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Abstract
This paper reviews the two variable polynomial invariant of knots de�nedusing representations of the fundamental group of the knot complement intoSL2C: The slopes of the sides of the Newton polygon of this polynomial areboundary slopes of incompressible surfaces in the knot complement. Thepolynomial also contains information about which surgeries are cyclic, andabout the shape of the cusp when the knot is hyperbolic. We prove thatat least some mutants have the same polynomial, and that most untwisteddoubles have non-trivial polynomial. We include several open questions.
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1 Introduction
In this paper we review the two-variable A-polynomial for a knot which was intro-duced in [3]. Many interesting features concerned with the geometry and topologyof the knot complement are reected in this polynomial. For example the boundaryslopes of some, or possibly all, of the incompressible embedded surfaces are codedby it. In the case that the knot is hyperbolic, information about the cusp shapeis in this polynomial. Under certain conditions one may deduce that a knot hasproperty P from this polynomial, and more generally which surgeries are cyclic.This polynomial seems to be unconnected with the various combinatorially de�nedinvariants descended from the Jones polynomial. In what follows we survey someknown results, discuss some new ones [(6.3),(7.1),(7.3),(8.2),(9.4), (9.6),(11.3)], andpose some open questions concerning this polynomial.
2 De�nition of the A-polynomial
We will give a de�nition of the A-polynomial slightly di�erent from that in [3].But �rst some background. Due to Thurston's pioneering work we know that aknot complement, X; has a hyperbolic structure if and only if it is not a satel-lite or a torus knot. Now a hyperbolic structure determines an action of �1X
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by isometries on hyperbolic 3-space H3: Actually this representation is only deter-mined up to conjugacy corresponding to a choice of a base point and frame in H3:Now Isom+H3 �= PSL2C = SL2C=� I thus the hyperbolic structure determines ahomomorphism �0 : �1X �! PSL2C:
It is know that this lifts to a representation, also denoted �0; into SL2C and thelifts are parameterized by H1(X;Z2) = Z2:Thurston showed that �0 can be deformed to give a one complex parameter fam-ily of non-abelian representations of �1X into SL2C all inequivalent up to conjugacy.However even non-hyperbolic knots may have such families of representations, forexample it is easy to see that torus knots do, and perhaps all knots do. Now arepresentation can be thought of as an assignment of matrices to each element ofa generating set of �1X and thus a point in C4n where n is the number of gener-ators. The relations in the group place restrictions on which points correspond torepresentations. In fact a relation requires that a certain product of matrices equalsthe identity and this in turn imposes four polynomial equations between the matrixentries. Thus the subset of C4n corresponding to representations is precisely the setof common zeroes of a �nite set of polynomials, and is thus an a�ne algebraic setwhich is called the representation variety of the knot complement. Actually this setis not usually a variety in the sense of algebraic geometry since it is not irreduciblebut typically contains various components of di�erent dimensions. In section 8 weshow that there are (hyperbolic) knots with arbitrarily large dimensional compo-nents.In particular every knot group abelianizes to Z and thus every representationof Z into SL2C induces a representation of the knot group. These are called theabelian representations of the knot. They carry no useful information. The abelianrepresentations form a component of the representation variety isomorphic to SL2C:Invariants of the representation variety are invariants of the knot. For exam-ple the number of components of the variety, the dimension of the variety, its(co)homology are all subtle invariants. In general the topology of this variety islikely to be complicated, however there is some extra structure we can exploit toproduce something more manageable. The longitude and meridian of the knot pro-vide a way of projecting the representation variety into C2 and the image is easierto understand. The image of a component of the representation variety is either asingle point, or else is a complex curve minus �nitely many points, see 10.1. In thelatter case, the curve is the zero set of some irreducible polynomial in two variableswhich is unique up to scaling. It turns out that this polynomial carries a lot ofinformation about the topology and geometry of the knot complement.Let M be a compact 3-manifold with boundary a torus T: Pick a basis �; � of�1T which we will refer to as the longitude and meridian. Consider the subset RU ofthe a�ne algebraic variety R = Hom(�1M;SL2C) having the property that for � inRU that �(�) and �(�) are upper triangular. This is an algebraic subset of R sinceone just adds equations stating that the bottom left entries in certain matrices arezero. Furthermore, since every representation can be conjugated to have this form,we are not losing any information. The reason for considering only this subset of therepresentation variety is that it makes it technically easier to de�ne the eigenvalue



map. There is a well-de�ned eigenvalue map
� � (�� � ��) : RU �! C2

given by taking the top left entries of �(�) and �(�) (which are thus eigenvalues of�(�) and �(�)): Thus the closure of the image �(C) of an algebraic component C ofRU is an algebraic subset of C2: In the case that �(C) is a curve, there is a polynomialFC , unique up to constant multiples, which de�nes this curve. The product over allcomponents of RU having this property of the FC is the A-polynomial. It is shownin [3] that the constant multiple may be chosen so that the coe�cients are integers.The additional requirement that there is no integer factor of the result means thatthe A-polynomial is de�ned up to sign.Thus, with �nitely many exceptions (see section 5), a pair of complex numbersL;M satisfy A(L;M) = 0 if and only if there is a representation � for which:
�(�) = � L �0 L�1

� �(�) = � M �0 M�1
� :

We have adopted a di�erent convention to [3] in that we count curves with multi-plicities here, so that the A-polynomial may have repeated factors. We often ignorethe abelian representations which, for the complement of a knot in a homologysphere, contributes a factor of L� 1:
3 Calculations
Calculations are ultimately based on using polynomial resultants, which we brieyreview. Let I be any ideal in C[x1; x2; � � � ; xn; y]; we call the set of common zeroes

