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ABSTRACT. A short proof is given to show that a link in the 3-sphere and any
link related to it by genus 2 mutation have the same Alexander polynomial.
This verifies a deduction from the solution to the Melvin-Morton conjecture.
The proof here extends to show that the link signatures are likewise the same
and that these results extend to links in a homology 3-sphere.

1. INTRODUCTION

Suppose L is an oriented link in a genus 2 handlebody H that is contained, in
some arbitrary (complicated) way, in S3. Let p be the involution of H depicted
abstractly in Figure 1 as a w-rotation about the axis shown. The pair of links
L and pL is said to be related by a genus 2 mutation. The first purpose of this
note is to prove, by means of long established techniques of classical knot theory,
that L and pL always have the same Alexander polynomial. As described briefly
below, this actual result for knots can also be deduced from the recent solution to
a conjecture, of P. M. Melvin and H. R. Morton, that posed a problem in the realm
of Vassiliev invariants. It is impressive that this simple result, readily expressible
in the language of the classical knot theory that predates the Jones polynomial,
should have emerged from the technicalities of Vassiliev invariants. It may be the
first such new result to arrive in this way. However, the method of proof used here
depends only on elementary homology theory and so the result extends at once
to give a new result for links in a homology 3-sphere. Furthermore, as the proof
produces Seifert matrices for L and pL, it is simple to deduce at the same time
that these links have the same classical signature [6] and the same w-signatures
[9]. These latter results are thus inspired by, but not directly deducible from, the
resolution of the Melvin-Morton conjecture. It is interesting to note that it has
been shown in [2] and [8] that the signature of a knot is not a Vassiliev invariant.

-----

FIGURE 1
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The Melvin-Morton conjecture postulated a remarkable correlation between a
sequence of Jones polynomials of a classical knot and the Alexander polynomial
of that knot. The conjecture was proved by D. Bar-Natan and S. Garoufalidis
in [1]. The background to the conjecture appears in [4] and heuristic evidence in
its favour (using a path integral approach) was given by L. Rozansky [7]. The
conjecture asserted that it was possible to calculate, with a specific formula quoted
in [1], each coefficient in the Alexander polynomial of a knot from knowledge of
all the coefficients in all the coloured Jones polynomials of the knot (with zero
framing). These coloured Jones polynomials can be regarded as generalisations
of the Jones polynomial invariant to a framed knot equipped with a sequence of
irreducible representations of SU(2). Alternatively, interpreting the Jones invariant
by means of the skein theory of the Kauffman bracket, the coloured invariants are
the evaluations of the knot decorated by Chebyshev polynomials in the generator
of the skein of the solid torus. The proof given in [1] is an intricate and skillful
deployment of Vassiliev invariants analysed by means of arguments with chord
diagrams and weight systems. Indeed, it was in the world of these ideas that the
Melvin-Morton conjecture was originally conceived.

A consequence of the solution to the Melvin-Morton conjecture is, of course,
that if two knots have the whole sequence of coloured Jones polynomials identical,
then their Alexander polynomials are also the same. What examples are there of
pairs of knots that satisfy this hypothesis? Any two knots related by a classical
mutation (in the sense of J. H. Conway) give a first example. It is a standard result
that two such knots have the same Alexander polynomial; a proof can be given
using Conway’s skein theory which immediately shows that the knots also have the
same HOMFLY polynomial. However a second example is provided by knots K
and pK that are related by a genus 2 mutation as described above. They have
all coloured Jones invariants the same. For that, an easy proof is simply to note
that the Kauffman bracket skein, of a genus 2 handlebody H, has a base consisting
of certain sets of disjoint, closed, unoriented, framed curves in H, each such set
being invariant under p. (This idea has also been employed by A. Kawauchi in [3].)
It thus follows from the above mentioned results that K and pK have the same
Alexander polynomial.

It is fairly easy to see that if two knots differ by a classical Conway mutation,
then they differ by a sequence of at most two of the genus 2 mutations described
above. In particular, in the famous example of two eleven crossing knots, the
Conway knot and the Kinoshita-Terasaka knot, the two knots are related by a
single genus 2 mutation. This implies that a satellite of one of these knots is related
by genus 2 mutation to the same satellite of the other. Computer calculations of
Morton and H. B. Short (see [5]) have shown that a certain cabling of the Conway
knot has its HOMFLY polynomial different from that of the same cabling of the
Kinoshita-Terasaka knot. Thus a genus 2 mutation can indeed change a knot and,
furthermore, a genus 2 mutation is not always just a sequence of classical mutations,
for the latter preserve HOMFLY polynomials. In addition, this example makes it
hard to see how skein theory could be used to show that K and pK always have the
same Conway polynomial. They do have the same Conway polynomial, as that is
but a normalisation of the Alexander polynomial. However, Conway skein theory
is very similar to HOMFLY skein theory.
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2. PRELIMINARY RESULTS
There follow here four elementary results that will be used later.

