The universal abelian cover of a link

D. COOPER

1. Intrecduction

Given a Seifert surface for a classical knot, there is assoc—
iated a linking form from which the first homology of the infinite
eyelic cover may be obtained. This article comnsiders classical
links of two components and shows how to obtain a pair of linking
forms from the analogue of a Seifert surface. From these the
first homology of the universal abelian (Z & 2Z) cover is
obtained, thus giving a practical method for calculating the
Alexander polynomial. Also cbtained is a new signature invariant
for links. The method generalises to links of any number of
components; however this is not done here.

In this paper, unless otherwise stated, a link will mean a
plecewise-linear embedding of two oriented circles in the three

sphere mw . The main results are {(2.1) and (2.4). The former

provides a square matrix presenting the first homology of the
cover obtained from the Hurewicz homomorphism of the link
complement. The latter gives a signature invariant, obtained
from this matrix, which vanishes for strongly slice links. On
the way some known results are obtained, namely Torres' conditions
on a link polynomial, and a result of Kawauchi and independently
Nakagawa on the (reduced) Alexander polynomial of a strongly
glice link.

The paper is organised as follows. Section 2 contains the
method of obtaining the matrix used In (2.1) and states the main
results. The reader not interested in the proofs need read no
further. Section 3 contains a proof of (2.1) and also a state-
ment of the Isotopy lemma (3.2). Tt concludes with a derivation
of the Torres conditions. Section 4 is devoted to proving (2.4) %
and the result on polynomials of slice links. P

The material presented here arcse out of a study of the
method Conway used in [C] to calculate potential functicm
proof of Comway's identities for the Alexander polynomial:

Reprinted from Brown and Thickstun nwmmmV“.rmaru il
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Figure 2. A loop near an intersection

single variable comes from manipulating Seifert mcnmwmmm.nm
[Col, see also Kauffman [KJ]. The present werk mnmvwmm cthis
@Hoom to be pushed through in the many variable nmmm.:

I wish to express my gratitude to Raymond ﬁHanHHmr msm ow.
Conway for their encouragement, and especially to Bill wﬂmem
This work will form a part of the author's Ph.D., thesis at War
University. s

2. The Algorithm

In this section it is shown how to obtain a wmww om matrice
from a link. These matrices are used to describe ﬁrm first
homology of the universal abelian cover of the Hwﬁw
the Alexander polynomial, and to define a new nim ¥ic

Let d%. and <w be compact pl mawmmmmw@wcﬂmmmmm in: §
and suppose <N is disjoint from 4% and ﬁrmﬂ

The components of < n 4%. mdm.om_wWﬁmm.
called cilasp (or C ), wibbon {or w ) and eircle
The 2-complex S = qx u 4% is called a 0|n93@Hma
sections are clasps, and R-

transversely.

complex if mww,wnnmﬁmmn

An orientation for such a 2-complex is mu.o Hmsﬂm
the component surfaces. The poundary Qm 5
ﬁw<x um<%u , and the singularity of m
V. nV_ .
X v .
Given a C-complex § , we mmmwsm.na..vww
o,z H(S) X m_.ﬁ__m_v_.w__v_
as follows. A l-cyele u in §°
ant walking along u meets £(8)7,
some component of <(5) . That is mﬂm
has a neighbourhood in 8 of the mOHB. hown:in E

two elements of mmnmv‘ Hmvwmmmﬂn.wmma v loops

be done) u and v and define

a(ful, vD

B{lul, [v1)

where 1k denmotes linking ucﬁvmﬂ.
obtained by lifting u off 8§
off <N

u is obtained by using the negative &wwwnwwOmeomeQmmspdw
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v . That u 1is a loop ensures this can be dome continuously

along e(8) where the only difficulty might arise.

Choose a basis .ﬁ4uu...u<mw of m_ﬁ<wv and a basis

1 of H.(V) and, identifying via inclusionm,

oy
ﬁ«m‘...u<m+:+ww of H, (8 . Let A and B

be the integral matrices of « andé B nmm@mnﬁwdmww using this
basis.

