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We prove that any infinite Coxeter group has a finite index subgroup which surjects Z.
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1. Introduction

An infinite group G is called indicable (resp. virtually indicable) if G (resp. a subgroup
of finite index in G) admits a homomorphism onto Z. This is a powerful property for a
group to have; for example in the context of infinite fundamental groups of aspherical
3-manifolds it remains one of the outstanding open questions to prove such groups
are virtually indicable. To continue on the 3-manifold theme, it follows from the work
of Hempel [8] that any closed orientable hyperbolic 3-manifold which admits an
orientation-reversing involution has fundamental group that is virtually indicable. In
particular if a closed hyperbolic 3-manifold M is a finite cover of a hyperbolic 3-
orbifold obtained as the quotient of H3 by a group generated by reflections (i.e., a
hyperbolic Coxeter group) then nt(M) is virtually indicable.

The purpose of this note is to prove the following theorem, posed as a question by
P. De La Harpe and A. Valette ([5]) in connection with Property T (see below):

Theorem 1.1. Let W be an infinite Coxeter group, then W is virtually indicable.

Our methods are motivated from those of low-dimensional topology, in particular the
work in [9] and [10] which deal with "separability properties" of 3-manifold groups.

This theorem has several consequences which seem independently interesting. For
example it implies:

Corollary 1.2. Let W be an infinite Coxeter group and K any subgroup of finite index
in W. Then K is not isomorphic to an irreducible lattice in a semisimple Lie group of K-
rank > 2.
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The corollary follows directly from Theorem 1.1, since the work of Margulis (see
[12]) shows that any irreducible lattice in such a Lie group is necessarily arithmetic and
any normal subgroup is either finite or finite index. In fact one can say a little more.

Corollary 1.3. Let Wbe an infinite Coxeter group and K any subgroup of finite index
in W. Then Kdoes not satisfy Kazhdan's Property T.

This was first proved in [3] in a little more generality. This corollary also implies that
an infinite Coxeter group cannot be a uniform lattice in the rank 1 Lie groups,
Sp(n, 1) or F4. Thus the only R-rank 1 Lie groups for which an infinite Coxeter group
can be a lattice are SO(n, 1) or SU(n, 1). Mike Davis has pointed out to us that it
follows from work of his [4] that an infinite Coxeter group cannot be an irreducible
lattice in SU(n, 1).

We now outline our method of proof deferring definitions to the body of the text.
Let W be the Coxeter group. Coxeter groups act on a canonical simply connected
complex, the Coxeter complex, and the strategy is to show that this complex contains a
subcomplex which behaves like a totally geodesic codimension one submanifold in
hyperbolic space. This is accomplished in two steps.

The Coxeter complex is equipped with certain codimension one subcomplexes called
walls. The first step is to show that one can find some wall so that its stabiliser, H, is
a separable subgroup of infinite index in W. Then, motivated by standard techniques
coming from 3-manifolds, (for example see [9]) we show that one can pass to a
subgroup of finite index in W, so that the quotient of the Coxeter complex by this
subgroup contains an embedded nonseparating codimension one subcomplex, namely
the image of the chosen wall. This gives a map onto the integers.

Although not used in the proof, it seems to be of some interest that we may also
show:

Theorem 1.4. Let K be any special subgroup of the Coxeter group W. Then K is
separable in W.

Finally we remark that it would seem likely (as in the case of reflection groups acting
on hyperbolic 3-space) that an infinite Coxeter group that is not virtually abelian has
a finite index subgroup that maps onto a free group of rank at least two. We leave this
as a question for the present.

We have been informed by Mike Davis that Theorem 1.1 has been proved
independently and by different methods by Constantin Gonciulea and will appear in
his Ohio State University Ph.D Thesis, see also [6].

2. Coxeter groups and the Coxeter complex

We recall some salient points about Coxeter groups and the associated Coxeter
Complex that we shall require, see [2] for details.
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2.1.

Definition 2.1. Suppose that W is a group and S is a set of generators all of order
2. Then {W, S) is a Coxeter system if W admits a presentation:

(S | (s • 0""10 = 1)

where m(s, f) is the order of s • t and there is one relation for each pair s, t with
m(s, t) < co.

We often abuse this notation and refer to W as a Coxeter group. Many equivalent
definitions exist, see [2]. The Coxeter diagram of this presentation consists of a
vertex for each element of S together with an edge connecting distinct vertices s, t
whenever m(s, t) / 2 and the edge is labelled by m(s, t). Since the generators have
order 2, this means that if two vertices are not connected by an edge then the
generators corresponding to the vertices commute. Thus, if the diagram is not
connected, the Coxeter group is the direct sum of the subgroups given by the
connected components. A Coxeter group {W, S) is called reducible if its diagram is
not connected.

