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Abstract 

We generalize a somewhat weakened form of the cyclic surgery theorem to a wider class of 
knot like groups. 

Keywords: 3-manifold; Kleinian group 

AMS classijcation: Primary 57M50, Secondary 3OF40; 57M25 

1. Introduction 

We will say that (G, H) is knot like if it satisfies the following conditions: 

l G is a finitely generated group, 

l H is a subgroup of G and H 2 Z x Z, 

l H maps onto the abelianization of G which is Z. 

Let G be a knot like group. Given an element p E H let G(p) be the quotient of G 

obtained by killing ~1, clearly G(p) = G(h-I). In this paper we study the question of 

when G(p) is cyclic. 

Definition 1.1. An element CY in H is a cyclic class if G(a) is cyclic. 

This question arises in the theory of Dehn surgery on 3-manifolds where G is the 

fundamental group of a 3-manifold M with boundary a torus T. Then G = nl(M) and 

H = ~1 (T). The Cyclic Surgery Theorem [2] gives a good answer when M is not Seifert 

fibered: there are at most 3 distinct pairs p *’ which give a cyclic G(p). In fact the Cyclic 

Surgery Theorem says rather more. Let (, ) be a skew symmetric integer valued pairing of 

determinant 1 on H, then if G(p) and G( ) v are both cyclic then A&, v) = I(p, v) ( < 1. 
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Definition 1.2. We say that (G, H) has property NCIS if G cannot be expressed as a 

graph of groups with H in a vertex group. We say that (G, H) has property NCIS- if 

there is no sequence in Hom(G, SL$) which blows up but is bounded on H. 

For example if a knot complement contains no closed incompressible surface then 

its fundamental group has property NCIS. We will see in Section 2 that NCIS implies 

NCIS- and also explain the meaning of the term “blows up”. 

The set R(G) = Hom(G, SLzC) is an affine algebraic set, let Rc be a component (in 

the sense of algebraic sets) of R(G). If p E R(G) kills p then p factors through G(p) 

and we will often regard p as a homomorphism from G(p). The main result of this paper 

is: 

Theorem 1.3. Suppose that (G, H) is a knot like group with property NCIS- and that 

there is a component & of R(G) such that & contains representations p, p’ with p/H 

parabolic and p’jH not parabolic and p’ irreducible. Suppose p, Y E H are primitive 

and G(P), G(u) d o not have noncyclic representations in &. Then there is y E H such 

that A(P, ~1, A(v, Y) 6 1. 

Corollary 1.4. With the hypotheses of Theorem 1.3 

l either there are y, S E H with A(y, 6) = 1 andfor all primitive p for which G(p) has 

no nancyclic representation in & then fp = y or fp = 6 + ny for some integer n; 

l or there are p,q, r E Z2 such that the only points of Z2 in the convex hull of 

{&p, fq, &-} are these points and the origin. Furthermore for all primitive p for 

which G(p) has no noncyclic representation in & then ztp E {p rt q, q f T, r f p}. 

Addendum 1.5 (to Theorem 1.3). Suppose in addition to the hypotheses of the theorem 

that p’ may be chosen so thatfor every (Y # 0 E H that trace(p’cr) # &2. Then there are 

onlyjnitely many primitive p E H such that G(p) d oes not have a cyclic representation 

in &. 

The techniques used to prove the Cyclic Surgery Theorem are part algebraic and part 

3-manifold topology. We have extracted and substantially modified the algebraic argument 

to obtain information about a more general class of groups. The technique is to study 

representations of G in SL& and reduce the question to one about divisibility properties 

of integer polynomials in 2 variables. These questions are resolved using “geometry 

of numbers” type arguments based on elementary estimates involving complex roots of 

unity. Here are some examples of knot like groups: 

1. I. Examples 

(1) The fundamental group of the trefoil knot has a presentation (cr, /?: a2 = 0’) 

and the boundary torus is generated by a meridian p = c$’ and A = a2pP6. The 

element p.(#X)q is a cyclic class for every integer q. This is because @A is central thus 

the relation p.(#X) = 1 implies /I is central and thus abelianizes the group which is 
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normally generated by p. This is an example of a knot with Seifert fibered complement to 

which the Cyclic Surgery Theorem does not apply. Theorem 1.3 applies to this example, 

but the extra hypothesis of the addendum is not satisfied. 

(2) The (-2,3,7) pretzel knot has a hyperbolic complement. Using X, p for the lon- 

gitude and meridian, then Fintushel and Stern have shown that ~1, I_LX’~, $I9 are cyclic 

classes. In addition the class I_LX” is not a cyclic class but a computer calculation reveals 

that there is no noncyclic representation into SL$ of the knot group which kills this 

class. 