V = f (X1; X2; � � � ; Xn; Y ) 2 Cn+1 : 8p 2 I p(X1; X2; � � � ; Xn; Y ) = 0 g
the variety de�ned by the ideal I: In algebraic geometry it is conventional to requirethat I be irreducible, but we will not do this. Consider coordinate projection

� : Cn+1 �! Cn
onto the �rst n coordinates. The image �V has closure (in the classical topologicalsense, and also in the Zariski topology) a subset �V of Cn which is a variety de�nedby some ideal J:In general �V contains points not in �V; for example consider the variety in C2
de�ned by xy = 1: The projection of this variety onto the �rst coordinate is C� 0:Since varieties are closed subsets of Euclidean space, in general a point of �V ��Vis the limit of the image of a sequence of points in V going to in�nity. In the casethat �V is a curve �V � �V consists of �nitely many points.In our context, V will typically be a (projection of a) representation variety,and this naturally leads to the consideration of sequences of representations whichare going to in�nity. Generally, such a sequence yields an incompressible surface inthe knot exterior, a situation discussed in section 5. Thus points of �V � �V giveincompressible surfaces.



Choose a set of generators for the ideal I; and for each pair form the resultantpolynomial. Assume that for each such pair that case (2) of the theorem 3.1 belowdoes not happen. Then this set of resultant polynomials generates the ideal J: Thisis based on the following well known property of resultants.
Theorem 3.1 [16],[13] If f; g are polynomials in variables x1; x2; � � � ; xn; y thenthe resultant polynomial h is obtained from f; g by eliminating y and is a polynomialin the variables x1; x2; � � � ; xn with the following property. If X1; X2; � � � ; Xn arecomplex numbers for which h(X1; X2; � � � ; Xn) = 0 then one of two possibilitieshappenscase 1 there is a complex number Y such that

f(X1; X2; � � � ; Xn; Y ) = 0 = g(X1; X2; � � � ; Xn; Y ):
case 2 the coe�cients of the highest power of y in both f and g simultaneouslyvanish for the specialization X1; X2; � � � ; Xn:
Suppose that case 2 does not happen, then the theorem implies that the projectionof the variety in Cn+1 where f; g both vanish has closure in Cn equal to the varietywhere h vanishes.To calculate the A-polynomial, one starts with a �nite presentation of the fun-damental group in which the meridian is one of the generators and assigns matricesto each of the generators. It is computationally convenient to use the observationin section 2 that one may conjugate so that the meridian is upper triangular. Thismakes one of the variables in the meridian matrix zero. The entries in the matri-ces are variables x1; x2; � � � ; xn;M where M is the upper left entry in the meridianmatrix. The relations give polynomials whose vanishing is equivalent to the require-ment that the matrices determine a representation. Thus these polynomials de�nethe representation variety. Now one adjoins a new variable L together with a newpolynomial relation: L� `(x1; x2; � � � ; xn) = 0:
The polynomial ` is the upper left entry in the matrix obtained by multiplying outthe matrices corresponding to the word in the generators that gives the longitude.Thus it is an eigenvalue of the longitude. One now views this enlarged set ofpolynomials as de�ning the representation variety as the subset V � Cn+2:The goal now is to �nd the image of V under coordinate projection into C2 givenby the coordinates L;M: More precisely one wants to �nd, for each component ofV; the irreducible polynomial in two variables L;M which de�nes the image curve(in the case that the image has complex dimension one). One uses resultants to dothis, repeatedly eliminating variables until only L;M remain.The calculations have been done for the knots from 31 up to 82 together with85; 91; 92; pretzel(�2; 3; 7); the untwisted double of the trefoil knot, and a few others.See [3]. For example

A31 = 1 + LM6 A41 = �M4 + L(M8 �M6 � 2M4 �M2 + 1)� L2M4:
Often the calculation of a resultant in the above process will take too long. Onemay try to manipulate the de�ning polynomials in an e�ort to shorten them and



sometimes this helps. For example, instead of setting a product of matrices equalto the identity and obtaining polynomial equations from this, it is usually better tomove half the matrices to the other side of the equals sign so that one is equating twowords of half the length. This will usually reduce the degree of the polynomials oneobtains by a factor of two in each variable. Also the order in which one eliminatesvariables can a�ect the computation time. It seems better to eliminate the variableswhich occur with lowest degree �rst.In view of the fact that the coe�cients in the corners of the Newton polygon(de�ned below) are �1; see (11.3), it su�ces to do these calculations mod 2 if thegoal is to �nd the Newton polygon and hence the boundary slopes.
4 Basic Properties
Standard questions about knot invariants are: when is the invariant non-trivial,how good is it at distinguishing knots, how does it behave under connect sum, whatrelations does it have to other invariants, what values can the invariant take. TheA-polynomial of the unknot is L� 1 due to the abelian representations. We call anA-polynomial non-trivial if it is distinct from that of the unknot.
Proposition 4.1 [3] The A polynomial of a hyperbolic knot, or a torus knot isnon-trivial.
Proposition 4.2 [3](1) For every knot A(L;M) = �A(L�1;M�1) up to powers of L and M:(2) If K is a knot in a homology sphere, then A(L;M) involves only even powersof M:(3) Reversing the orientation of K does not change A:(4) Reversing the orientation of the ambient manifold changes A(L;M) toA(L;M�1):