.ﬁ)ﬂm.*._ L ..uJ\W.TT.
extend to a basis

Suppose mow that L is a link of two oriented circles pl

embedded in mw called L and L ; we write L = (L ,LJ) .
b4 ¥ k ® ¥

A Crcomplex for L is a commected orented C-complex S such that
as =L . (Lemma {3.1} says that any pair of Seifert surfaces for
L may be deformed into a C- noEmeM for L). The Burewicz homo-

morphism ﬂ_ﬁmw - L) 7¢Am Am - L)

mm - 1 , the universal mvmwwmn cover, and H ANV

A-module structure where A = & ﬁxq%ux|_“%1~u is the integral
group-ring in two variables x and ¥y representing the deck
transformations induced by the meridians of H and H% .

induces a regular cover X of

has a natural

Define a {(g+h+k) x (g+h+k) matrix J over the field of
fractions of A by

= = = +
Jp s =0 l<r+ssgrh+k
= (v-1)"1 :
uﬂvﬁ = (y-1) rsg
HAM|C|~ mfmmwm.m+r
=] e+h+1 =1,

THEOREM 2.1. If 5 is commected, m_ﬁmv 18 presentad as a

fempdule by the matrim  J(xyd — AT - xB - %mHv . In particular
Hhi8 matric has entries in A

.J. Bailey has obtained a presentation for mwﬁmv by different
ns, see [BI.

The Alexander polynomial of 1 48

amﬂANu:r+ P.H |Nm| %mﬂv

QWOWHVWM 2.2,
..DAMu%u = %l_vlm Ax!:l
g =2 x mmﬁamﬁqxu 2 x mmncwﬁdwu .

The ‘Alexander polynomial as given in {(2.2) may vanish, in

et Y
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which case the determinant of a presentation mstrix for the
. . J
orsion submodule of m_AMV I call the raduced Alexandsr poly-

nomial written A (x,v) .

red

».Hwnw is mwﬁo:mwm slice if igs components bound disjoint
locally flat discs properly embedded in the 4-ball.

THEORFM 2.3. [Kaw] , [N].
Mx,y) =0 and Dﬂmmmx . Y)
Flx,v) e Zlx,v1 .

If L s strongly slice then

-1 -1
=F(x,y) ¥F(x ,v ) for some

Let Wy Wy be complex numbers of meodulus 1 and let M be
the hermiti tri W, o T ; T

. ian matrizx (1 + Eusmvms_swb AT - wb = w,B ).
Define QAE_ uEMu = gignature (M}

' nw 5 w,)

nullity (M)

THECREM 2.4. (%)

mmu # 0 and

o and n are ifwariants of L ﬁ&oes&w%

(1 + w Wb, # 1 (i1} H% L <s mwﬁaﬁmwm

1 2

slice then Dﬂmmﬁa_ .EMV 2 0 =3 QAE . v ..

Conway has suggested that it 1g more natural ﬁo ocan
H -

gt = @ yyB

H:Hm has the advantage of rembviig

signature AE Wy Ao

in place of the above.

Jump in ¢ at 1+ Mgm = U -at the expense of replac
connection with the Alexander polynomial by his poté

3. Homoclogy of the cover

First it is

2.1 is proved, and mHSmHH% m ums mmedmnwon
conditions is given.

\\\\\\

ma_sm 3. Pushing alo
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DEFINITION. Civen a surface V with boundary, and an arc

@ :[0,1]1+V with o(0) the only point on aV , a push along
o 1s an embedding P, * Vv > V defined by choosing two regular
“neighbourhoods of o , N, and ZM , meeting 3V regularly, with

.z_ c Int zN . Then ﬁgﬁm< |H5ﬁ Zmu uHmmwnwﬁ%mﬁm p, maps

.zN homeemorphically onto ZM leﬁ Z_ “mmmmwm.w.

“pair of Seifert surfaces <x and 4%

. 18 allowed only if zN n mcw =@ .

That is you are not allowed to push one

Given a-
for a link, a push aleng
‘an arc o in V Similarly
for a push in V_ .

¥y
boundary component through the other.

LEMMA 3.1. dny pair of Seifert surfaces for a link may be
" dsotoped keeping their boundaries fimed to give a C-complex.

First make the surfaces transverse, and then remove an

“Proof.
by pushing in along

ocmeEOmﬁ:om|<m circle component of dx n ¢%

to that circle. This transforms

an arc in ¥V going from 3V
; X X

‘the circle into a ribbon intersectiocn. Continue in this way

nril all circles have been removed; note that this process does
ot introduce new circles. Next remove the ribbon intersections,
in any order, by pushing along an arc from the boundary of cnme of
¥he surfaces to the ribbon intersection to replace it by two
iclasps. The resulting isctopy has moved the link, but only by
‘g7 ambient isoctopy.

