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COMBINATORIAL SCALAR CURVATURE

AND RIGIDITY OF BALL PACKINGS

Daryl Cooper and Igor Rivin

Introduction

Let M3 be a triangulated three-dimensional manifold. In this paper
we define a combinatorial analogue of scalar curvature for M3, and also a
combinatorial analogue of conformal deformation of the metric. We further
define a functional S on the combinatorial conformal deformation space,
show that S is concave, and show that critical points of S correspond pre-
cisely to metrics of constant combinatorial scalar curvature on M3. These
results are then applied to showing rigidity of ball packings with prescribed
combinatorics (the concepts are quite similar to Colin de Verdière’s work
on circle packing of surfaces [2]. See also [5] for a related variational argu-
ment).

The plan of the paper is as follows. In section 1 we define the class of
conformal simplices in E

3, and prove the necessary local versions of our
results. In section 3 we extend these techniques to conformal simplices in
H

3. In section 4 we study the deformation space of conformal simplices. In
section 5 we prove the results on scalar curvature alluded to above, and in
section 6 we discuss the ball-packing results.

1. Conformal simplices

Let T be a simplex in E
3. Denote the vertices of T by v1, . . . , v4, and

denote the edge joining vi and vj by eij . The length of eij shall be denoted
by lij , while the dihedral angle of eij shall be denoted by αij . The solid
angle at the vertex vi of T shall be denoted by Si. From the Gauss-Bonnet
formula we know that Si =

∑
j �=i αij − π.

We say that T is conformal if there are r1, . . . , r4 > 0 such that l(eij) =
ri+rj . Denote the space of all conformal simplices by CT – this is a topolog-
ical space, if we require that the map of C to R

4, where we map a conformal
sequence to the radii r1, . . . , r4 defining it, be a homeomorphism. The col-
lection of vectors (r1, . . . , r4) ∈ R

4 which correspond to geometric simplices
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is an open set. Denote this set by Cr
T . Since the set of all three-dimensional

Euclidean simplices is an open set in R
6 (as parametrized by edge-lengths,

for example), it is clear that the property of conformality is rather special.
In the sequel the simplex T and all of its geometric parameters will be

viewed as functions of r = (r1, r2, r3, r4) ∈ Cr
T . Let

S(r) =
4∑

i=1

Siri.

The next two results form the foundation of what follows.

Lemma 1.1.

dS =
4∑

i=1

Sidri.

Proof. Let us rewrite the formula for S using the relations lij = ri +rj and
Si =

∑
j �=i αij − π. A short computation shows that

S =
∑
i �=j

lijαij − π
4∑

i=1

ri,

and thus

dS =
∑
i �=j

αijdlij +
∑
i �=j

lijdαij − π
4∑

i=1

dri.

However, by the Euclidean case of the Schläfli differential formula, the
second sum above vanishes, and since lij = ri + rj , the claim of the lemma
follows. �
Note. The Schläfli differential formula (for a good exposition and proof,
see [1][Chapter 7, section 2.2.2]) states that as a simplex T (and thus any
polyhedron) varies smoothly in one of the spaces of constant curvature H

n,
S

n or E
n, its volume also varies smoothly, and furthermore

(1.1) Kd volT =
1

n − 1

∑
dim F=n−2

volF dαF ,

where K is the curvature of the space, and αF is the dihedral angle at the
(n−2)-dimensional face F. Note that when K = 0, the formula simply says
that the right-hand side vanishes.
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Lemma 1.2. The Hessian H of S is negative semi-definite – its null-space
is spanned by the vector r.

Proof. It is clear that r is in the null-space of the Hessian, since it corre-
sponds to a rescaling of the simplex. To show that all other eigenvalues
of H are negative it is enough to show that the diagonal entries of H
are negative, while the off-diagonal elements are positive. To see this, let
(v1, . . . , v4) be an eigenvector of H corresponding to a non-negative eigen-
value λ, and let wi = vi/ri. We want to show that wi = wj , for all i, j.
If not, assume without loss of generality that 0 < w1 = max{wi}. Then,
(λ − H11)v1 =

∑
i>1 H1ivi, so

λr1w1 − H11r1w1 =
∑
i>1

H1iriwi ≤
∑
i>1

H1iriw1,

and so λ ≤ 0, with equality if and only if all of the wi are equal.
Note now that Hij = ∂Si/∂rj . If r1, r2, r3 are kept fixed and r4 is in-

creased, v4 is moving along a trajectory h such that the angles between the
tangent vector to h and the edges e4i are equal (an easy consequence of the
law of cosines). Thus, the simplex T (r1, r2, r3, r4 + ε) (where ε > 0) strictly
contains T (r1, r2, r3, r4), while sharing its base. The desired inequalities
are then clear. �

As a preview of the argument to come in the next section, we prove the
following results.