(3) Let (G, H) be the fundamental group of a (hyperbolic knot, boundary torus) con- 

taining no nonboundary parallel closed incompressible surface and take G’ = G*H (ZxZ) 

where the amalgamation map H + Z x Z is an isomorphism onto n(Z x Z) for some 

positive integer n. Let H’ be the image of the Z x Z subgroup in the amalgamated 

product. Then (G’, H’) is knot like, and if 1-1 E H is a cyclic class for (G, H) and if 

v E H’ and if p is a multiple of v then Y is a cyclic class for (G’, H’). This shows that 

the hypothesis in Theorem 1.3 that the cyclic classes be primitive is necessary. 

(4) Let (G,H) b e as in the preceding example and let K be a perfect group then set 

G’ = G x K and let H’ be the group generated by {Xcy, p/J} where X, p generated H 

and c~,p E K commute. 

(5) Let (G, H) satisfy the hypotheses of the theorem and add a generator ,0 and a 

relation p = P.n_P-‘.cr./3 to G where cr is any element of G and p is a meridian. Let 

G’ be the resulting group and H’ the image of H in G’. A calculation reveals that the 

restriction map i* : R(G’) -+ R(G) is onto. Thus if G is the fundamental group of a 

hyperbolic knot then G is a subgroup of G’, and it is then clear that (G’, H’) is knot 

like. Suppose that a sequence pn E R(G’) blows up, then some calculations reveal that 

pnlG also blows up. Therefore Theorem 1.3 and Addendum 1.5 apply to (G’, H’). 

2. Curves of eigenvalues 

Choose a basis {X, p} of H. Since H is abelian we may conjugate p E R(G) so that 

pjH is upper triangular, thus 

I’ * 
P(X) = 0 e-l ) 

[ 1 P(P) = y ,*, ) 

[ 1 
the numbers e*’ , m*l are the eigenvalues of p(X), p(p) respectively. Note that the con- 

jugacy used to make p(X), p(p) upper triangular is not unique. In particular the pair 

(e, m) may be replaced by the pair (e-l , m-‘) by a suitable conjugacy. We will define 

a double valued eigenvalue map by 

ev: R(G) + (@ - 0)2 by ev(p) = (e(p), m(p)). 

Proposition 2.1. Suppose that l& contains an irreducible representation and p, y are 

coprime integers, and that 3p E I& with ev(p) = (e,m) and kTPmq = 9~1 and either C or 

m. is not i 1. Then there is a noncyclic p in & such that p(XPp4) = iI. In particular 

G(P@) is not cyclic. 



16 D. Cooper / Topokqy und its Applicutions 69 (1996) 13-30 

Proof. It follows from the hypotheses on !, m that pJH is diagonalizable and therefore 

that p(XP@) = &I. If p does not have cyclic image in PSLz@ the result is now clear. 

Otherwise we can conjugate so that p = P& is diagonal. 

A representation p into SLzC is reducible if and only if the character of p restricted 

to the commutator subgroup of G takes only the value 2. The function X, : I-& + Cc 

given by X,(p) = trace(pa) is a polynomial therefore S = X;‘(2) is an algebraic 

subset of R+ Since Rc is irreducible either S = & or 5’ is an algebraic subset of 

R with dims < dim& and Rc - S dense in &. Since & contains an irreducible 

representation p there is a commutator cr E G with trace&) # 2, thus the set of 

irreducible representations is dense in &. 

It follows that there is a sequence of irreducible representations pn E Rc which 

converge to p&,. Fix a generating set or, cq, . . . , CQ of G and choose A, E SL2C such 

that pk = A&&’ has the following properties: 

l pk(H is diagonal; 

l for n large the off-diagonal entries of pL(cyi) have modulus at most 1 for 1 < i 6 Ic; 

l there is i, such that one of the off-diagonal entries of pk((~i,,) has modulus 1. 

Then choose a subsequence nk such that pk,(cyi) converges for each i. Since RQ is 

closed in the classical topology, the subsequence pnc converges to a representation P& 

in l&. Since the normal closure of H is G it follows that &d does not kill H therefore 

there is h E H such that p(h) # 51. Also &d(&,) is not diagonal so &d has noncyclic 

image. 0 

Recall that a subset A of en is constructible if 

l either A is finite; 

l or A = B - C where B is an affme algebraic set, and C is a constructible set of 

smaller dimension than A. 

We now show that the set C = ev(Rc) is constructible. Let U be the algebraic subset of 

R,J of representations which are upper triangular on H. Then C = ev(U) because Rc is a 

Zariski open subset of R(G) and is therefore closed under conjugacy. Now ev /U is given 

by a coordinate projection namely take the top left entries from the matrices p(X), p(p). 

Coordinate projection is a polynomial map, and the image of an affine algebraic subset 

under a polynomial map is a constructible set. 