Lemma 1. Suppose that H is a handlebody of genus g contained in S® and let X
be the closure of S — H. The inclusion maps of OH into H and X induce an
isomorphism Hy(0H) — Hi(H) @ H1(X).

Proof. The Mayer-Vietoris exact homology sequence applied to S? expressed as
H U X provides this isomorphism at once. O

This result implies that each of Hy(H) and Hy(X) is a copy of Z9. Furthermore,
letting i : 9H — X be the inclusion map, it follows that the kernel of i, : Hy(0H) —
H,(X) is a direct summand of H;(0H) and that this kernel maps isomorphically
onto Hq(H).

Lemma 2. Suppose that a collection of disjoint, oriented, simple, closed curves,
contained in the boundary of an orientable 3-manifold M, represents the zero el-
ement of Hi(M). Then those curves form the boundary of some oriented surface
properly embedded in M.

This is a standard result that can, for example, be proved by means of transver-
sality.

Now let H be a genus 2 handlebody and p be the homeomorphism of H to itself
given by rotation through 7 about the axis shown in Figure 1. In that diagram H
is shown in a standard position in R3. If H is embedded in some other way, then
it is the conjugate, by the embedding, of this rotation that is to be called p.

Lemma 3. If C is any simple closed curve in OH, then C is isotopic to a curve C
that is fized, as a set, by p. If C separates OH, then p preserves the orientation of
C, otherwise p reverses the orientation of C.

Proof. Tt is a classical result that p|0H represents the only non-trivial element in
the centre of the mapping class group of 0H. In fact, any orientation preserving
automorphism ¢ of OH is isotopic to some ¢ that commutes with p. If C separates
OH there is some such ¢ for which ¢C is equal to a “standard curve” Cj that
separates and is preserved, together with its orientation, by p. Then 5*16'1 is
isotopic to C' and is preserved by p. Similar remarks apply when C' does not
separate. O

Suppose that, with entries from some commutative ring, M is an r X r matrix and
N is an s x s matrix and that M, , = N1 1. Let M@ N be the (r4+s—1)x (r+s—1)
matrix that has M for its ﬁrst,l" x r terms, N for its final s X s terms and zeros
elsewhere (see Figure 2). Let M and N be obtained by deleting the last row and
column from M and the first row and column from V.

ver- (i)

FIGURE 2
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Lemma 4. With the above notation,

det(M @1 N) = det M det N + det M det N — M, , det M det N.
Proof. This follows at once by expanding the determinant by the " row. O

Note that it follows at once from this result that det(M & N) = det(M &1 N7),
where N7 denotes the transpose of the matrix N.

3. SEIFERT MATRICES

It will now be shown that there are closely related Seifert matrices for a link L
and any genus 2 mutation of L.

Theorem 5. Let L be an oriented link contained in a genus 2 handlebody H which
is contained in S3. Let p: H — H be the involution that, when restricted to OH,
represents the non-trivial element of the centre of the mapping class group of OH.
Then L and pL have Seifert matrices of the form

A BT d A BT

B c¢) " \B c)
respectively, where the blocks are matrices of integers, A and C are square and B
is of the form (0 | b) for some single column b.

Proof. Let X be the closure of S* — H. Suppose that Fy is, for the link L in
S3, a Seifert surface which intersects OH transversely. The element of Hy(OH)
represented by Fy N OH can, of course, be expressed as nla], for some n € Z with
n > 0, where [a] is an indivisible element of H1(0H). Now, n[a] belongs to the
kernel of 4, : Hi(0H) — Hy(X) where i is the inclusion map. By Lemma 1 this
implies that, for n # 0, [a] belongs to the kernel of i, (as this kernel is a direct
summand). Thus [a] maps by inclusion to an element of a base of Hy(H). This
indivisible element [a] can be represented by an essential oriented simple closed
curve a contained in 0H. By Lemma 2, applied to H less a neighbourhood of
L, there is a connected orientable surface F; contained in H such that 0Fj is the
union of L and n parallel copies of . Again by Lemma 2, o bounds a connected
orientable surface F3 embedded in X. Let F = F; U nFy where nFs is n parallel
copies of Fy. This F' is the required Seifert surface for L.

