TRIANGULATING 3-MANIFOLDS USING 5 VERTEX LINK TYPES

D. COOPER and W. P. THURSTON

(Received 5 June 1985)

WE SHOW that a closed orientable 3-manifold can be triangulated in a simple way locally. There are 5 triangulations of S^2 with the property that every such manifold has a triangulation in which the link of each vertex is one of these 5 link types. This triangulation is obtained from a paving of the manifold by cubes. In this paving, the order of every edge is 3, 4 or 5. Denoting the union of the edges of order 3 (respectively 5) by \sum_3 (respectively \sum_5), then \sum_3 and \sum_5 are disjoint 1-submanifolds. It is known that for any dimension *n*, there is a finite set of link types such that every *n*-manifold has a triangulation in which the link of each vertex is in this set. However for n > 3, no such set is known.

If K is a simplicial complex, we denote the barycentric subdivision of K by K', and the suspension of K by $\sum K$. The set J consists of the 5 triangulations of S² listed below:

- (T1) ∂ (octahedron)
- (T2) $[\partial(3-\text{simplex})]'$
- (T3) $[\sum \partial(\text{triangle})]'$
- (T4) $[\sum \partial(\text{square})]' = [\partial(\text{octahedron})]'$
- (T5) $[\sum \partial(\text{pentagon})]'$

Each of these triangulations is obtained by doubling along the boundary a suitable triangulation of a 2-disc. These triangulations of the 2-disc are shown in Fig. 1.

THEOREM 1. Let M be a closed, orientable 3-manifold. Then M can be triangulated so that the link of every vertex is in J.

A paving of a manifold by cubes is like a triangulation, but made out of *n*-dimensional cubes instead of simplexes. In particular two cubes either meet in a face (which is a cube of lower dimension) or are disjoint. Suppose a 3-manifold M is paved by cubes, and e is an edge of a 3-cube C, then the order of e is card $\{C': C' \text{ is a 3-cube in } M \text{ and } e \subset C'\}$.

THEOREM 2. Let M be a closed, orientable 3-manifold. Then there is a paving of M by cubes such that the order of every edge is 3, 4 or 5. Furthermore \sum_3 and \sum_5 are disjoint 1-submanifolds.

Proof of Theorem 2. According to [1] every closed orientable 3-manifold is obtained by taking a suitable covering of S^3 branched over the Borromean rings. Let $B \subset S^3$ denote the Borromean rings. Now the 3-torus $T^3 = S^1 \times S^1 \times S^1$ is obtained by doing 0-framed surgery along each component of B. Thus there is a link L of three components in T with $T^3 - L = S^3 - B$. The components of L can be chosen to be $S^1 \times (\theta_1, \theta_1), \theta_2 \times S^1 \times \theta_2$ and $(\theta_3, \theta_3) \times S^1$

where $\theta_i \in S^1$ and all the θ_i 's are distinct. T^3 can be represented as the unit cube, A, in \mathbb{R}^3 with opposite faces identified. Then $L \cap A$ consists of three disjoint arcs labelled γ_1, γ_2 and γ_3 which are parallel to the coordinate axes x_1, x_2 and x_3 respectively; see Fig. 2. Let P_A be the paving of A by N^3 cubes each of side length N^{-1} (where N is suitably large, e.g. N = 10). The corresponding paving of T^3 obtained by identifying opposite faces of A is regular, i.e. every edge has order 4. We may assume that γ_1, γ_2 and γ_3 are disjoint from the 1-skeleton of P_A . For i = 1, 2, 3 let N_i be the union of the cubes of P_A which intersect γ_i . We may assume that N_1, N_2 and N_3 are disjoint. In T^3 , each N_i glues up to become a solid torus X_i , and X_i is paved with Ncubes. This paving of X_i is the product paving of D^2 paved as a single square, and S^1 paved by N intervals. Let $D = \overline{T^3 - (X_1 \cup X_2 \cup X_3)}$. Then ∂D consists of three tori: T_1, T_2 and T_3 . Each T_i is paved in an identical way by 4N squares. This paving is the product of a paving of S^1 by four intervals with a paving of S^1 by N intervals. Now pave $T^2 \times I$ using the product of the paving on T^2 given by the paving of any T_i , and the paving of I as a single interval. Take three such paved copies of $T^2 \times I$ and glue one copy along $T^2 \times 0$ onto each of T_1, T_2 and T_3 so that

Fig. 2.

the pavings match up along the glueing. Topologically all we have done is to add a collar onto each boundary component of *D*. Call the resulting manifold *E*, and the paving of *E*, P_E . Then $\sum_5 (P_E)$ consists of 12 S¹'s, four coming from each of T_1 , T_2 and T_3 . Each of these S¹'s on T_i runs parallel to γ_i . $\sum_3 (P_E) = \emptyset$.

Let $p: M \to S^3$ be a covering of S^3 branched over B. Then identifying $S^3 - B$ with \tilde{E} gives a paving \tilde{P}_E of $p^{-1}(E)$ by lifting the paving P_E . Locally the pavings P_E and \tilde{P}_E are the same. To obtain a paving of M, we must attach paved solid tori to each boundary component of $p^{-1}(E)$. Let U be a boundary component contained in $p^{-1}(T_i)$, then the paving of U is obtained by taking some abelian cover of the paving of T_i . The framing of the solid torus Y to be glued to U is determined by $\tilde{\gamma}_u = U \cap p^{-1}(\gamma_i) (\gamma_i \text{ may be regarded as a simple closed curve on$ $<math>T_i$). Thus U is paved as a product of a paving of $\tilde{\gamma}_u = S^1$ by N_p intervals and a paving of S^1 by 4q intervals where the positive integers p, q depend on the abelian cover $U \to p(U)$. Now choose N = 4M, M an integer. Then pave Y as $(S^1$ paved by 4q intervals) $\times (D^1$ paved by M_p intervals). This introduces four components to \sum_3 , each component is a circle on U which projects down to a meridian of γ_i in T^3 . Doing this for each boundary component U gives the required paving of M. \Box

Remark. This paving puts a Euclidean cone-manifold structure on M, in which the singular locus is a link, and the cone angles are $3\pi/2$ and $5\pi/2$.

Proof of Theorem 1. The cube may be triangulated as [(3-simplex)]', see Fig. 1(*T*2). Each face of the cube is triangulated as cone(∂ square). Thus a triangulation of *M* is obtained from a paving by cubes using this triangulation for each cube. The link of a vertex at the centre of a cube is (*T*2). The link of a vertex at the centre of a face of a cube is (*T*1). The link of a vertex *v* at a corner of a cube is (*T*3) if *v* lies on \sum_3 , is (*T*5) if *v* lies on \sum_5 , and is (*T*4) otherwise. \Box

Note added in Proof

Kevin Walker has shown independently, using a variant of our method, that 3 vertex link types suffice.

REFERENCE

1. H. M. HILDEN, M. T. LOZANO and J. M. MONTESINOS: The Whitehead Link, the Borromean rings and the knot 9₄₆ are universal. Coll. Math. 34 (1983), 19–28.

Mathematics Institute, Warwick University, Coventry, CV4 7AL, U.K.

Department of Mathematics, Princeton University, Princeton, NJ 08540, U.S.A.