Proof. These statements are immediate consequences of the fact that (except�nitely often) zeroes of the A-polynomial are the eigenvalues of the longitude andmeridian for some representation. �
Proposition 4.3 If K1 and K2 are two knots and K1#K2 is their connect sumthen AK1#K2 is divisible by AK1AK2(L� 1)�1:

Proof. Let Xi be the exterior of Ki and X the exterior of K1#K2 then �1Xsurjects onto �1X1 thus a representation �1 of �1X1 pulls back to a representation� of �1X: Note that � restricts to an abelian representation on the subgroup �1X2of �1X: Let � be the eigenvalue map for K and �1 that for K1: Then �� = �1�1 andit follows that AK1 divides AK1#K2 :The reason for the (L � 1)�1 factor is that our argument glues an arbitraryrepresentation of one knot complement to an abelian representation of the other,and this method counts the abelian representations of the composite knot twice. �
The reef and granny knots have di�erent A-polynomials, and provide an examplewhere equality does not hold in the above. One can say rather more than this. Given



two representations �1; �2 of �1X1; �1X2 respectively there is a representation � of�1X which restricts to �i if and only if �1; �2 agree on the meridian. Thus if�(�i) = (Li;M) then �(�) = (L1L2;M): In particular, if both knots have no factorsof the A polynomial which do not involve L; then the number of factors of AK isat least the product of the number of factors of AK1 and AK2 :
Proposition 4.4 Suppose that in the complement of a knot K every closed in-compressible surface is a boundary parallel torus. Suppose that L;M are complexnumbers with LqMp = �1 and that AK(L;M) = 0: Suppose that either L 6= �1or M 6= �1: Then Dehn �lling K along �q�p produces a closed manifold with non-cyclic fundamental group.

Proof. If AK(L;M) = 0 then either there is a representation � with L;Mas eigenvalues or there is a closed incompressible surface which is not boundaryparallel, see section 5. In the �rst case, the element �q�p of �1(T ) has eigenvaluesLqMp = �1:Suppose that �(�q�p) is parabolic, then it commutes with both �(�) and �(�)and one of these is loxodromic which contradicts parabolicity. Hence �(�q�p) = �Idthus the representation, thought of as mapping into PSL2C; kills �q�p: Thus wehave a representation of the Dehn-�lled manifold. Typically this representationwill have non-cyclic image, for example if p 6= 0 and the eigenvalue M is not aroot of unity. In general one argues that there is another representation with thesame eigenvalues L;M and with non-cyclic image, see [9] or [2] proposition (2.1) fordetails. �In his thesis [19], Shanahan gives a necessary condition based on the New-ton polygon for a Dehn-�lling to give a manifold with cyclic fundamental group.Shanahan de�nes, for each rational direction, a width of the Newton polygon in thatdirection. For a cyclic �lling, this width must be minimal over all possible direc-tions. He also shows that there are at most three such minimal-width directions, inagreement with the cyclic surgery theorem [8].
In section (2.8) of [3] a somewhat stronger version of the following is incorrectlyasserted.
Corollary 4.5 Suppose that in the complement of a knot K every closed incom-pressible surface is a boundary parallel torus, then A(L; 1) = �(L+1)�(L� 1)�L :

Proof. By 4.4, we have that A(L; 1) = C(L+1)�(L�1)�L ; and (11.3) impliesthat C = �1: �
Question 4.6 Do the integers �; �;  have any topological signi�cance?
Question 4.7 Is the hypothesis on closed incompressible surfaces necessary in (4.4)and (4.5)?
Proposition 4.8 [3] A knot has property P if there is no closed incompressiblesurface in its exterior and the degree of the A-polynomial in M is more than twicethe degree in L:



For example either of the above su�ce to show that many knots (eg. the �gureeight knot) have property P. There is a relation between the A-polynomial and theAlexander polynomial but as it is somewhat technical we refer the reader to [3].However it is shown in [7] that if the Alexander polynomial of a knot is non-trivialthen the A-polynomial is non-trivial.
Question 4.9 Is there a crossing change formula for the A-polynomial? guess: no.
5 Boundary Slopes
In [3] it is shown that the slopes of edges of the Newton polygon of the A-polynomialare the boundary slopes of incompressible surfaces in the knot complement. We willnow give a brief review of this. If p(x; y) is a polynomial in two variables the Newtonpolygon of p is the convex hull of the �nite set of points in the plane:

Newt(p) = f (i; j) : the coefficient of xiyj in p(x; y) is not zero g:
The sides of the Newton polygon describes the geometry of the curve C de�nedby p = 0 when at least one of the coordinates is near zero or in�nity. To seethis, suppose that (X;Y ) is a point on C and that at least one of the variables,for example X, has large modulus. The polynomial p is a linear combination ofmonomials of the form xayb and the logarithm of the modulus of this monomialat (X;Y ) is �(a; b) = a log jXj + b log jY j: Since p(X;Y ) vanishes there cannot bea single monomial which is far larger in modulus than all the other monomials.One thinks of � as a linear map de�ned on R2 and in particular on the Newtonpolygon. The level sets of � are straight lines with slope � log jXj= log jY j: By theprevious discussion there is a side of Newt(p) which is nearly parallel to these lines.Similar considerations hold if X is very close to zero. From this one sees that toeach topological end of the curve C one may assign an edge e of Newt(p) consistingof those terms of p of approximately largest modulus for points on C near the givenend.

