j> by

the composition of <f> with a suitable rotation centred on the origin we may

suppose that <t>(a) = a . Let y be the point on yx a distance r from x towards
a (see Figure 2). Choose a geodesic y2 passing through y and orthogonal to

7i, and let bx and ¿?2 be the endpoints of y2 on S^x. For r sufficiently

large depending on ô, (f> is closely approximated by its derivative at a in a
neighborhood which includes ¿i_and ¿>2 • Let t be a hyperbolic translation

with axis yx which maps bx to <j>(bx).

We would like to apply Lemma (1.2) to the maps 4> and T using the three

points a, bx, b2; now <p(a) = i(a) = a and <t>(bx) = r(bx) but 4>(b2) ̂  t(¿>2) .

Figure 2
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However <p is closely approximated by its derivative in a neighborhood of a
which includes ¿2, therefore <j>(b2) and x(b2) are very close in the appropriate
sense. To be precise there is an isometry x' very close to the identity which
fixes both a and <p(b\) and such that x'(xb2) — 4>(b2) and x' moves xy a

small distance. The isometry x' is a loxodromic with axis whose endpoints are

a and <t>bx. We replace t by x' o x and apply lemma (1.2) to <f> and x with

the points a, bx, b2.
Then by Lemma (1.2) the hyperbolic distance between x(y) and 4>(y) is

bounded above by C3. The translation distance of t is determined to within

a bounded error by any directional derivative of <f> at a, and is thus bounded
above in terms of £ and L. Thus the distance which t moves y is bounded

by a constant C(K,l,L) depending on K , l(<f>,e,x) and L(cf>,e,x).

Using (1.2) this implies that \d(<j>x, <f>y) - d(x, y)\ < C(K, <p, e, x) + C3.
This estimate applies to the point y £ Sr(x) which lies on any ray from x

to any point a £ Q. Such points form a subset of Sr(x) whose complement

has measure at most e . Finally we show that C(K, <f>, e , x) can be bounded

independently of <f> and x. If this is not the case then there is a sequence of K-

quasi-isometries </>, for which the smallest such constant goes to infinity. This
implies that there is a sequence r, —> 00 and T, c Sn(x) with A(r,-) > e and

d(4>i(Ti), x) - r¡ -» 00. Use radial projection from x onto S^x to identify

T, with a subset T, c S^~x. Then A(r,-) > e but the image under the K2-

quasi-conformal map </>, has A(0,r,) -> 0 as / -» 00 . The following result is an
immediate consequence of [R], Corollary, page 262. It says that on the level of
measure theory K -quasi-conformal maps which fix three points are uniformly

Holder continuous.

(1.3) Theorem [R], Given K > 1, m > 2 and three points on Sm there

are constants a > 0 and ß > 0 such that for all K-quasi-conformal maps

<j) : Sm —► Sm which fix the three specified points the following holds:

for all measurable   T c Sm   Á.(<f>T) < ß • (À(T))a.

We wish to apply this with <p = d>¡ and T = (p/Ti. The inverse of a AT -

quasi-conformal map is also K -quasi-conformal, and the requirement that three
points be fixed can be met as follows. The sequence of K -quasi-isometries <f>¡

all fix x and therefore has a subsequence which converges on compacta. This

implies the images of the three points under <f>¡ converge to distinct points.

Choose a sequence of conformai maps t, of S£¡~l which converge uniformly

and which agree with <f>¡ on the three points. Then t"1 o </>¿ fixes the three

points. Replace </>, with this map and apply (1.3) to get a contradiction. Thus

there is a bound on the translation distance which can be chosen depending

only on K, n and e . We have now established:

(1.4) Main Theorem. Given K > 1, e > 0 and n > 3 there is a constant
S > 0 such that for every K-quasi-isometry <j> : W —► W and any r > 0 there

is a subset Q C Sr(x) with X(Sr(x) - Q) < ek(Sr(x)) and 0(Q) c Ns(Sr(<f>x)).

An example. Choose a geodesic y in H" and a point x on y, and define for

K > 1 a K -quasi-isometry <f> as follows. Isometrically identify y with R so
that x is identified with 0;then <f> is to map y to itself by multiplication by K.

Extend this over the rest of W by foliating H" by codimension-1 hyperplanes
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orthogonal to y and having </> preserve this foliation, mapping one hyperplane

to another by means of parallel translation along y. The corresponding map

of Euclidean space sends a sphere to an ellipsoid of eccentricity K, so that the
image of a sphere in W centered on x is analogous in this sense to an ellipsoid.

To see that <f> is K -Lipschitz, observe that the tangent space to W at each
point splits orthogonally as T,W = T*H"~l © V where F is a 1-dimensional

space and this splitting is </>-invariant. Then Dtp \ T*W~X is the identity,

and orthogonal projection onto y shows that Dtp \ V is multiplication by K.

In the Poincaré disc model, one may picture <f>(Sr(x)) as being very close (in

the hyperbolic metric) to Sr(x) everywhere except in a small (in the Euclidean

metric) neighborhood of y, where it has long (in the hyperbolic metric) spikes
jutting outwards. For r large, the pre-image of the spikes in the unit tangent

sphere at x has small (n - 1) -measure.

2. The case of dimension 2

The purpose of this section is to show that there is no result corresponding

to Theorem (1.4) for quasi-isometries of the hyperbolic plane. Choose a home-

omorphism <j) of a closed hyperbolic surface F and a lift, 4>, of this to the

universal cover H2. The following is a consequence of (22.14) in Mostow's

book [Mos2], page 178, which is also proved in [Ag].

(2.1) Proposition. The extension of (¡> to the circle at infinity tj> : S^ —► S^

has finite non-zero derivative at some point if and only if <j> is isotopic to an

isometry of F which is necessarily of finite order.

We will now assume that <t> is not isotopic to an isometry (e.g. <p is pseudo-

Anosov). Fix a point xetf. Then by composing </> with a suitable isometry,

we may suppose that <\>(x) = x. Since <f> is a homeomorphism of S^, it

is differentiable a.e., which by (2.1) implies that <j> has zero derivative a.e.

It remains to show that this is impossible for a quasi-isometry satisfyingthe

conclusion of Theorem (1.4). Let fi c S^ be the set of points at which <j> is

differentiable. Given a £ Q there is a connected neighborhood Ua of a in

which <p is e -closely approximated by its derivative, a constant function, in
the following sense:

Vb£Ua b¿a^ || exp-^OWII/llexp-'^ll Re-

consider a geodesic y with endpoints in Ua on opposite sides of a and

let y be the point on y closest to x. It follows from (1.2) that d(<f>x, 4>y) >

d(x ,y) + Ct where Ce -> oo as e -> 0. Denote by %a the (Euclidean-)

measurable subset of H2 U S^ consisting of Ua and all such points y. Let

F = lJa6ii%. Then (¡>(VnSr(x)) lies entirely outside Sr+ce(x) ■ Since V is

measurable, X(V r\Sr(x)) -» A(fí) =1 as r -► oo . But by making e arbitrarily

small we can make Cf arbitrarily large and this violates the conclusion of (1.4).
We have now established:

(2.2) Theorem. Suppose cf> is a diffeomorphism of a closed hyperbolic surface

which is not isotopic to an isometry and that 4> is any lift of <p to H2 . Then

given x £ H2, ô > 0 and e > 0 for all sufficiently large r there is a subset

f2 C Sr(x) with X(Sr(x) - Q) < eX(Sr(x)) and <¡>(S1) n Ns(Sr(<f>x)) = 0.
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