It follows that the closure of C is an affine algebraic set %. If dim@ C = 0 then 

C consists of finitely many points. In this case our methods give no information. If 

dim@ C = 1 or 2 then C contains a constructible subset of (complex) dimension 1. In 

what follows we will work with a l-dimensional constructible subset of C, which we 

also denote by C. 

Thus C = ?? - F where F is a finite subset of c. We claim that if G has property 

NCIS- then F is contained in C x 0 U 0 x Cc. This follows in a standard way from 

the Culler-Shalen theory 14, 2.2. I]. Briefly if IC E F - (U2 x 0 U 0 x C) then there is 

a sequence pn E h!e with limV_,oo ev(p,) = 2. Then pn must blow up, i.e., there is 

cy E G with trace(p,a) -+ 00 otherwise we could conjugate pn to obtain a subsequence 

which converges to a representation p with ev(p) = 2 giving a contradiction see [3]. One 
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obtains from the sequence pn via Bass-Serre theory an action without edge inversions 

of G on a simplicial tree and this gives a graph of groups decomposition of G. Since 

pnlH has bounded trace, H is contained in a conjugate of a vertex group, contradicting 

property NCIS- for G. This shows NCIS implies NCIS-. 

Proposition 2.2. Suppose that (G, H) is a knot like group with property NCIS- and that 

there is a component & of R(G) such that & contains representations p, p’ with ,olH 

parabolic and p’lH not parabolic. Then there is an afine curve C* in (c - 0)2 lying in 

ev(Ro). 

Proof. The set (C - 0)2 is an affine algebraic variety. We have that ev(p) # ev(p’) thus 

ev(&) contains more than one point, but l& is connected therefore ev(&) has complex 

dimension at least 1. The preceding discussion implies the existence of C* . 0 

Definition 2.3. Let ab : G -+ Z be the abelianization map. We will call v E H odd if 

ah(v) is odd. 

Given p E R(G) define p- by p-(a) = (- l)“b(a) p(o). This is clearly a representation 

and if X is even and /I is odd and ev(p) = (e,m) then ev(p-) = (e, -m). This defines 

an involution T : R(G) + R(G), g iven by r(p) = p-. Observe that p(v) = 39 ti 

P-(Y) = 3~1. We now define a new curve C = C* U r,“(C*) in R(G) which is invariant 

under rev, where ~&,m) = (a, -m). 

Now the curve C in (C - O)* is the zero set of a Laurent polynomial A(X, p), and it 

is shown in [l] that this polynomial can be chosen to have integer coefficients. We will 

now study the relationship of this polynomial to cyclic classes. 

Lemma 2.4. Ifp is odd and X is even, then A(X, p) involves only even powers of p. 

Proof. Note that TV” = C thus (e, m) E ev(C) ti (4, -m) E ev(C) which implies 

the result. •1 

Proposition 2.5. With the hypotheses of Proposition 2.2, suppose (t!, m) is a Zero of 

A(X, p) and ePrnq = fl and either e or m is not fl. Then there is a noncyclic p in 

I& U r(h) such that p(Xppq) = I. In particular XPpq is not a cyclic class. 

Proof. There is p E l& UT(&) with ev(p) = (a, m so the result follows from Propo- ) 

sition 2.1. q 

Corollary 2.6. Zf p is a cyclic class then A(X, p = -f 1) = 0 + X = 0, f 1. 

Corollary 2.7. Suppose the hypotheses of Proposition 2.2 and that p is an odd cyclic 

class then 

A(X, 1) = aXb(X - l)‘(X + l)d 
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and a # 0 and at least one of c, d is nonzero. 

Proof. By the previous corollary, there are integers a, b, c possibly zero, so that A(X, 1) 

is as claimed. If a = 0 then there is a representation with p = 1 and X arbitrary which 

by Proposition 2.1 contradicts that p is a cyclic class, hence a # 0. The hypotheses 

of Proposition 2.2 gives a representation p with p]H parabolic thus trace(&)) = &2. 

Replacing p by p- if needed, we may assume that trace(&)) = 2. Now trace(p(A)) = 

f2 and so either ev(p) = (X, p) = (1, 1) or (-1,l) is a zero of A(X, p) and thus at 

least one of c, d is not zero. 0 

We will often change the basis of H. If 6, u is a new basis then K = X’@, u = XT@ 

and ps - qr = 1. Using these coordinates, the curve C in (C - 0)2 is the zero set of 

B(K, V) where B(lc, V) = A(K?v-Q, IE-~v*). 

3. Odd cyclic classes 

From now all the cyclic classes that we consider are primitive. In this section we 

assume that there is an odd cyclic class, and we choose a basis X, p of H so that p is 

an odd cyclic class and X is even. We will consider the case of even cyclic classes later. 