Let X be the exterior of a knot, T = @X; and R = Hom(�1X �! SL2C) therepresentation variety. A sequence �n in R is said to blow up if there is an element �in �1X such that trace(�n�)!1:We will assume that all these representations lieon a curve in R: In this situation, after passing to a subsequence, the representationsconverge in a certain sense to an action on a simplicial tree [9], for a more geometricproof see [1] and also [4]. There are two possibilities.
Type 1 There is an element � associated to the blow up in �1T such thattrace(�n�) ! 1: In this case there is a unique, up to taking inverses, primitiveelement � in �1T such that trace(�n�) remains bounded as n ! 1: Then � isparallel to the boundary components of a properly embedded, non-boundary parallelincompressible surface in X: Thus � is a boundary slope.
Type 2 For every � in �1T we have that trace(�n�) remains bounded. In thiscase there is a closed incompressible surface in X:



We briey explain the connection between sides of the Newton polygon andboundary slopes. Suppose that �n blows up and that both M;L!1: There is anedge, e; of Newt(A(L;M)) containing the terms of largest magnitude. If LaM b andLcMd both lie on e then LaM b � LcMd and soM b�dLa�c � 1: Thus �n(�b�d�a�c)has bounded eigenvalues and therefore trace as n ! 1 and thus �b�d�a�c is theboundary slope. The slope of this curve on T is b�da�c which equals the slope of e: Asimilar analysis applies if M;L! 0;1:In section 8 we show that type 2 degenerations can occur. We saw in section 3that �C is a curve minus �nitely many points. These missing points are due to blowups. To see this, consider a sequence �n such that ��n converges to a point (L0;M0)in �C� �C: The sequence �n must be going to in�nity in the representation varietyotherwise there would be an accumulation point which maps by � onto (L0;M0):It can be shown (see [4] corollary (2.1)) that this means the sequence is blowingup. The traces of the longitude and meridian remain bounded if and only if bothL0;M0 are non-zero. In this case we say that L0;M0 is a hole.
Question 5.1 Do holes exist? ie. is there a knot K in S3 and a point (L0;M0) onAK(L;M) = 0 with non-zero coordinates and a component C of RU such that �(C)contains a deleted neighborhood of (L0;M0) but not (L0;M0):

We will call the boundary slope of an incompressible surface strongly detectedif it appears in a type 1 degeneration. In all the known examples, every boundaryslope of a surface in the knot complement is strongly detected. The known examplescomprise two-bridge knots, see [18], plus a handful of other examples. The curve ofabelian representations, for example, produces the slope zero of a spanning surface.
Question 5.2 Is the slope of every incompressible surface in a knot complementstrongly detected?
Error. The main result, Theorem (1.5), claimed in [5] is wrong. In that paper it isclaimed that a certain boundary slope, 1/6, of a knot in a certain rational homologysphere is not (strongly) detected. The error is in the proof of (1.4) which assertsthe existence of such a slope. In fact there is no incompressible, @-incompressiblesurface with this slope in the given manifold. We thank Alan Lash for pointing thisout to us.

One might attempt to phrase a similar question for links. However the situationis more complicated here because the natural invariant of a link is not a polynomial,but an ideal. Consider a link of n components in the 3-sphere, and let X be itsexterior. The restriction of a representation � 2 R � Hom(�1X �! SL2C) to thegroup of one of the n torus boundary components �1Ti for 1 � i � n is an abelianrepresentation which gives rise to a pair of pairs of eigenvalues (Li;Mi)�1; as insection(2).These n pairs of pairs of eigenvalues determine 2n points in C2n: Thus oneobtains a 2n-valued map � : R �! C2n:
The image of a component of R has closure an a�ne algebraic set of complexdimension at most n: Thus there is an ideal I for each component of R, and the



product of these ideals over all components of R is the invariant. In the case n = 1one obtains a principal ideal and hence a polynomial unique up to scaling by anelement of C; and this is the A-polynomial. For a hyperbolic link, Thurston hasshown that the component corresponding to the complete representation has imageunder � of complex dimension n; thus this ideal is di�erent to the ideal for theunlink.The relation between boundary slopes in the link exterior and this ideal is morecomplicated. Some work has been done by Lash in his Ph.D. thesis [14]. Roughlyspeaking Lash shows that every boundary slope in the Whitehead link complement isstrongly detected. Floyd and Hatcher [10] used combinatorial methods to determineall incompressible surfaces in two-bridge link complements. First Lash extends theirprocedure to calculate the boundary slopes of these surfaces. Then the delicate partis to show that these are all strongly detected. The work is made easier by the factthat R is a hyper-surface in C3 and is thus de�ned by a single polynomial.
6 Cusp Polynomials
A hyperbolic knot has a single torus cusp and associated to this cusp is a complexnumber called the cusp constant. The fundamental group of the torus is representedas a parabolic subgroup and thus acts by Euclidean isometries on a horosphere.Di�erent choices of horospheres change the action by rescaling. Thus the quotientEuclidean torus is unique up to homothety. Identify the horosphere with C in sucha way that the holonomy of the meridian of the knot corresponds to a translationby 1 then the longitude corresponds to a translation by some complex number �and the torus is C=� where � is the lattice generated by 1 and �: The cusp constantis �; and the cusp polynomial is the minimum polynomial for � over Q:We can obtain information about the cusp constant from the A-polynomial forthe following reason. Geometric considerations show that there are representationsnear to the complete one such that the longitude and meridian are loxodromic with acommon axis. The ratio of their complex translation lengths approximates the cuspconstant. Thus a Taylor series expansion of the A-polynomial near the completerepresentation gives this ratio. We give some more details:
Lemma 6.1 Suppose that x; y are a basis for Z � Z and that �t is a sequence ofrepresentations of this group for which �t(x) and �t(y) are loxodromics convergingto the parabolic representation

x! � 1 10 1
� y ! � 1 �0 1

�

Then if � denotes complex translation length, we have limt!1 �(�ty)=�(�tx)! �:
Proof. After a one parameter family of conjugacies we may assume that