[S0TOPY LEMMA 3.2.
complemes for a link and that v,
d V. is isotopic rel 8V_ to V! . Then S may be trans-

¥ ¥ ¥
by the following moves and their inverses:

Suppose S = <M U <%
18 teotopic rel gw

and S' = V' u V' are
X y

o V!
x

ormed tnto S
Isotope 8

and V_ , see Fig.4

Add a ribbon intersection between <x y

or V_ .
y

The idea of the proof is to make the isotopies of V

Push in along an arce in v,

and V
X y
2al level and examine the various possible critical points
L0 4% . Move (I2) is used to change the isotopies so
4t critical points lie on qu u mc% .
‘only 3 possibilities other than (I1) and (12) , and
¢ may be replaced by combinations of (I1) and (I2) . The

5.appear in [Col.

There are now essenti-
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Adding a ribbon
intersection

——

Figure & .

. It is well known that any two Seifert surfaces for a knot are
mmnwﬁmwmmﬁ under adding handles and isotopy. Combining this with
the above gives the equivalence relation between C-complexes with
tiie same boundary.

We turn now to homology. Let § bhe an oriented connected:!
m:noa@me_ then a neighbourhood of a clasp has a cross-section: mu
Hm.mwm. 5. Cut eacn clasp as shown in Fig., 6(i) to yield an: :
oriented surface V homotopy equivalent to § by inclusiéss

Let V__ x [~1, 11 te a bicollar of V__

with tihe +1] mwmm.Wm@
in Fig. 6(i), *x 1 m+.mum.

and let j be the inclusion V__ — V_

befine a nomomorphism i

__ by requiring the following mwwWWWWMwom.
commite e e

1

i (8) —eee——— i (8% - 53
{inci), ﬂ‘m . F ﬁwmnwv»
Jx . - .
O - o

Similarly define i

- .H+|
{(1ii) and (iv) respectively, The HHHWHSW MOHEm

o, 8t H (8) %

are defined by

QAmH sey) = Lk Aw|nm_ .mmw
8{e, s8,) = Lk AW|+w_ s 250
Suppose now that S is a C-complex for a link .b wm& let
p X~ mw - L be the universal abelian cover. Then wl_ﬁmv
separates £ 1inte cowpenents homeomorphic to mw -5. If S
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is connected, @lﬁﬁmv is connected, and so m_ﬁmv is generated,
as a A-meodule, by (1ifts of) m_ﬁmw -5) . By duality
m_ﬁmw -5) % m_nmv and by Mayer—Vietoris

(V. nv)

—~ A
H(8) TH (V) ® m_?wv & i (v g

where mb is reduced homology. Let € be the isomorphism

3
) B H (V) 8 »o:w 1V S H (S - 8)

Regarding muﬁmv as a A-module generated by m_nmw -8 a

complete set of relations is:

For o ¢ mmn<xv H++®m9v ®.1__0(0)

v.i__0(a)

For o e m_m<wu H++mmgv

A . . .
For o ¢ mom<x n <%v H++mmgv M.Hl+mmgu + y.i

LB ~xy.il B(a)

The proof of this is by a double application of the zm%mﬁm.
Vietoris sequence, see [ColJ. The only relations it is hard:to
visualise is the third set which is suggested by Fig. 7.

It is obvious that for a « m_m<wv
i 8(w) = H1+mmmu and H+Imm9v = H++mmﬂv

Similarly for o e m_ﬁq%v

i__8(a) = w+|®m9v and wi+mﬁgv w++®ﬁ9u

The relations may thus be rewritten

-1 . . . :
For o ¢ B (V) (y-1) @w.wl+u++|x.pr+:%..~
-1 . . . :
For o ¢ mMAG%V {x-1) AM%.H||+H++|x.Hl+|w..H
A . . . . i
For o ¢ MOﬁqx n <%u mx%.Hll.+H++.|N.Hl+|.M.

Using the basis of m_ﬁmu given in Section 2 vwo4mw Thed
2.1, 0 :

Hmmowmzm.w.AHOHﬂmmy.ﬂmmmeansmmwﬁcwwxaaﬁawﬁkuNwﬁw.
of twe eomponents satisiies sl :

) AMz,9) 2 A8k L,y )

(5) 8, ) 2 a0 . (0 - <t - n

)
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eve = denotes equal up to multiplication by * 'y’ , and 3

the linking number of the two components.