2.2. Next we recall the construction of the Coxeter complex £ of the Coxeter
system (W, S). Firstly, by a special subgroup of W we mean a subgroup {S') of W where
S' c S. There is a simplicial complex £ = £(W, S) specified as follows (see [2, p. 33]).
If n = |5| and k < n, the fe-simplices of £ are the left-cosets of special subgroups
generated by n — 1 — k distinct elements of S. Thus if S' is a subset containing n — 1 - k
elements of S and w is any element of W then w • (S1) is a /c-simplex. The incidence
relation between simplices corresponds to the containment relation between cosets. In
particular, the (n — 1)-simplices correspond to the elements of W and the dual 1-
skeleton of £ is a modified Cayley graph of W with generating set S. The modification
consists of identifying the edge labelled s with the edge labelled s~' for each generator
s e S. The action of W on the left cosets by left multiplication induces a simplicial
action of W on Z. A top dimensional simplex, C, of £ is called a chamber. Observe
that the only element of W which maps some chamber to itself is the identity (see [2,
Chapter III, §4 Lemma 6]).

Following [2, (Chapter III, §4)], we see that given any pair of adjacent chambers C
and C, there is a unique automorphism s of the Coxeter complex of order 2 which
exchanges C and C while fixing C D C, and this gives rise to a wall (denoted by H,) in
the Coxeter complex, namely H, = Fix(s). Conversely, any reflection in W gives rise
to a unique wall. Note that walls separate the Coxeter complex. (See [2], for example,
Chapter III §3 Corollary 3.)

Fix the following notation: let g e W, then Cw(g) denotes the centralizer of g
in W.
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Lemma 2.2. stab(7is) = Cw(s).

Proof. Let y be an element of stab(7is). Then y(C D C) is some codimension-1 face
in Hs and is therefore fixed by s. It follows that s and y~l • s • y are both automorphisms
of order two fixing CnC pointwise and exchanging yC with yC'. Thus y~l • s -y • s"1

maps C to itself and therefore is the identity element of W. (See [2, Chapter III, §4
Lemma 6].)

Conversely, if y e Cw(s), then y~l • s • y • s"1 is the identity. It follows that
s(yHs) = yTi3. As s fixes a unique wall, we deduce that yHs = Hs, and y e stab(W,) as
was required. •

2.3. In the remainder of this section we fix attention on the case where all 2-
generator special subgroups are finite dihedral as this will be important in what follows.
That this suffices for our application will be proven in Lemma 3.6.

Note in particular that this restriction implies that every codimension-2 simplex of
the Coxeter complex Z is the face of only finitely many codimension-1 simplices.

Consider the dual 2-complex X of £. This has a vertex for each chamber and two
vertices are connected by an edge if the corresponding chambers are adjacent along a
codimension-1 face. Chambers have a finite number, \S\, of codimension one faces, so
this gives a 1-complex with each vertex of degree \S\. Each edge in this complex
corresponds to a coset of a special subgroup (s) for some reflection s e S. There is a 2-
cell for each codimension-2 simplex in E; these correspond to cosets of special
subgroups of the form (r, s) which in the case at hand case are finite dihedral groups,
so that each such 2-cell has a finite number of sides given by the cardinality of this
dihedral group.

The complex X is closely related to another complex Y which we now describe.
The presentation of the Coxeter system (W, S) gives rise, in the usual way, to a
2-dimensional CW-complex with fundamental group W. Thus Y has one vertex,
and an edge for each element of the generating set S. It has one 2-cell for each of
the relations in the Coxeter presentation. Thus there are 2-cells for the relation
of the form s2 = 1 and for relations of the form (s • t ) ^ 0 = 1 when m(s, t) < oo.
Then W acts freely on the universal cover, Y of Y. Now X is obtained as a
quotient of Y by collapsing to a 1-cell each 2-cell covering a relation of the form
s2 = 1. To be more specific, each edge, E, of Y has a 2-cell, A, attached by a
degree-2 map. This is covered in Y by a 2-sphere, B, and the covering transform-
ation corresponding to E acts as the antipodal map on B. Now B consists of two
lifts of E and two lifts of A. Retract B to one of the lifts of E. Doing this for
every edge of Y gives X. In particular, since Y is finite, it follows that Y and X
are both locally finite. Since Y is simply connected, and AT is a retract of Y, it also
follows that X is simply connected.