From Corollary 2.7 it follows that 

A(X, 1) = a.Xb(X - l)‘(X + I)d. 

Now (CL - l)l[A(X, p) - A(X, l)] and so by Lemma 2.4 (p2 - l)][A(X, CL) - A(X, l)] thus 

A(X, p) = a.Xb(X - l)‘(X + l)d + ($ - l)B(X, p) (1) 

where B(/\, p) is some integer polynomial. Suppose that v = XP@ is a cyclic class with 

hcf(p, q) = 1 then there are integers r, s such that ps - qr = 1. Set K = XT@ then 

X = Ic-qys and p = KPv-~. Then 

v= kl and A(vS,xeq, v -T/cp) = 0 =? K = 0, *1. 

Putting v = 1 it follows that 

A(&-Q, d’) = U.K” (K - 1)“2(n + 1)“’ 

combining this with (1) gives 

U.K”‘(K - 1)“2(K. + l)V’ 

= aK-qK-q - l)c(E-q + l)d + (K2” - l)B(r;_Q, K”). 

The following is the main algebraic result that we need. 

(2) 

Lemma 3.1. Suppose that hcf(p, q) = 1 and that there are integers (not all zero) 

a, b, c, d 3 0 and m, n # 0 such that 

m(1 - z)“(l + z)~ = n(1 - zq)“(l + x”)~ 
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in Z[z]/(x2p - 1). Then q 5 fl, f2 modp. 

Proof. We first deal with the case that g is odd. Set w = eTi/P and f(x) = (1 - z)~( 1 + 

= I and x)~/( 1 - zQ)~( 1 + ~9)~ then f(wt) = n/m = K whenever p i t. Now (-w)~P 

(-w)Q = -w4 thus 

K2 = f(w)f(-w) = (1 - ~~)~+~/(l - w2q)c+d. 

Let T, s be chosen so that 2pr + qs = 1 then 

K2 = f(w”)f(-w’) = (1 - ~“)~+~/(l - w2qs)c+d, 

We have qs G 1 mod2p, thus 

K2 = f(w”)f(-us) = (1 - ~~‘)~+~,/(l - w~)~+~. 

Combining (3) and (4) gives 

(1 _ wZ)a+b+c+d = (1 _ w*s)a+b(l _ wQ)c++ 

(3) 

(4) 

(5) 

Now 11 - w21 < 11 - w*‘Jl, 11 - w2’1 and so for equality in (5) either 2q s *2 mod2p 

or 2s s f2 mod2p. In either case this gives q E 51 modp. 

Now consider the case that q is even. Let w = e 2xifP then since replacing w by -w 

does not change wq 

m(1 - ~)~(l + w)b = n(1 - wq)‘(l + wq)d = m(1 + w)a(l - w)b. (6) 

hence 

l+w b-a 

( > l-w = 

l 

and considering moduli we see that a = b. Now let w be a p root of unity other than 1, 

then 

K = f(w) = (1 - w’)“/(l - wq)‘(l + w”)~. 

Now choose s so that qs 3 1 mod p then 

K = f(w’) = (1 - w2”)“/(1 - wqs)‘(l + w~‘)~ 

= (1 - w2”)“/(1 - w)C(l + W)d. 

Combining (7) and (8) gives: 

(7) 

(8) 

(1 - w2)“(1 - w)C(l + W)d = (1 - W2s)a(l - wq)=(l + W”)d. 

Lemma 3.2. If p is odd and p f T then 

k(r) = 11 _ e*~i~lplcjl + e2nir/pld 

(9) 

has a minimum either when T G 51 or when T E k(p - 1)/2 modp or both. 
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Proof. The functions g+(0) = ( 1 k eie( for 0 6 B < 7r are easily seen to be convex. It 

follows that 

h(8) = 11 - eiejc(l + eield 

is convex. Thus the only possible local minima of h are 19 = 0, T and it follows that 

k(r) is a minimum when h(f27rr/p) is a minimum which therefore either occurs when 

T = 51 or r = &(p - 1)/2 modp. 0 

The first case we consider is that the minimum of k is when T 3 Ifr(p - 1)/2. Set 
w z e2~i(P-*)/2P then u2 = e-2ri/P. Using Lemma 3.2 

)(I - w)c(l + W)dl < I(1 - wQ)C(l + W”)dJ (10) 

from (9) it follows that 

11 421 2 (1 -kPj. (11) 

Thus 2s 3 & 1, f2 modp but since qs E 5 1 it follows that q s f2, f I modp as 

required. 