Theorem 1.3. Fix the scale of the simplices under consideration, by set-
ting

(1.2) r1 + r2 + r3 + r4 = 1.

Then the regular simplex, for which ri = 1/4, is a critical point of the
function S, and furthermore, the regular simplex cannot be conformally
deformed while keeping the solid angles fixed.

Proof. By Lemma 1.2, the function S is strictly concave on the slice of Cr
T

determined by the equation 1.2. By the principle of Lagrange multipliers
and Lemma 1.1, S has a critical point subject to equation 1.2, precisely
when all of the solid angles are equal. By concavity, such a critical point
is isolated, proving the rigidity statement. �

A similar argument shows the following:
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Theorem 1.4. A conformal simplex cannot be deformed while keeping the
solid angles fixed; that is, the set CS1,S2,S3,S4 ⊂ C1 is discrete.

Proof. We have seen above that this is true for the regular simplex. To
show the theorem, we modify the function S as follows: Let Sa1,a2,a3,a4 =
S +

∑
airi. Now Sa1,a2,a3,a4 is still strictly concave subject to the condition

1.2, but its gradient is (S1 + a1, . . . , S4 + a4). Hence the critical points of
Sa1,...,a4 occurs when Si + ai = Sj + aj , for all i, j ≤ 4. This shows the
assertion of the theorem. �

2. Another coordinate system

While the radii ri are a natural set of coordinates for the space of confor-
mal simplices, it turns out that, in many ways, the curvatures of the spheres
are better. That is, instead of r1, . . . , r4, use κ1, . . . , κ4, where κiri = 1.
Using this parametrization embeds CT as an open set in R

4. Call this open
set Cκ

T .
Consider again the function S, as in Section 1. As a function of κ =

(κ1, . . . , κ4), S can be written as

(2.1) S =
4∑

i=1

Si/κi.

The following lemma is shown the same way as in Lemma 1.1.

Lemma 2.1.

dS = −
4∑

i=1

Si

κ2
i

dκi.

The following result follows from the proof of Lemma 1.2

Lemma 2.2. The Hessian H of S with respect to κ is negative semi-
definite – its null-space is spanned by the vector κ.

Proof. As before, it is clear that κ is in the null-space of H, since this
corresponds to rescaling the simplex. Now, differentiating Lemma 2.1, it is
immediate that

Hij =
∂Si

∂κj
=

∂Si

∂rj
r2
i r2

j ,

when i 	= j. In particular, Hij is positive for i 	= j, by the proof of Lemma
1.2, and the algebraic part of that proof now goes through unchanged to
complete the proof of Lemma 2.2. �
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3. Hyperbolic conformal simplices

In this section we consider conformal simplices (defined as in Section 1)
in hyperbolic 3-space H

3, rather than in E
3. Rather than repeating all of

the definitions, we will simply point out the differences. The main one of
these is in the definition of the function S. We will now define Sh as

(3.1) Sh(r) =
∑

Siri + 2 volT.

Then, Schläfli’s formula 1.1 immediately implies the following analogue of
Lemma 1.1:

Lemma 3.1.

dSh =
4∑

i=1

Sidri.

The following is the hyperbolic analogue of Lemma 1.2:

Lemma 3.2. The Hessian Hh of Sh is negative definite.

Proof. The proof of the lemma is similar to the proof of Lemma 1.2. The
first observation is that as r1, r2, r3 are kept fixed and r4 is increasing, v4

is moving along a trajectory h such that the angles between the tangent
vector to h and the edges e4i are equal (an easy computation using the
hyperbolic law of cosines). Thus, the simplex T (r1, r2, r3, r4 + ε) (ε >
0) strictly contains T (r1, r2, r3, r4), while sharing its base. We see that
Si(r1, r2, r3, r4 + ε) > Si(r1, r2, r3, r4), for i < 4, so

(3.2) ∂Si/∂rj > 0, i 	= j.

By containment, vol T (r1, r2, r3, r4 + ε) > vol T (r1, r2, r3, r4), and so, by
the Schläfli formula 1.1,

(3.3)
4∑

j=1

rj
∂Sj

∂ri
< 0, i = 1, . . . , 4.

Equations 3.2 and 3.3 imply that Hh is negative definite by Gershgorin’s
theorem (or the reader is welcome to modify the argument in the proof of
Lemma 1.2). �

4. The space of conformal simplices

In this section we will describe the space of Euclidean conformal sim-
plices CT introduced in section 1. The first observation is the following:
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Lemma 4.1. A simplex T is conformal if and only if there exists a unique
sphere sT which is tangent to all of the edges of T. Furthermore, the point
of tangency of sT with the edge eij is at distance ri from vi.