�tx = � � 10 ��1
� :



The �xed points of this are1 and (��1��)�1: Since x and y commute, y also �xes1 thus
�ty =

� � c0 ��1
� :

Now y must also �x the other �xed point of x which implies that c = (��1 ��)=(��1 � �): We must have that c ! � as � ! 1: Writing � = 1 + �� and� = 1+ �� this implies that ��=�� ! �: The complex translation length is given by�(�tx) = 2 log(�): So Taylor's theorem gives that
�(�ty)=�(�tx) = ��=�� + o(��; ��)

as required. �
Question 6.2 The complete hyperbolic structure on a hyperbolic knot determinesa unique holonomy representation into PSL2C and hence two representations intoSL2C; (see [3] for a proof that the representation lifts). The trace of the longitudeand meridian are �2 for the complete representation. One of these has trace ofthe meridian +2: Thus there are two cases depending on whether the trace of thelongitude is �2: Does this sign have any signi�cance?. (Does anyone know anexample when the longitude has trace +2?:)
Theorem 6.3 Suppose that K is a hyperbolic knot with holonomy �0 and cuspconstant �: Suppose that F (L;M) is the factor of A(L;M) corresponding to thecurve containing this representation. The terms of lowest total degree in

F �L� trace(�0�)2 ;M � trace(�0�)2
�

can be viewed as a polynomial in one variable, f(t): Then f(�) = 0:
Proof. We will discuss the case that both longitude and meridian have trace 2at the complete representation, the other case is similar.Write A(1 + ��; 1 + ��) = 0 as a sum of homogeneous polynomials in ��; �� andlet g(��; ��) be the homogeneous polynomial of lowest total degree, n; say. Thisamounts to taking the lowest order terms in the Taylor expansion around (1; 1):Then for ��; �� close to 0 we have that

��n� A(1 + ��; 1 + ��) = g(1; ��=��) + o(��; ��):
Since ��=�� ! � we see in the limit that g(1; �) = 0: �
Corollary 6.4 If K is a hyperbolic knot in S3 then the contribution to the A-polynomial from the component containing the complete structure is not of the formc:La � d:M b:

Proof. Putting M = 1 gives AK(L; 1) = �(L � 1)k1(L + 1)k2Lk3 ; by (4.5).Thus a = 1 and c = �d or a = 2 and c = d: In both cases the cusp polynomial hasonly real roots, but the cusp constant is not real, a contradiction. �



This can be used to show that no hyperbolic knot has the same A-polynomialas any torus knot. The idea is that the Seifert �bration of a torus knot meets thetorus boundary in a curve of slope pq: Now the �ber is central in the fundamentalgroup of the knot, and so any non-abelian representation of the group into SL2Cmust kill the �ber. See [3] (2.7) for more of a discussion.
7 Mutation
Most knot invariants are unchanged by mutation. We do not know in general ifthe A-polynomial is always unchanged by mutation. However in some cases it is.A consequence of Theorem (7.3) is that the polynomial of a hyperbolic knot and amutant of it always have at least one Z-irreducible factor in common.The relation between the A-polynomial and boundary slopes leads to a purelytopological corollary:
Corollary 7.1 A hyperbolic knot and a mutant of it always have at least onenonzero boundary slope in common.

We do not know a topological proof of this corollary, and the following is open:
Question 7.2 Do a knot and a mutant of it always have the same set of boundaryslopes?.
Now suppose thatK is a knot in S3 which contains an incompressible four puncturedsphere F meeting the knot in meridians. This is the situation in which we mayperform a mutation, de�ned below. Our main result may then be stated:
Theorem 7.3 Suppose that X is a component of the character variety of S3nN(K)with the property that there is at least one representation whose character lies on Xwhose restriction to �1(F ) is irreducible.Then the Z-irreducible factor of the A-polynomial corresponding to X appearsin both K and its mutant.

In particular, the component which contains the complete structure contains afaithful representation of �1(S3 nN(K)) so that there is always at least one factorin common between the knot and a mutant of it. This su�ces to deduce Corollary7.1. It is of course well known that all the skein invariants of a knot are preserved bymutation; however Theorem (7.3) leaves open the possibility that the A-polynomialcan distinguish mutants.In examples one can often check whether all components of the character varietysatisfy the hypothesis of Theorem (7.3). For example one �nds easily that theKinoshita-Teresaka knot cannot have an irreducible representation which restrictsto a reducible representation on the mutating sphere; so that this knot and itsmutant have identical polynomial. We remark in passing that this does not su�ceto show that these two knots have identical sets of boundary slopes, due to question(5.2).Consider the knot exterior X = Cl(S3 n N(K)); we can cut X open along Fand this yields two manifolds M1 and M2: We will refer to M1 as the inside of



the mutation sphere. We identify F with the unit sphere in such a way that thepunctures are equally spaced points on the equator. Thus they form two antipodalpairs. The identi�cation is chosen so that antipodal punctures are connected bythe knot inside the mutation sphere. The closed genus-2 surface F+ = @M1 isobtained by adding to F two annuli connecting paired punctures. The mappingclass group of the 4-punctured sphere has center Z2 � Z2 generated by half-turnsaround orthogonal axes. Choose a mapping-class � in the center and de�ne X�
to be the 3-manifold obtained by glueing M1 to M2 using �: Thus one obtains 4possible 3-manifolds, one of which is X and the others are the exteriors of the 3knots obtained by mutation of K: The involution � of F extends to an involution�+ of F+:We shall base all fundamental groups at one of the �xedpoints of � . Notice thatwe have a decomposition