The remaining case is that the minimum of k(r) occurs when T = zk 1. Set w = e2ri/n 

then again we must have 

Jl - w2j 2 11 -PI (12) 

and the conclusion follows as before. 0 

Lemma 3.3. Suppose p 2 5 and that there are integers a, b, c, d 3 0 and m, n # 0 with 

m(1 - 2)“(1 + z)b = n(1 - z)C(l + CC)d 

in Z[X]/((T?’ - 1)). Then a = c, b = d. 

Proof. Let w = et2ni/p where 0 < t < p is chosen so that w, w2 # Ifi 1 then combining 

the given equation for x = w and x = w2 gives 

(1 - w)=(l + w)b-d = (1 - W2)=(1 + &?)b-d 

j (1 + @-dfc--a = (1 + J)b-d 

+(b-d+c-a)logIl+wl=(b-d)log)1+w2). 

This gives a linear equation in (b-d) and (c-a). Using the two values w = wi = e2niln 

and w = w2 = e2?ri(n-*)/2P we see that (since p > 5) 

log/l +w1l < 1 

log11 -tw;i ’ 
logIl +w2l > 1 
log11 +w; 1 . 

It follows that b - d = 0 = a - c which gives the result. 0 

Addendum 3.4 (to Lemma 3.1). With the hypotheses of Lemma 3.1, if p 2 5 and q s 

&2 modp then d = 0. 



21 

proof. The hypothesis of Lemma 3.1 is that 

.??X(l - z)n(l -t_ z)b =I: $1 - S)“(l + s?)$ 

=% m(l - z)“fl + X)b = ?X(-zP)“(l - ~-~)~~*~(l + 5”)” 

3 mZP(l - 2)2”@(1 i- X:)Qb = R%(l - +)%“(l + 2-6)%d* 

The last step uses that z2P = 1. We may use this to reduce to the case 4 SE 2modp 
and since hcf(p,~) = 1 it follows that p is odd. We will now work in the quotient 

zM/{(~” - 1)) of ~f+V~ 2p - 1)). Then we may assume that Q = 2 and the conclusion 

of Lemma 3.1 is that 

m(l - X)‘L(l + X)b = $1 - X2)“(1 +” 22)d 

replacing II: by --J: gives 

m( 1 -i- s)a(l - X)b = n(1 - G)“(l _t X2)d 

and combining these gives 

7722( 1 - xy = d( I - x2yy 1 + c2yF 

Choose s so that 2s ES 1 modp and replace z by xS in the above to get 

R?(l - z) a-C5 zzz nZ(l - #“(l Jr #d. 

Now Lemma 3.3 implies that 2d = 0. E! 

Proof. If p < 4 and using that q is coprime to p there is nothing to prove, From equation 
(2) and Lemma 3.1 we have that 4 ZE f 1,X2 modp. So suppose that 4 z S? modp 
then there are r, s such that ps - qr = 1 and we may choose s to be odd, This is 
because either Q is even and s must be odd, or else Q is odd and we can replace (T, s) 
by (r - p, s - g), We have from Lemma 3, I and Addendum 3.4 that d = 0 in f 1) and 
putting v = -I gives 

= rtafOb((--1)%-q - I>” + (E”” - ~)~(-~-~~~I~~). 

Since s is odd Addendum 3.4 now implies that c = 0 also. This ~o~~adic~s Corol- 
lary 2.7. U 

Throughout this section we will assume that cr. is an even primitive cyclic class, and 
we extend Lemma 3.5 to the case that I_L is even. 
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Lemma 4.1. With the hypotheses of Theorem 1.3, ;f v = XPpQ is a primitive cyclic class, 

and p is an even primitive cyclic class then q 3 51 modp. 

Proof. Let X be chosen so that {A, p} IS a basis of H, thus X is odd since ~1 is even. 
Since I_L is a cyclic class by Corollary 2.6 p = 51 + X = fl, 0. Now by Lemma 2.4 
the A polynomial expressed in terms of A, p involves only even powers of A since X is 
odd and I_L is even. Thus 

A(X,p) = a,.Xb’(l -X2)‘+- 1) +u&~(I - X2)=Q+ 1) + (~1~ - l)B(A,p). 

Here ai, ~22 E ;Z and if they are not integral, we may multiply by 2 to arrange that they 
are integral. Now we repeat the earlier analysis of a cyclic class v = XP,uq, with the 
notation used before we get 

U.K”‘(l - K)““fl +- K)” =ar.K~b’(f - f+)C~(&~ - 1) 

+ a*K”b2(1 - /+)“(K~ + 1) 

+ (K2P - f)B(&-q, 8). (13) 

We may replace IE by --IC in the above equation to ensure that 2~2 ,) ~3. We claim 
that both ai, a2 must be nonzero. Otherwise substitute for K, a suitable 2p root of unity 
K # il to make the right hand side vanish. This implies that u = 0 and hence that 

ai =O=u2 andthus 

A(& II) = (p2 - l)B(k CL). 