Proof. We will show this result in all dimensions greater than 1. The “if”
direction is trivial. We will show the “only if” direction by induction on
dimension. In dimension 2, where all triangles are conformal, the result is
obvious.

Now let T be a conformal simplex with radii ri. First note that there is
a unique sphere s tangent to e1j , j 	= 1. such that the points of tangency
are r1 away from v1. Consider the intersection of s with one of the faces of
T containing v1 – by induction we know that that the lower dimensional
sphere is tangent to all of the edges of that face. Since all edges of T belong
to a face containing v1, the lemma follows. �

Now, first normalize so that the radius of st is equal to 1, and consider
the pattern of circles formed on sT by the spheres of radii ri centered at
the vertices of T. These circles are mutually tangent. Conversely, any such
pattern of circles C determines a conformal simplex. Since for any two cir-
cle packings C1 and C2 of the sphere S

2 whose nerve is the simplex graph,
there is a conformal transformation sending C1 to C2 (this is elementary ge-
ometry, not requiring the Andreev-Thurston theorem; in particular, it also
works in any dimension), the set of such packings can be naturally identi-
fied with the group of conformal transformations of the sphere – PSL(2, C).
Since we are only interested in the congruence class of the conformal sim-
plex T, and are no interested in which way it is pointing, we must further
normalize by factoring out the rotation group SO(3). What we have just
determined is:

Theorem 4.2. The space of isometry classes of Euclidean conformal sim-
plices CT can be naturally identified with the hyperbolic space H

3. In par-
ticular, CT is homeomorphic to the ball B4 = H

3 × R.

Note. The discussion above applies just as well to hyperbolic conformal
simplices, except that since we can no longer normalize by fixing the radius
of the mid-sphere st, and so CH � H

3 × R
+, where CH is the deformation

space of hyperbolic conformal simplices.

It will be useful to know exactly how CT is parametrized by our coor-
dinates, in particular, what the boundary of CT (as a subset of R

4) looks
like. Note that while for any three positive real numbers r1, r2, and r3,
the sums r1 + r2, r1 + r3, and r2 + r3 satisfy the triangle inequality, not
every positive quadruple r = (r1, r2, r3, r4) defines a geometric conformal
simplex. Degeneracy occurs when r4 is large enough so that the sphere
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of radius r4 is large enough to be tangent to the other three spheres, yet
small enough that its center v4 lies in the plane defined by v1, v2, and v3.
This condition is defined by Soddy’s theorem – below we state a version
for arbitrary dimension, recently obtained1 by M. Kovalev [3].

Theorem 4.3. Let Si, i = 1, . . . , n + 2, be n + 2 pairwise tangent distinct
spheres in the n-dimensional Euclidean space En, such that Si has radius
Ri. Then

(4.1) n
n+2∑
i=1

K2
i =

(
n+2∑
i=1

Ki

)2

,

where Ki = 1/Ri, if Si does not contain the other spheres, otherwise Ki =
−1/Ri.

While the above theorem is generally quite useful, it is not necessary to
obtain the following observation:

Theorem 4.4. The space CT ⊂ R
4 is not convex.

Proof. Consider the section C1,1
T of CT defined by r1 = r2 = 1. We can

think of C1,1
T as a subset of a plane. As described above, one component

∂1 of the boundary of C1,1
T is defined by the condition that there are four

mutually-tangent circles in the plane, of radii 1, 1, r3, r4 – C1,1
T itself lies

above ∂1. Notice that as r4 approaches infinity, r3 also grows, but to a
finite limit, and so ∂1 is not convex. �
Note. Using Theorem 4.3, it can actually be shown that ∂1, as defined in
the proof above is strictly concave.

5. Conformal deformation space of singular Euclidean metrics

Consider a closed three-dimensional manifold M3, together with a topo-
logical triangulation T . If we equip all of the simplices of T with metrics,
so that they are isometric to geodesic simplices in E

3, and, furthermore,
these metrics are compatible (which is to say that all of the gluing maps
are Euclidean isometries), M3 acquires a metric, which is flat on the com-
plement of the 1-skeleton of T . We define the solid angle Sv of (M3, T ) at
a vertex v to be the sum of the solid angles of the simplices of T incident
to v at the vertex identified to v. The quantity 4π − Sv is a combinatorial
analogue of scalar curvature, in that it measures the difference in, on the

1According to the translator’s note in the English translation of Kovalev’s paper,
Theorem 4.3 was already known to Coxeter in the thirties.
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one hand, the growth rate of a small ball centered at v in M3 and, on the
other hand, the growth rate of the volume of an Euclidean ball of the same
radius.