�1(S3 nN(K)) �= �1(M1) ��1(F ) �1(M2)
Let � be a representation of �1(S3nN(K)) which satis�es the hypotheses of Theorem7.3. Observe that the property that a representation of a group is irreducible canbe characterized by the property that there is at least one commutator in the groupwhose trace is not 2 and it follows from this that all representations which aresu�ciently near to � also satisfy the hypotheses of the theorem. The key feature ofirreducible representations which we use is that such representations are determinedup to SL2C conjugacy by their character [9]. The following lemma is well known:
Lemma 7.4 The map �+ does not change the character of a representation of�1(F+).
Proof. Since characters are class functions, there is no necessity to be concernedwith basepoints. Then one easily sees using the arguments of for example [9] thatthe character is completely determined by its values on a (�nite set of) simple closedcurves. Since it is well known that �+ carries every such curve on F+ either to itselfor its inverse (up to conjugacy) and neither of these changes SL2C trace, the resultfollows. �
We may use this lemma to construct a representation of the mutant manifold asfollows. De�ne �mut on �1(M1) to be � j �(M1). Now we use the lemma to see that�� is conjugate to � when restricted to �1(F ); that is to say, there is an element Cin SL2C so that � and C:��:C�1 agree on �1(F ). (Observe that this proof showsthat actually they agree on �1(F+).) Then on the mutant manifold we de�ne therepresentation on the piece corresponding toM2 to be C:��:C�1. These agree on theamalgamating subgroup and yield a representation of the mutant knot complement.Our claim is that this construction does not change the curve of eigenvalues ona small open (classical) neighborhood of � so that since this neighborhood is Zariskidense in the relevant component of the eigenvalue variety, the eigenvalue varietiesare the same, whence they contribute the same polynomial to AK and AK(mut).This will complete the proof of Theorem 7.3. First notice that � and �mut agree onthe meridian. The claim will follow if we show that they agree on the longitude.However this follows since the longitude can clearly be written as a product of



elements which lie entirely either in �1(M1) or in �1(F+) and by construction �and �mut agree on these subgroups.
Question 7.5 Do mutants always have the same A-polynomial?.
8 High Dimensional Representation Varieties
For each integer n we give an example of hyperbolic knot in S3 for which there isa component of the representation variety of dimension bigger than n: The idea isthe following. One may obtain a non-hyperbolic knot with a representation varietyof large dimension by taking the connect sum of a large number of knots. Toobtain a hyperbolic knot, express this connect sum as a braid � such that removingboth � and the braid axis A from S3 gives a 2-cusp hyperbolic 3-manifold. NowThurston tells us that for p large the orbifold obtained by killing the p'th power ofthe meridian of the braid axis A is hyperbolic. Thus the pre-image ~� of � underthe p-fold cover of S3 branched over A is a knot (provided p is suitably chosen) inS3 with hyperbolic complement. It has a component of representations of the samedimension as the one we construct for �: We will now �ll in the details.
Lemma 8.1 Let K be a knot in S3 with hyperbolic complement, and Kn the connectsum of n copies of K: Then there is a component of Hom(�1(S3 �Kn); SL2C) ofdimension at least n:

Proof. The proof is by induction on n: For n = 1 sinceK is hyperbolic the resultfollows from Thurston's deformation argument. The process of taking a connectsum may be viewed as taking two knot complements and identifying an annulusneighborhood of the meridian in one knot complement with such an annulus inthe other. Let �n be a representation of �1(S3 � Kn) and � a representation of�1(S3 � K) such that they both send a generator � of the annulus to the sameelement A of SL2C: We may suppose that A is a loxodromic element with axis in H3: Let B be any other loxodromic with axis  thus B commutes with A: Nowlet �B = B�1�B be a conjugate representation, then �B(�) = �(�) = �n(�): Thusthere is a well de�ned representation �n+1 of
�1(S3 �Kn+1) = �1(S3 �Kn) �<�> �1(S3 �K)

which is given by �n on �1(S3 � Kn) and �B on �1(S3 � K). The freedom inchoosing B is given by trace(B) and so the complex dimension of the component ofthe representation variety containing �n+1 is at least 1 greater than that for �n: �
We will apply the lemma with K the �gure 8 knot. This knot is given as a braid(�1��12 )2 and the connect sum Kn is given as a braid by

� = �1��12 �1��12 �3��14 �3��14 � � ��2n�1��12n �2n�1��12n :
Let A be the axis of this braid then N = S3�(A[�) is a bundle over the circle with�ber a disc punctured 2n+1 times and monodromy �: By results contained in [15]this monodromy is pseudo-Anosov and so the bundle is hyperbolic. By Thurston



any su�ciently large Dehn �lling of one of the components yields a hyperbolicmanifold or orbifold with one cusp. Thus for p large there is a hyperbolic orbifoldM with cone angle 2�=p on the braid axis A and a cusp along �: Thus the p-foldcyclic cover of M branched over A
� : ~M �!M

gives a hyperbolic 3-manifold ~M which is topologically the result of removing thebraid �p = ��1(�) from S3: It is easy to see that this braid is alternating. In orderto arrange that �p is connected it su�ces to choose p coprime to 2n + 1: This isbecause the braid � is connected and so de�nes a permutation of the 2n+1 stringsof � which is transitive on the strings. Thus �p is transitive on strings if and onlyif p is coprime to 2n+ 1:By lemma 8.1 there is a component C of Hom(�1(S3�Kn); SL2C) of dimensionat least n: The branched covering � : S3 � �p �! S3 � � can be used to pull-backthese representations to �1(S3 �Kn):
Theorem 8.2 Given n there is an alternating hyperbolic knot Kn in S3 and acomponent, C; of Hom(�1(S3 �Kn); SL2C) with dimCC � n:
Corollary 8.3 There is a hyperbolic knot for which a type 2 degeneration occurs.