Now p = 1 and A arbitrary satisfies this equation, but p is a cyclic class and Corollary 2.6 
yields a contradiction which proves the claim. We need the following: 

Lemma 4.2. Suppose that hcf(p, q) = 1 and that there are integers a 2 b 3 0, c > 0 

and m, n # 0 with 

m(l - z)‘(l f X)b = n(1 - z2q)c 

in Z[x]/(S’ $ 1). Then q E fl modp. 

Proof. The result is obvious for p < 5. Suppose that 5, y E @ with xp = - 1 = yp then 

(1 - z?)b( 1 - s)“-b( 1 - ?J24)C = (I - y2)b( 1 - y>“-b( 1 - &)C. 

There are integers T, s such that pr + qs = 1, as in the proof of Lemma 3.5 we may 
assume that s is odd. Put 3: = e”j/n and g = zs then xP = -1 = y” then we have 
/l - x/ < jl - y/ with equality only if 9 = xfl. Fu~e~ore 11 - x2/ < 11 - $1, this 
is because for parity reasons y” # z**, and equality holds only if y = zr*t . Finally 

Y 29 = ‘&.2qs = z2-2Pr =r x2 thus / 1 - g2q1 < 11 - z2g/. Taking moduli in the above 
equation we thus see that for equality if either a - b # 0 or b # 0 then y = %*I. 
Since c # 0 one of a or b must be nonzero. Thus for equality s z f 1 modp and thus 
q s il modp. 0 

If cl # 0 then Lemma 4.2 proves Lemma 4.1. If ci = 0 then (I 3) gives 
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as fc varies over pth roots of -1 one easily obtains from this that vz = ~3 = 0. This 
implies that c2 = 0 thus 

Now there is a representation which is parabolic on H say p = 1 for this representation. 
Then 0 = UZ, which we saw above was impossible. Hence cl # 0 and the proof of 
Lemma 4.1 is complete. cl 

Proof of Theorem 1.3. By Lemmas 3.5 and 4.1 v = %‘$J with q EZ fl modp thus 

P = 1-q i 1. We may suppose that X was chosen so that (p, X) = 1 f Then take y = X$ 
then v = yp#’ thus (p, 7) = 1 and (~~7) = fl as asserted. D 

Suppose that 0 f: ty E E’ then 

is the union of two pax&e1 lines symmetric with respect to the origin, If ru atid ,8 are 
primitive cyclic classes then by Theorem 1.3 each component of L(a) meets L(,f3) in a 
lattice point. Furthermore, the lattice points lying between the two components of L(Q) 
all lie on the line through the origin parallel to L(Q)- In particular there is at most one 
lattice point on each component of L(p) lying between the 2 points of intersection of 
that component with L(Q). symmetric statement hold for L(cw). The following resuit in 
plane geometry is used to deduce Corollary I .4 from Theorem 1.3, 

Proposition 5.1. Let Li he a collection of line.9 in R2 with the ~ul~~w~ng properties. 

(i) Each Li contains 2 lattice points but not the origin; 
(ii) Li n (Lj u --Lj) contains a iattice point; 

(iii, let Ly I e h I’ 7 t e me parallet to Li passing thrmgh the origin, then Lf cnntaim all 
the lattice points lying ~e~~ee~ Lp and - Li. 

Then there are two cases: 

* Either there is a l&ice point a which lies in (Li U -Lo for all except possibly one 
value of i and this remaining tine pair is ~~raL~e~ to a (-a), 
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Fig. 1. 

* or there are p, 4, a E 2’ such that the only prints of Zz in the convex hull C of 

(ip, kg, &a} are these points and the origin. There are at most 6 pairs fLi and each 

of these contains a side of C. The lines are a subset of the excep~‘una~ con~g~rati~~ 

shown in Fig. 1. 

Let Si be the closed strip between Li and -Li, then the only lattice points in the 
interior of Si are those in Ly. The intersection of any two distinct strips S’i n Sj is a 
parallelogram P. The boundary of P consists of segments of &Li, fLj and we classify 
P into one of 3 types as follows: 

(I) there are 2 lattice points in aP and these are vertices of P; 
(II) there are 4 lattice points in 3P and these are vertices of P; 

(III) there are 8 lattice points in aP and these are the vertices and midpoints of sides 

of ap. 