Torres' proof [Tor] made use of Fox's calculus. Here is a
proof using theorem 2.1; (i) is immediate. For (ii), using the
basis of m_ﬁmv given in Section 2, the linking matrices A,B

have the form

3

m~m<xv m_ﬁ<%v m_mmmv

B[ cC D E ¢ D E
=) p* F c B=iDs B g
B (e8) | H® J X 51 oct oL

Restrict the basis of E_Amv by requiring that the loops

: . . A C L
~representing the basis of mOﬁmmu are disjeint from those
T

‘representing the basis of m_ﬂ<%v . This gives G = J  , and
annﬁ (x-1)D xMImH
T
(x,1) = det |0 F-F ]

0 0 2(K-L) + (R-1) " |

det (xC-CY) det (F-F') det (s+M)
whaere M = K - L .

Now C is a Seifert matrix for the x—component sc
det Axa..o%u = Alexander polynomial for x—component. F is a
.ﬁ.mmwmmﬁw matrix for the y-compenent so det (F=F7) = 1 . Finally

it is shown below that det an.TZHV depends only on the linking
.mumber of the two components, and evaluating for a simple link

..qumm (1 ..N_iv\\ﬁlwv .

Added full twist

Figure B.
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Tt is well known that any knot may be changed into the unknot
by changing crossovers. Tiis is easily extended to: any link may
be changed into the simple link of the sawme linking number by
changing crossovers at which both strings belong to the same
component. Let L' be the link I with a single such crossover
changed. Choose a C—complex S for L ; then a C-compiex §'
for L' 1is obtained by adding a full twist toc § next to the
changed crossover, see Fig. 8. The matrizx M is the matrix of
the form (¢ —-8) restricted. Adding a twist to 5 changes o

and £ by adding to each a (symmetric) form v . Thus - {a - R)
is unchanged, and sc det ANK‘TKHV is unchanged, completing the

proof. U

The Torres conditions are known to characterise link poly-

‘nompials when the linking number of the two components is 0 or

1, see [B] , [L]. On the other hand, Hillman has shown in ﬁmw.
that they are not sufficient for linking number 6. :

4. Cobordism Invariance of Signature

First,linking forms are introduced for an RC- conmplex’ mum wwmb.
the Hmowoww lemma is used to show signature is a link anmﬂwmunm.;
Next is a well known result on the rank as a A-medule of mﬂmxv
This is used in the proofs of theorems 2.3 and 2.4 for wwvv 1
links. Finally the @HOOMm are extended to slice links.w:iThi
method of proof of 2.4 is similar to that used by ngmmﬁ
and Tristram in [T].

DEFINITION, 1let F be an RC—complex and chocse a ribbo
section r in F . Remove from F a small disc centre
mid point of ¢ and lying in the compoment surface of:1
which the mﬂmﬁowﬂnm om r are interior points, see mHm. Bk

each ribbon intersection, then § 1s said to be Q@ﬂgﬁmmm @m.
puncturing F . The linking forms a, B for § areigs: oasawm&
to T .

Figure 10
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Let F be an RC-complex and F. an RC-complex cbtained from

1
F by pushing in along an are o to convert some ribbon inter-

section r into two clasps. Let S bhe a C-complex obtained by
puncturing F , and m_ a C-complex cbtained by puncturing m_.

>

we may suppose m_ = 5N w_ . Chocse a neighbourheod U of =t
in § of the form shown in Fig. 10. Pick loops f{e,, ..., e}
1 n
representing a basis of m_Amv such that e misses U for
i >4 and e; n U 1is as shown in Fig. 10 for 1i = 4 . The
loops ﬁmm s aee _mww represent a basis of m_Am_v . The matrix
(1 + a_ .m_m:a_eN A+AT - wB - emmﬁ for S wusing this basis
is
Mo 0 9 b 0 |
0 0 .8 —w ¢ —0-—
1 1 -
_ _ g = E_ + Em
Q= 9 |EH@
Y b = (I w,) B
¢ wd *
| |
Q 0
!
I |
Let Q, be the matrix obtained from (Q by omitting the

1
first row and columm, so it is the correspending matrix for mH .

Then

i

Signature (Q) Signature Am_u

nullity (Q) = nullity Aomu + 1 .

By the remark after the Isotopy lemma, in order to complete
the proof of theorem 2.4(i) it suffices to calculate the effect
of:

and V

(11} Add a ribhon intersection between 4x ¥

(12) Push in along an arc

(0 ) Add a handle to V
X X

(H ) Add a handle to V
¥ ¥

The above calculation shows {(I2) has neo effect on signature.