There is an obvious action of W on the complex X. The quotient is a complex of
groups in the sense of Haefliger (see [7]) and the underlying group of this complex of
groups is n°tb(X/W) 9* W. In fact, using that W is a linear group, we will pass to a
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torsion-free subgroup of finite index in W and this subgroup acts freely on X. This
means we may deal with topological fundamental group in place of 7t°rb.

There is an obvious embedding X ->• £ which is W-equivariant and so that the
action of W on £ restricts to the above action of W on X.

3. Proofs

We recall that a subgroup H of a group G is said to be separable in G, if given any
element g e G not lying in H, there is a subgroup K of finite index in G with the
property that H < K and g does not lie in K. A group for which the trivial subgroup is
separable is said to be residually finite. If a group has separable subgroups this often
proves to be a powerful tool in questions concerning the homology of subgroups of
finite index, see [9] and [10] for details.

3.1. Proving subgroups are separable seems to be rather difficult in general. The
starting point of this work is the following result of [10]. For the convenience of the
reader we include a proof:

Theorem 3.1. [10]. Let <x:G->Gbean automorphism of a residually finite group
G. Then Fix(jx) is separable in G.

Proof. Choose an element y not lying in Fix(a). This means that the element
y"' • <*(y) ' s n o t the identity element, so that there is a homomorphism (p : G -> F onto
a finite group F, so that </>(y~' • a(y)) is not the identity element. Define a
homomorphism

<D: G-> FxF

by <&(#) = (<p(g), <t>(<x(g))). Note that <D maps Fix(a) into the diagonal subgroup
of F x F, however by construction, <D(y) = (<Ky)> <Ka(y))) does not lie in the
diagonal subgroup, so that 4 > " ' ( ( / , / ) | / e f ) is the required subgroup of finite
index. •

It is a theorem of Tits (see [2, Theorem C, p. 55]) that Coxeter groups have a
faithful representation into some GL(n, R), in particular this means Coxeter
groups are linear, and hence are residually finite. Noting that the centralizer of a
generator, s, of W is the fixed set of the automorphism W -*• W given by
g -> s • g • s, Theorem 3.1 shows:

Corollary 3.2. Cw(s) is a separable subgroup of W.

This together with Lemma 2.2 then implies,

Corollary 3.3. In the notation above stabH, is a separable subgroup of W.
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3.2. Recall that a subgroup K < W is a special subgroup if it is generated by some
subset of S. The following is not used in the proof of the main theorem, but is of some
interest:

Theorem 3.4. Let K be any special subgroup of the Coxeter group W. Then K is
separable in W.

Proof. By reordering the elements of S — {s,, . . . ,sn), we may suppose that K is
generated by {sk+l,..., sn}. We form the amalgamated free product group G = W *K W
and use the notation WL, WR for the two subgroups of G which are the copies of W.

Our first claim is that G is a Coxeter group. To this end, we note that by
standard properties of free products with amalgamations, G has a presentation
with generators

" C — \ s l • • • • ' sk > s l > • • • > sk > sk+\ » • • • i snl

and relations of the form

(sf • s/-)m(iJ° = 1 1 < i,j < k

(sR . sRy"M = j 1 <,",;< fc

(s(
L • s;)

mM = 1 l < i < f c fc+ 1 <J < n

(sf • sy)
mM = 1 1 < i < k k+l<j<n.

If s, t are generators in SG define mG(s, t) to be the appropriate m(i,j) from the above
presentation, or else oo. There is a homomorphism G -*• W defined on the generators
by forgetting the L- R labels. Using this, and properties of the normal form for words
in an amalgamated free product, we see that given two elements s, t in SG then the
order of s • t is precisely mG(s, t).

Since G is a Coxeter group, as remarked above, it is residually finite. Moreover there
is an automorphism T : G -> G of order two, which comes by using the obvious map
to exchange WL and WR. Again, using properties of the normal form, we see that the
fixed subgroup of T is precisely the amalgamating subgroup, a group which is
isomorphic to K. Then Theorem 3.1 shows that K is separable in G. It follows that K
is separable in WL = W. •

3.3. We now collect some facts that will be used in the proof of Theorem 1.1.

Lemma 3.5. Let G be an infinite group generated by a finite set S. Then either G
has a free abelian subgroup of finite index or for some g in S the centralizer C(g) has
infinite index in G.
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Proof. If every centraliser had finite index, then by intersecting all these
centralisers, we discover that the centre of G has finite index in G; whence since G is
infinite, there is a free abelian subgroup of finite index. •

Lemma 3.6. Suppose that W is a Coxeter group for which the product of reflections
s • t has infinite order. Then either W is virtually Z or there is a surjection n : W -> W,
where W is an infinite Coxeter group and n(s) • n(f) has finite order.