Proof. If the dimension of the space of representations mod conjugacy is at least2, the pre-image of some point in (L;M) space contains at least a curve. Going toin�nity on this curve gives a type 2 degeneration. �
9 Satellites
It is known that if K is a hyperbolic knot ([3](2.6)) or torus knot ([3](2.7)) thenthe A-polynomial is non-trivial. Here non-trivial should be interpreted as distinctfrom the A-polynomial for the unknot which is L�1 due to abelian representations.There is no known example of a non-trivial knot in S3 with trivial A-polynomial.The question of whether there is a non-trivial knot with trivial polynomial may beattacked using a torus decomposition of the knot complement into pieces. Thereis one piece with a single torus boundary component. It is either a torus knot orhyperbolic knot complement. One would like to take the representations of this pieceand extend them over the rest of the 3-manifold. The remaining pieces are compact3-manifolds with 2 torus boundary components. This leads to the following:
Question 9.1 Let M be a compact 3-manifold with boundary consisting of twoincompressible tori. When does a representation of the group of one torus extendto a representation of the 3-manifold ?. When is this representation non-trivial onthe other torus boundary?
Theorem 9.2 Let K be a satellite knot with a non-zero winding number n arounda knot K 0: Then AK has a factor F such that F (Ln;M) = AK0(L;Mn):



Proof. The exterior X of K is W [ X 0 where X 0 is the exterior of the knotK 0 and W has two torus boundary components. The winding number hypothesismeans that the inclusion of either boundary torus intoW induces an isomorphism onrational homology. This in turn means that every representation of one boundarytorus of W extends as an abelian representation of W into SL2C: Let �; � bethe longitude and meridian of K and �0; �0 those for K 0: Then if L;M;L0;M 0 arethe respective eigenvalues of an abelian representation of �1W then L = L0n andM 0 = Mn: Thus there is a factor F (L;M) of AK(L;M) such that F (L0n;M) =AK0(L0;Mn): �
Let W be a compact 3-manifold with boundary consisting of two tori T1; T2 andcall a representation � : �1T1 �! SL2C forbidden if it does not extend to a rep-resentation of �1W: The closure of the set of forbidden representations is an a�nealgebraic set. To see this, the representation variety of �1W is mapped by a poly-nomial map into the representation variety of �1T and so has image a constructibleset [16]. Thus the complement has closure an a�ne algebraic set. We will assumethat every torus in W is boundary parallel, so that W is either Seifert �bered orhyperbolic. If W is Seifert �bered then W is a cable space and the discussion inthe previous theorem applies. Thus we assume that W is hyperbolic. Thurston'sdeformation argument implies that we may deform the complete representation sothat on each boundary torus it is non-hyperbolic. Thus there is at least a curve ofrepresentations on each boundary torus which extends. There is an example [17]showing that the restriction of representations on the component containing thecomplete representation yields only a curve of representations of either boundarytorus. However it is not known if that example has other components of representa-tions which yield a set of complex dimension 2 of representations of either boundarytorus.

Question 9.3 If W is a compact 3-manifold with boundary consisting of two in-compressible tori, and �1 is the map de�ned in section (2) for one of the torusboundary components of W does �1(Hom(�1W;SL2C)) � (C � 0)2 have complexdimension 2 always?.
By a forbidden curve for (W;T1) we mean an a�ne algebraic curve in�1(Hom(�1T1; SL2C)) = (C � 0)2 of non-conjugate representations such that only�nitely many of them extend over �1W: Suppose that W is a solid torus with aknot K removed. If the winding number of K round the solid torus is zero, thenkilling the meridian of K in �1W gives Z and in particular this kills the longitudeof K: Let T1 be the torus boundary corresponding to K and M the eigenvalue ofthe meridian of K then M = �1 are forbidden curves for such examples. We callsuch examples trivial.

Lemma 9.4 Let W be the exterior of the Whitehead link and M;L eigenvalues ofthe meridian and longitude of one of the components of the Whitehead link. Let Tbe the boundary torus of W corresponding to this component of the Whitehead link.A representation of �1T extends over �1W unless it lies on one of the forbiddencurves: f M = 1;M = �1; L+M2 = 0 g:



Proof. Refer to Figure 1 where the labels next to the components of the White-head link should be interpreted as generators in the Wirtinger presentation, thusx; z are meridians of the two components. The fundamental group of W has pre-sentation < x; zj zxz�1x�1zx�1z�1x = xz�1x�1zx�1z�1xz > :
We may conjugate an irreducible representation so that

x 7! � p 10 p�1
� z 7! � M 0t M�1

� :
The relation is satis�ed if and only if a certain polynomial f(p;M; t) = 0: Thehighest power of t is t3 and it has coe�cient p2M2:The longitude of the component of the Whitehead link labelled z is� = z�1x�1zxz�1xzx�1 which has eigenvalue L and using resultants one deducesthat:
0 = L(p4+1)(M�1)(M+1)(L+M2)+p2(L+L2�2LM2+2L2M2�M4�L2M4):
Given L;M 6= 0 there is p 6= 0 making this expression zero, unless the �rst term iszero. Furthermore, given such p;M there is t such that f(p;M; t) = 0 because thecoe�cient of the highest power of t in f is p2M2 hence not zero. Thus there is arepresentation with the given L;M: �
Question 9.5 What are the possible forbidden curves for knots in solid tori?. Arethere any non-trivial examples other than the Whitehead link?