We now show that these are the only possibilities. First since P is symmetric through 
the origin, there must be an even number of lattice points in 3P. Now f Li must meet 
G&j in at least a pair fa of lattice points by the hypothesis (ii) of Proposition 5.1. 
Furthermore, if there is a lattice point in the interior of the side e (contained in Li say) 
of a P then this lattice point must lie on Ls (by hypothesis (iii) of 5.1) and therefore is 
the midpoint of e. Since one of the ends of e is a lattice point, the other end of e is also a 
lattice point. This implies that the ends of e are 2 lattice spacings apart and so the same 
is true of Lp n P. Thus the intersection of Ly with Lj is also a lattice point and so there 
is a iattice point in the middle of every side of i3P. Therefore all the vertices of al’ are 
also lattice points and P is type (III). The proof of Proposition 5.1 will be based on the 
following lemmas: 

Lemma 5.2. With the hypotheses of Proposition 5.1, suppose that every parallelogram 

Si f~ Sj is type (II) or type (III). Let P = S, ~7 S2, then either L3 contains a vertex of P 

or P is type (III) and L3 contains two of the midpoints of adjacent sides of P. 
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Proof. Since every parallelogram is type (II) or (III) the intersection of every pair of 

lines Li n Lj with i # j is a lattice point. Note that P is not contained in the interior of 

S’s because the vertices of aP cannot all lie in Li. We may suppose that fL1 contains 

no vertex of aP, and thus kL3 meets aP in 4 distinct points which are therefore lattice 

points in the interiors of edges of aP. But the only lattice point in the interior of an edge 

of ZIP is its midpoint, so the result follows. 0 

Corollary 5.3. With the hypotheses of Proposition 5.1, suppose that every parallelogram 

Si n Sj is type (III). Then L3 contains two of the midpoints of adjacent sides of P. 

Proof. By Lemma 5.2 (after relabeling L3 as -L3 if necessary) the other possibility is 

that L.7 contains a = L, n L2. Consider the parallelogram R = S1 n 5’3 then ku are two 

of the vertices of R. Since R is type (III) one of the other vertices of aR, c say, is on L, 

and there is exactly one lattice point on LI between a and c. Let P = SI n Sz. Let ib be 

the other two vertices of aP. Then either c = b in which case L3 = L:! a contradiction. 

Otherwise the situation is as shown in Fig. 2, from which one sees that S2 n S3 is type 

(II) again a contradiction. 0 

Lemma 5.4. With the hypotheses of Proposition 5.1, suppose that P = SI n S2 is type 

(I). After replacing L2 by -L2 ifnecessary we may assume that a = L1 n Lz is a lattice 

point. Then either fL3 contains fa or +Lj n L1 contains the lattice point p which is 

the unique lattice point on LI closest to a and such that a and p are separated by -Lz. 

Proof. Suppose that *Lj does not contain either &a. We claim that Ss contains a vertex 

of aP. Otherwise S’s meets only 2 of the sides he of aP and therefore e contains a 

lattice point p E *L3 n e in its interior thus P is type (III) which is a contradiction. Let 

Jrb be the pair of vertices of P which are not lattice points. 

First suppose that Ss contains ib, the situation is shown in Fig. 3. Now fL3 meets 

LI in two points p, T and one of these points, r say, is on an edge e of P and is therefore 

not a lattice point. Thus p is separated from a on Ll by b. We claim that there is no 

lattice point on L1 between p and a. There is no lattice point between a and b because 
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Fig. 3. 

Fig. 4. 

P is type (I). If there is a lattice point c on Lt between p and b then it lies in the interior 

of Sj and therefore lies on Li, and since Lg n L1 and -Lg n L1 are lattice points then 

L3 fl L1 = r is also a lattice point on e which is a contradiction. 

The other possibility is that S’3 contains fa then R = 5’3 fl ,571 must be type (III) 

since R contains fa in the interior of its sides. The situation is shown in Fig. 4, and the 

conclusion follows. 0 

Corollary 5.5. With the hypotheses of Lemma 5.4 (replacing L.1 by -L3 if necessary) 

either L3 contains a or L.1 contains p (-4) or p. Here q is the unique lattice point on 

Lz closest to a and such that a and q are separated by - L1. See Fig. 4. 

Proof. Apply Lemma 5.4 twice swapping the roles of L1 and L2. 0 

Proof of Proposition 5.1. The proof is split into several cases. 

Case (1): there is some parallelogram P of type (I), we may suppose P = SI n 5’2, 
refer to Fig. 5. After replacing L2 by -L:! if needed, we may assume that L1 n L2 is a 

lattice point a. By Corollary 5.5 if none of the line pairs contains pq then all the line 
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Fig. 6. 

pairs contain a except one possible line pair containing p (-q). From Fig. 4 we see that 

p (-‘4) is parallel to a (-a) since 5’s n 5’1 is type (III) and we are done. The remaining 

case is that there is a line, which we may assume is L3 containing p. 