Proof. Adding the relation (s • t)7 = 1 gives a Coxeter group W which is a quotient
of W. If W is infinite we are finished. There is a Coxeter diagram for W obtained
from that for W by adding an extra edge labelled 7 between the vertices for s and t. If
this Coxeter diagram of W is connected then the classification of connected Coxeter
diagrams of finite Coxeter groups ([2, p. 32]) shows that the diagram is the standard
diagram for Z?7, the dihedral group of order 14. In this case W has a diagram with 2
vertices and one edge labelled oo, and is therefore the infinite dihedral group. Thus W
is virtually Z.

Otherwise, if the Coxeter diagram for W is not connected then W is a direct sum
of Coxeter groups, which by assumption are all finite. We may apply the above
argument to the component containing the vertices labelled s, t. •

The main theorem is true for groups which are virtually Z. Thus to prove the
main Theorem 1.1, by repeated applications of Lemma 3.6, it suffices to deal with
the case that W is an infinite Coxeter group all of whose two generator special
subgroups are finite dihedral groups. Moreover, by Lemma 3.5, either W is
virtually abelian and the Theorem 1.1 follows, or else there is some reflection, s,
with Cw(s) of infinite index in W. Fix such an element s, and denote the unique
associated wall by H.

Recall the complex X described in Section 2.3. Then s acts on X and its fixed set is
a 1-dimensional subcomplex X, — XHTi of X. The structure of X, in X is as follows:

Since s does not fix any chamber of Z, it follows that s does not fix any vertex of
X. If a point, x, on an edge, E, of X is fixed by s then s exchanges the two chambers
corresponding to the vertices of E and thus maps E linearly to itself swapping the
endpoints. We claim that if A is any 2-cell of X which contains E then s maps A to
itself, and therefore s\A is a linear involution. The 2-cell A arises from a relation of the
form (s- t)k and corresponds to a face (s, t) of the fixed codimension-1 simplex in E.
One checks from the form of the relation (see Figure 1) that the action of s is as
reflection in the associated 2fc-gon.

Thus X, consists of some points in the middle of edges of X together with a diameter
of each 2-cell of X adjacent to such an edge. In particular, it follows that each
component of X, is uniquely determined by a single edge, e, in that component. One
just "exponentiates" the 1-dimensional subspace determined by e. This means extend e
linearly, and on encountering an edge, E, of X continue into each cell of X adjacent
to E using a ray orthogonal to E.
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FIGURE 1

Lemma 3.7. XJCw(s) is a compact subcomplex ofX/Cw(s).

Proof. Note first that the argument of 2.2 shows that if g e W maps any top
dimensional face of "H to some other face of H, then it lies in stab(W). Now "L/W is an
(n — l)-simplex where n — card(S) thus there is a finite number, at most n, of stab(W)-
orbits of top dimensional face of H.

From this it follows that 7i/Cw{s) has a finite number of top dimensional simplices.
Moreover, H is the fixed set of a reflection so that we see from [2, Chapter III §4
Lemma 6 et seq.] that H is the union of its top dimensional faces, in particular,
7i/Cw(s) is compact.

Thus X,/Cw(s) is a closed subcomplex of the compact set H./Cw(s), which implies
the result. •

Proof of Theorem 1.1. Our methods are motivated by considerations coming from
low-dimensional topology. We call a subcomplex, K, 2-sided in a complex X if K has a
neighbourhood K x [ - l , l ] with K identified with KxO. The proof proceeds by
finding a (torsion-free) subgroup, F(3), of finite index in W such that X/F(y) contains a
compact, non-separating, 2-sided, 1-subcomplex K. There is a map of X/F*^ to the
circle given by mapping the complement of K x [— 1, 1] to a point and mapping
K x [-1, 1] on to [-1, 1] which is then wrapped round the circle. Thus //'(AVF01, Z) is
non-zero. Hence F(3) maps onto Z.