A base for H;(F') is represented by the oriented curves {vy1,72,...,7%} and
{01,02,...,0s—1} where the {~;} lie in F; and the {J;} represent a base of Hy(nFs).
Let 8 be an oriented closed curve contained in H such that [«] and [§] form a
base for Hi(H). After making changes to the {v;} by elementary moves, it can
be assumed that, in Hy(H), [v] = ms[a] for i = 1,2,...,r — 1 with m; € Z, and
[vr] = mr[a] + n.[B]. With respect to this base, the Seifert matrix is of the form

A BT

B C
Aij = k(v ,v4), Cij = 1k(6;,9;) and B;; = 1k(d; ,7;). Here v; and 6; are
curves obtained by pushing v; and §; off F' in a “negative” direction that is deter-
mined by the orientation of F' (which is induced by that of L) and the orientation
of $3. Observe that 1k(5; ,v,) = m,1k(5; , @) +n,1k(d; , 3). However, 1k(5; ,a) =0
because a bounds a surface, a copy of F3, that is disjoint from ;. Hence B; ; =0
for j < r and B;, = n,1k(d; , 5). This gives a Seifert matrix for L of the required
form.

>, where the blocks, defined in terms of linking numbers, are given by
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Now consider pL. By Lemma 3 it may be assumed that p fixes the simple closed
curve « as a set, but that p reverses the orientation of . Thus p maps n parallel
copies of oriented « to the same set of curves but reverses the order of the com-
ponents and reverses orientations. Hence a Seifert surface F), for pL consists of
pF1 Un(—F;) where the minus sign denotes a change in orientation. For a base of
H,(F),) take the classes represented by {py1, py2, ..., pyr}U{=01, —62,..., —ds_1}.
Now, consideration of the intersection of ;" with a surface spanning ~; shows
that 1k(v; ,v;) = lk(py; ,pvj). Because the “negative” direction for pushing a
curve off —Fy is opposite to that for F3, calculation with respect to F, gives
Ik(—6;,—6;) = C;,;. Also, k(6; ,pB) = —1k(d; ,5) because p, = —1 on Hy(H).
Thus n.lk(—6; ,p8) = Bi,. Thus the Seifert matrix for pL with respect to the

T
above base for Hq(F),) is indeed (g gT> O

Note that it is known that the Conway knot and the Kinoshita-Terasaka knot,
which are related by a genus 2 mutation, do not have the same knot genus. Thus,
in the above proof it is necessary to take some care when correlating the Seifert
surfaces of L and pL.

Corollary 6. The links L and pL have the same Conway-normalised Alexander
polynomial.

Proof. If S is a Seifert matrix for L, then the Conway-normalised Alexander poly-

nomial is det(¢t'/2S —¢~1/257). Suppose S = (g BCT) where B = (0 | b). Then

the Alexander polynomial for L is the determinant of
24 =12 AT (41/2 _=1/2)BT
< (t/2 —=Y/2\B 120 — t_l/QCT>

The Alexander polynomial of pL is, by the theorem, the determinant of an identi-
cal matrix except that the bottom right block is transposed to become (t'/2C7 —
t=1/2C)). However, because B = (0 | b), these determinants are the same, by Lemma
4 (substituting (t'/2A —t=Y/2A7) for M). |

Corollary 7. Let L be an oriented link contained in a genus 2 handlebody H that
is contained in a homology 3-sphere M?>. Then L and pL have the same Alezander
polynomials.

Proof. This follows by exactly the same method as that given for S3 as only ho-
mology techniques were used. O

Corollary 8. Let L be an oriented link contained in a genus 2 handlebody H that
is contained in a homology 3-sphere M?>. Then L and pL have all the same w-
stgnatures.

Proof. If S is a Seifert matrix of L and w is a complex number of unit modu-
lus, w # 1, then the w-signature of L is the signature of the Hermitian matrix
(1 -w)S+ (1 —w)S™. Take for S the matrix (g BC> and let S, be (g gT)
where B = (0 | b). Now, any Hermitian matrix has real eigenvalues, and its signa-
ture is the difference between the number of positive eigenvalues and the number
of negative eigenvalues. The matrix (1 — w)S, + (1 —w)S] can be obtained from
(1 —w)S+ (1 —w)S™ by transposing the block consisting of the final s rows and



314 D. COOPER AND W. B. R. LICKORISH

columns. Thus these two matrices have, by Lemma 4, the same characteristic
polynomial; hence they have the same eigenvalues and the same signature. O
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