Just as in the previous section we use the notation eij for the edge joining
adjacent vertices vi and vj of T , lij for the length of that edge, and αij for
the total cone angle at that edge.

We say that a singular Euclidean structure on (M3, T ) is conformal, if
there exists a function r : V (T ) → R

+, such that (denoting r(vi) by ri),
lij = ri + rj . Note that a conformal structure always exists, since we can
make all simplices regular and of the same size. The term “conformal”
can be justified – we think of a general conformal structure as obtained by
rescaling the “metric” of this regular one.

Let C ⊂ R
|V (T )| be the set of those r which correspond to all the simplices

of T being geometric and non-degenerate – it’s clear that C is an open set
in R

|V (T )|. As before, we will think of geometric invariants of (M3, T ) as
functions on C.

Let S =
∑

v∈V (T ) Svrv. It is clear that S =
∑

T∈T ST , where ST is the
function defined in section 1. It is then immediate that S is weakly concave
on C, and if in addition we restrict our attention to the slice C1 of C given
by the condition

(5.1)
∑

ri = 1,

then ST is strictly concave.
Now, the proof of Theorem 1.4 goes through unchanged to show

Theorem 5.1. A conformal structure on (M3, T ) cannot be deformed (ex-
cept by rescaling) while keeping the solid angles at the vertices of T fixed;
that is, the set of conformal structures with prescribed solid angles is a
discrete subset of C1.

Note. The proof actually shows something a bit stronger than Theorem 5.1
– we need only keep the differences between the solid angles fixed.

Remark 5.2. By the results in section 3 everything in this section, with the
exception of the preceding Note, translates essentially verbatim to the case
of hyperbolic conformal structures on M3 (those where the simplices of T
are hyperbolic confromal simplices).

6. Applications to ball packing

Consider the special case of the situation in the previous section where
the metric on (M, T ) is in fact non-singular Euclidean or hyperbolic in the
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interior (though the boundary may be polyhedral). The conformality of the
structure means that there are Euclidean (resp. hyperbolic) balls centered
at the vertices of T , such that the radius of the ball Bv centered at v is
equal to rv. Two of such balls Bv and Bw are tangent whenever v and w
share an edge, and Theorem 5.1 tells us:

Theorem 6.1. Let M3 be a Euclidean (hyperbolic) 3-manifold with poly-
hedral boundary. A ball packing whose nerve is a triangulation T of M is
cannot be deformed (except by rescaling in the Euclidean case) while keeping
the solid angles at the boundary of M fixed.

Note. If M is a closed manifold the clause following “while’ is vacuous. The
theorem says that the sets of structures corresponding to ball-packings are
discrete subsets of C1 and CH respectively.

A particularly simple example of a Euclidean manifold with boundary
is a polyhedron in R

n. Since one can always stereographically project the
sphere Sn onto Rn in such a way that n + 1 mutually tangent spheres go
to spheres all of radius one (as observed in [2]), the above theorem implies:

Theorem 6.2. The geometry of ball-packing of the sphere S3 whose nerve
is a triangulation T is rigid up to Möbius transformations.

7. Remarks and questions

The results above can be viewed as generalizing of the work of Colin
de Verdière [2] to higher dimensions. A rather difficult problem (perhaps
intractable in dimension greater than 3) is obtaining any sort of existence
results. It is known that no analogue of the results in two dimensions
(that any triangulation of a surface is the nerve a circle packing) exists
(see [4]), but no characterization is known. Indeed, it is not obvious to
the authors that there is an infinite family of ball-packings of S3. Nor is
it obvious that every hyperbolic manifold admits even one ball-packing. A
characterization of those Euclidean 3 manifolds (even those homeomorphic
to the torus T 3) which admit ball-packings is also somewhat elusive (the
results above indicate that only a countable family of metrics on T 3 can be
packed by balls).

The hypothesis in sections 5 and 6 requiring M3 to be a manifold is
clearly too strong – almost any semi-simplicial complex works just as well,
though there are some degenerate examples, like two simplices joined at
the vertices only. A necessary and sufficient condition is that if, for each
connected component of M we form a graph GT , whose vertices are top-
dimensional faces of T and such that two vertices are joined by an edge
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whenever the corresponding simplices share an edge, then GT must be
connected.

The non-convexity of C, as shown in section 4 shows that the current
methods do not suffice to give global uniqueness in Theorems 5.1 and 6.1.
On the other hand, the functional S turns out to be convex with respect to
the “curvature” coordinates Ki as used in Soddy’s theorem 4.3. This anal-
ysis shows that K has a unique maximum on C, though there may be other
critical points, since the analysis has to be performed on a hypersurface in
C [6].
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