Let q : X -*• X/Cw(s). By Lemma 3.7, q(Xs) is a compact subcomplex of X/Cw(s).
We claim that if two translates q(w • Xs) and q{W • Xs) meet in an edge in X/Cw(s),
then they actually coincide. The reason is that this implies that there is an element
c e Cw(s) so that in X, w • Xs meets c • w • X, in an edge which in turn means that the
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walls w • Hs and c • w' H, meet in a codimension 1 simplex of the Coxeter complex;
however two walls which meet in this way coincide. Thus w • Xs coincides with
c • w' • X,, so that q(w • Xs) — q(w' • Xs). This happens if and only if w and w' determine
the same double coset of Cw(s).

Since X is locally finite, it follows that X/Cw{s) is also locally finite. It now follows
that there are only finitely many distinct sets q{w • Xs) which can intersect q(Xs).

To see this, note that any such intersection occurs in the 2-cells of X and appears
as an arc of q{X,) crossing an arc of q(w • Xs). This intersection is transverse since the
above paragraph shows the intersection cannot be along an edge. The same argument
shows that arcs of q(w • Xs) cannot coincide for different w's. Each edge e of q(Xs) lies
in some 2-cell and these arguments show that only a finite number of sets of the form
q(w • Xs) can cross e. The set q(Xs) is compact, so that it has only a finite number of
edges, proving the claim.

Let {w,,...,wp} be a set of representatives. By Corollary 3.2, we may find a
subgroup F of finite index in W which contains Cw(s) and excludes all the elements
{w,,..., wp}. It follows that F contains no element in any of the double cosets
Cw(s)WiCw(s). Thus when F acts on X, Xs meets none of its translates.

Since W is a linear group, there is a normal torsion-free subgroup, T < W, of finite
index in W. Then the quotient map pT : X -> X/T is a covering space since the
stabiliser in W of a cell of X is finite. It will also be useful to consider the subgroup
W+, of index 2 in W which is the kernel of the map W -*• Z2 given by sending each
generator in S to 1 e Z2.

Set F' = F n T n W+ and K = Cw(s) D F'.

Lemma 3.8. The complex XJK is 2-sided in X/F'.

Proof. The complex 2./W2 is the double of an n — 1 simplex; label the two chambers
+ and - ; this gives rise to a labelling of the chambers in £ which is preserved by the
action of the group W+, hence by the group F'. This gives a way to assign a local
product neighbourhood to a wall for which the positive and negative sides are
preserved by the group F'.

This two-sidedness in the Coxeter complex then implies a two-sidedness for walls in
X which is preserved by F' and the lemma follows. D

If XJK is not connected, we replace it by one of its connected components. If
XJK does not separate X/F1 we are finished. If XJK does separate X/F', we argue as
follows. Firstly note that if we set A± to be the components of the complement of
XJK, then neither of the inclusion maps

i± : n}(XJK) - K ^ nx{A±)

can surject, for application of the reflection s shows that a surjection on one side
implies a surjection on both sides, so that K = F' would have finite index in W,
contradicting our choice of s. Choose elements a± which lie in nx(A±) - i±(K).
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By standard arguments, K is separable inside F, so that we may find a subgroup
F" of finite index in F which contains K and excludes both the elements a±.
Intersecting F" with all its W conjugates defines a regular covering r: X/F^ -*• X/F.
Although it is not in general true that K < F(3), we claim that a connected component
of the preimage of r~\XJK) c XjF^ does not separate X/F°\

To see this we argue as follows: Define a bipartite graph F = F(F<3)) in XjF^ by
taking a vertex for each connected component of r~\A±) and connect two vertices by
one edge for each component of r~\X,/K) along which they are adjacent. The covering
is connected, whence so is F. Moreover, the intermediate covering X/F' -*• X/F' has
the property that if we form the analogous complex F(F"), this has at least one vertex
on each side with valence at least 2. This guarantees that the graph F of the regular
covering corresponding to F*3) has no vertex of valence one, so that it cannot be a tree.
The obvious retraction mapping p : X/F3) -*• F exhibits the required homology in the
subgroup F3). •

Remarks. Continuing the theme of the introduction where we discussed properties
of Coxeter groups similar to those of lattices in Lie groups. For Coxeter groups which
are not virtually abelian, the existence of a map to Z suggests that in some sense this
class of Coxeter groups cannot have the Congruence Subgroup Property (cf. [1]).

It is also worth noting that from a more algebraic perspective our proof shows (in
the terminology of Scott) that there is a subgroup H of finite index in Cw(s), with the
pair (W, H) having at least two ends. Given this observation the final part of the proof
could be bypassed by using the somewhat more general:

Theorem 3.9. [11]. Let G be an almost finitely presented group. Then G splits as an
HNN extension over some finitely presented subgroup if and only if it has a separable
subgroup H with e(G, H)>2.
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