If P is an hermitian matrix and

P v o}

— _

d_ = 4% u w
—o— w o

where w is a non-zero complex number, u a real,

+
column vector and v

v a complex

its conjugate transpose, then w_

The effect of (I1) , (Hx).

is anHmA.

an elementary enlargement of P .

and (Hy) on Q is an elementary enlargement with for
Il =l +u .0
(11} z‘, + EH @, or w, + ©,
- - N -
H: = |1 + . -
(Hx) w=| @ EN_ (1 swu
(Hy) w = _~ + w - wi - emv

for a link, provided w # 0 in the above, thus wﬂo< u

LEMMA 4.1. Let wn? ﬁv wmm?xwowﬁ%%ﬂg 7Le

M be the i-module awaaw 18 wmm first weacwamw o%
abelian cover. Then rank (M) =0 or |

Froof.
M=20.

If bﬁmxu y) # 0 then M is

Otherwise notice that bwm~ ﬁ

Choose a C—complex S for L
by removing one clasp so that

with Dw:,cuw_.
1

presentation matrix mbﬁaaz.
nullity (equal to rank M)

DEFINITION.

Let D
X

muw , aD v

is called a %@wwox Nexw

Suppose that L dis a ribbon Hwﬂwy.wmm.

and D
¥

may be cut along their self intersections.



cutting a
self-intersection

—— X
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Loop

Pushed in hera

Figure 12.

orientable surfaces V_ and V

with L = (3V_, 3V ) , see
x v X ¥

Fig. 11.° F=V_ U 4% is an R-complex for L ; push in to get a
X

C-complex § . Pick loops in § representing an ordered basis

of m_ﬁmv as follows:

(1) For each self intersection of UN plck a loop going around

_that intersection—cut~open in <N , see Fig. 11.

(2) Do the same for d% .
(3) For each ribbon intersection of F pick a loop in 5 going
through the two resulting clasps in 8 , see Fig. 12.
(4) Complete the basis by picking a further n loops.
The dimension of mHﬁmv is easily seen to be Zn + 1 . The

matrices A and B using this basis have the shape

|.|1H~+_. — I
O |
*

. %
s

e —
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Thus A(x, v} =0 , and by lemma 4.1

nullity Qﬁ+>q - xB - wmf =1,

Using the method of proof for 4.! we may assume the first row and
column of A and B are zero. Then it follows that

-1 -1

Dﬁmmﬁk s ¥) = Flx,y).F(x ,v )
for some TF(x,y} ¢ Z[x,y] , and also that
Breg(y s y) # 0= alu,0) =0 .
This proves 2.3 and 3.4(i) for L a ribbon link.
. . . 3
DEFINITION. L = AWM uﬁwv is a link in 87 and Upgeen s U

are unknots in mm separated from L and from each other by
2-apheres. b, 4 ...sb are bands, that is disjoint embeddings

1 n
I =X nli‘mw with meo x I) Gw and U»AH x Iy cL . The

link LF uﬁrw . hwv defined by

L' =L u cqw - cfmﬁ x 1} u cfﬁ ®x aL)

is said to be obtained from 1 by band-swmwning an unlink,

It is well known that a knot is slice if and only if it may be
made into a ribbon knot by band-summing an unlink, see for exXample
Tristram [T]. It follows that & link is strongly slice:if and
only if it may be made into a ribbon link by band-summingian’
unlink. ::un ..

be a link and L’

Let L =
e mﬁN uH%v

irom L by band-summing an unlink;

L and discs u_ s e uww

disjoint from each other and m&o&;.m.w:

= AH.Mw..;;_Hw abtdined
s R e Y e
.. Choose a C-complex S . for
mwmzuwdeﬁwmkﬁanmw..ﬁwt.hu;Hw P

transverse to the bands used in wmumrma&BHWWmMcw.
RC-complex 8 u UD, u Ub, form m.nlnoaﬂHWWr“mﬁ.

manner similar to that used for making the C-complex moﬁ.Mmevvod
link above. SRR e

Let. A,B be the linking matrices for ”w. .dmwmmpﬁmw.mmam
methods as in the proof for ribben links above we-obtaln linking

matrices >H s B, for §' of the shape
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0 C G 0 E 0

A = D * % B. = F b *
i 1

G * A 0 * B

The matrices C,D,E,F being square and of the same size,
It follows that

-1 -
Aa(x,y) = Fx,y) JFlx L,y ).A (x,9)
L L
where F(x,y) = det {xyC + D' - x§ - vyE')} .
Also WAEH. EMV 0= Qﬁ.ﬁe_. ENV = wwﬁe_ ugmu
wh.ne_; EMV.n 5hmsw »ENV

This completes the proof of 2.3 and 2.40i1) .
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