An interesting feature of this example is that the forbidden curve, L+M2 = 0;is given as the eigenvalue of ��1�2 is �1: Thus the simple closed curve ��1�2 on



T has a forbidden eigenvalue. Attempts to construct other examples of non-trivialforbidden curves have been unsuccessful.
Corollary 9.6 Suppose that K is a knot with A-polynomial having a factor otherthan L � 1 and M + L2: Then the untwisted double DK of K has a non-trivialA-polynomial.

Proof. Let X(K) be the exterior of K and W the Whitehead manifold usedabove. Let T � @W be a torus boundary component of the Whithead link exteriorcorresponding to a component,  say, of the Whitehead link. The exteriorX(DK) ofthe untwisted double of K is formed by glueing @X(K) to T so that the longitude(resp. meridian) of K goes to the meridian (resp. longitude) of : Let C be acomponent of RU (K) (de�ned in section (2)) such that �C is a curve other thanL = �1 or M + L2 = 0: Then except for �nitely many choices of � in C there isa representation �0 of �1(W ) such that �j�1(@X(K)) coincides with �0j�1(T ) underthe identi�cation of @X(K) with T used in forming X(DK): Thus we may glue therepresentations �; �0 to obtain an irreducible representation � of the �1(X(DK)):One checks that �� traces out a curve as � varies. �
10 The Volume Form
In [3] (4.5) it is shown that given a representation of � of �1M into SL2C thereis an associated volume, and this de�nes a function V : Hom(�1M;SL2C) �! R:Briey, the idea is that given a representation �; one chooses a nice �-equivariantmap of the universal cover ~M of M into H3: Use this map to pull-back the volumeform on H3 to a �1M -equivariant 3-form on ~M: This descends to a form on M andintegrating this over M gives the volume of the representation.Using a basis �; � for �1T let L;M be the eigenvalues of the longitude andmeridian ie �(�) = (L;M) and set

logM = `� + i�� logL = `� + i��:
Then de�ne a 1-form ! on (C � 0)2 by the formula ! = `�d�� � `�d��: This formis not exact since d! = d`� ^ d�� � d`� ^ d��: However pulling back to a curveC in Hom(�1M;SL2C) gives the form ��! which is exact since it equals dV: Thisformula is due to Hodgson, [12] see also [3]. Since ! is not exact on (C � 0)2 weobtain:
Corollary 10.1 [3] dimC(�(RU )) � 1:
This leads to an obstruction to a polynomial arising as the A-polynomial of a knot.Let  be a loop on the curve A = 0 which lies in the image of � then the integral of! around  must be zero. The polynomial of the �gure eight knot is:

A(L;M) = �2 +M4 +M�4 �M2 �M�2 � L� L�1:
Changing this slightly gives a di�erent polynomial:

f(L;M) = �2 +M6 +M�6 �M2 �M�2 � L� L�1:



We will use the volume form to show this is not the A-polynomial of any knot.However it does satisfy every other condition that we know of to be a knot polyno-mial.Let S be the a�ne curve in C2 where f vanishes and consider the coordinateprojection � : C2 �! C which sends (L;M) 7! M: Then �jS : S �! C is a 2-foldcover of the complex plane branched over a subset of the set where DMf vanishes.Given a path  in C which misses the image of this set, one may uniquely lift it toa path ~ in S given the start point. Certain paths lift to closed paths representingnon-zero homology classes. In this way a computer can calculateI
~ !:

Experimentation reveals that with  consisting of small loops linking the pointse5�=4 counterclockwise and e3�=4 clockwise together with two copies of a straightline connecting these two loops that the integral is approximately �0:956: Since thisis not zero f is not the A-polynomial of a knot. �
Question 10.2 Which a�ne curves C in (C� 0)2 satisfy the condition that ! isexact on C?:
11 Further Results
We mention two more results concerning the A-polynomial. The terms of the A-polynomial appearing along an edge e of its Newton polygon may be viewed as apolynomial called an edge polynomial fe(t): The variable t may be identi�ed withan eigenvalue of the loop � on the boundary torus which is the boundary slope ofan incompressible surface in the knot complement. Thus t = LqMp if the slope of� is p=q:
Theorem 11.1 [3],[4],[6] The edge polynomial fe(t) is a product

C:f1(t):f2(t) � � � fn(t)
where C is an integer and fi(t) is a cyclotomic polynomial. If ! is a p'th root ofunity which is a zero of f(t) then p divides the number of boundary componentsof every component of an incompressible surface associated to the action on a treearising from a degeneration corresponding to the edge e:
De�nition 11.2 A corner of a polynomial p(x; y) in two variables is a term ap-pearing in a corner of the Newton polygon of p:
One might view corners as analogous to the �rst and last term in a polynomial ina single variable, then the following says that in a certain sense the A-polynomialis monic.
Theorem 11.3 [6] The coe�cients of terms in the corners of the A-polynomial are�1:



Corollary 11.4 The constant C appearing in theorem (11.1) is �1:
Corollary 11.5 The edge polynomials of a 2-bridge knot are all �(t� 1)k(t+ 1)l:
Proof. It is shown in [11] that an incompressible surface in a 2-bridge knot has oneor two boundary components. The above theorems now give the result. �

It is shown in [1] that if a Conway sphere is strongly detected then the corre-sponding edge polynomial is C:(t2 + 1)k and again by the above C = �1:
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