The configuration of L1, L2, LJ is shown in Fig. 6. Observe that S’s does not contain 

ia because these are lattice points which cannot lie on Li. From Fig. 6 we see that every 

pair of lines chosen from { LI , L2, L3) gives a parallelogram of type (I). This is because 

there are no lattice points between a and q by Corollary 5.5 and similarly none between a 

and p. Therefore by Lemma 5.4 every line must contain 2 of the points +a, fp, fq. This 

implies that the entire set of lines { Li} must be a subset of the exceptional configuration 

shown in Fig. 1. The convex hull C of fa, fp, fq is,contained in S4 n 5’s. Therefore 

the only lattice points in C are its vertices and the origin, completing this case. 

Case (2): there is no type (I) parallelogram and there is a type (II) parallelogram. After 

re-labeling we may assume that P = SI nS;! is a type (II) parallelogram see Fig. 7. Then 

by Lemma 5.2 Li contains a vertex of aP for i 2 3. We may relabel so that L3 contains 

a = LI n L2. Now Ss n aP contains an interval containing a which we may suppose 
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Fig. 7. 

Fig. 8. 

is in the edge e = ab of aP. If e’ = 5’3 II Lt is contained in the edge e then Ss n Si 

is a type (I) parallelogram (see Fig. S), a contradiction. Thus we may suppose that 4 

contains b and since L3 # LZ that b $ fL3 which implies that b lies on Lp and therefore 

Lj is parallel to the line through the origin containing b. This gives the configuration 

shown in Fig. 9. Repeating this analysis we see that there can be at most one more line 

pair fL4 and this must give the configuration shown in Fig. 10. In this case there are 

4 line pairs, and 3 of these line pairs fL1, -fL2, fL3 contain a, and the remaining one 

fL4 is parallel to a (-a) so we are done. 

Case (3): all parallelograms are of type (III) hence P = S1 f’? S2 is type (III) and by 

Corollary 5.3, after relabeling if necessary, we may assume that LJ contains the midpoints 

p and q of two adjacent sides of P, refer to Fig. 11. Applying 5.3 to the line pair IfL4 

and P we see that, after replacing L4 by -L4 if needed, L4 contains both p and -q. But 

then 5’s n S4 is type (II) a contradiction. Thus the configuration is a subset of Fig. 11 

and there are at most 3 line pairs. Furthermore these lines each contain two of the points 

fa, fp, fq. Comparing Fig. 11 and Fig. 1 we see that the configuration in Fig. 11 is 

contained in the configuration of Fig. 1. Thus the lines are a subset of the exceptional 

configuration in this case. 0 



D. Cooper / Topology und its Applications 69 (1996) 13-30 29 

Fig. 9. 

Fig. 10. 

Fig. 11. 

Proof of Corollary 1.4. The conclusion of Theorem 1.3 is that the cyclic classes are 

lattice points {ui} such that if Li = L(ai) then the lines Li satisfy the hypotheses of 

Proposition 5.1. The conclusion of Proposition 5.1 is that lines are configured in one of 

two ways. 
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The first case is that there is a lattice point a which is contained in each pair zI& 

with at most one exception, L1 say. We have that n(u, CQ) = &l for all i 3 2. Choose 

a lattice point b so that {a, b} is a basis of Z* then fai = b + 7Li.a for i > 2. Since the 

remaining line is parallel to a (-u) then (~1 = fu giving the conclusion. 

For the exceptional configuration, there are 3 points p, q, a E Z2 such that each line 

contains two of these points. Thus the directions of these lines are given by 

now L(Q) is parallel to cr since the pairing is skew-symmetric, so the result follows. 0 

Proof of Addendum 1.5. If there are more than 6 pairs of cyclic classes p*l then by 

Corollary 1.4 there is a basis 7, b of H such that if p # y*’ is a cyclic class then 

p = 6yn for some integer n. Then by Proposition 2.7 

A(y, S) = u.yb(y - l)‘(y + I)d + (67” - l)B(y, 8). 

If B(y, 6) = 0 then y = 0, fl everywhere on & which contradicts the hypothesis on 

p’ in the addendum. Thus we may suppose that B(y, 6) # 0 and so the right hand side 

contains a term bPy4 for some q 2 n and p 2 1 and therefore )nl < degree,[A(y, 6)]. q 

Remark. The fundamental group of the trefoil knot has A(X, p) = Xp’ + 1 and as 

remarked in example (1) there are infinitely many cyclic classes, this corresponds to the 

case B(X, p) = 0 in the above proof. 

Questions. Is there a universal bound on the number of primitive cyclic quotients of a 

knot like group satisfying the hypotheses of Addendum 1.5? In the case of the funda- 

mental group of a knot, there is a stringent condition placed on the A polynomial by the 

condition that the volume form is exact, see [l]. Does this condition give a universal 

bound for these groups? 
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