TRIANGULATING 3-MANIFOLDS USING 5 VERTEX LINK TYPES

D. COOPER and W. P. THURSTON

(Received 5 June 1985)

We show that a closed orientable 3-manifold can be triangulated in a simple way locally. There are 5 triangulations of S^2 with the property that every such manifold has a triangulation in which the link of each vertex is one of these 5 link types. This triangulation is obtained from a paving of the manifold by cubes. In this paving, the order of every edge is 3, 4 or 5. Denoting the union of the edges of order 3 (respectively 5) by \sum_3 (respectively \sum_5), then \sum_3 and \sum_5 are disjoint 1-submanifolds. It is known that for any dimension n, there is a finite set of link types such that every n-manifold has a triangulation in which the link of each vertex is in this set. However for $n>3$, no such set is known.

If K is a simplicial complex, we denote the barycentric subdivision of K by K', and the suspension of K by ΣK. The set J consists of the 5 triangulations of S^2 listed below:

(T1) ∂(octahedron)
(T2) $[\partial$(3-simplex)]'
(T3) $[\sum\partial$(triangle)]'
(T4) $[\sum\partial$(square)]' = $[\partial$(octahedron)]'
(T5) $[\sum\partial$(pentagon)]'

Each of these triangulations is obtained by doubling along the boundary a suitable triangulation of a 2-disc. These triangulations of the 2-disc are shown in Fig. 1.

Theorem 1. Let M be a closed, orientable 3-manifold. Then M can be triangulated so that the link of every vertex is in J.

A paving of a manifold by cubes is like a triangulation, but made out of n-dimensional cubes instead of simplexes. In particular two cubes either meet in a face (which is a cube of lower dimension) or are disjoint. Suppose a 3-manifold M is paved by cubes, and e is an edge of a 3-cube C, then the order of e is $\text{card}\{C': C' \text{ is a 3-cube in } M \text{ and } e \subset C'\}$.

Theorem 2. Let M be a closed, orientable 3-manifold. Then there is a paving of M by cubes such that the order of every edge is 3, 4 or 5. Furthermore \sum_3 and \sum_5 are disjoint 1-submanifolds.

Proof of Theorem 2. According to [1] every closed orientable 3-manifold is obtained by taking a suitable covering of S^3 branched over the Borromean rings. Let $B \subset S^3$ denote the Borromean rings. Now the 3-torus $T^3 = S^1 \times S^1 \times S^1$ is obtained by doing 0-framed surgery along each component of B. Thus there is a link L of three components in T with $T^3 - L = S^3 - B$. The components of L can be chosen to be $S^1 \times (\theta_1, \theta_1)$, $S^1 \times (\theta_2, \theta_2)$ and $(\theta_3, \theta_3) \times S^1$. The order of each edge is 3, 4 or 5, and \sum_3 and \sum_5 are disjoint 1-submanifolds.
where \(\theta_i \in S^1 \) and all the \(\theta_i \)'s are distinct. \(T^3 \) can be represented as the unit cube, \(A \), in \(\mathbb{R}^3 \) with opposite faces identified. Then \(L \cap A \) consists of three disjoint arcs labelled \(\gamma_1, \gamma_2 \) and \(\gamma_3 \) which are parallel to the coordinate axes \(x_1, x_2 \) and \(x_3 \) respectively; see Fig. 2. Let \(P_A \) be the paving of \(A \) by \(N^3 \) cubes each of side length \(N^{-1} \) (where \(N \) is suitably large, e.g. \(N = 10 \)). The corresponding paving of \(T^3 \) obtained by identifying opposite faces of \(A \) is regular, i.e. every edge has order 4. We may assume that \(\gamma_1, \gamma_2 \) and \(\gamma_3 \) are disjoint from the 1-skeleton of \(P_A \). For \(i = 1, 2, 3 \) let \(N_i \) be the union of the cubes of \(P_A \) which intersect \(\gamma_i \). We may assume that \(N_1, N_2 \) and \(N_3 \) are disjoint. In \(T^3 \), each \(N_i \) glues up to become a solid torus \(X_i \), and \(X_i \) is paved with \(N \) cubes. This paving of \(X_i \) is the product paving of \(D^2 \) paved as a single square, and \(S^1 \) paved by \(N \) intervals. Let \(D = T^3 - (X_1 \cup X_2 \cup X_3) \). Then \(\partial D \) consists of three tori: \(T_1, T_2 \) and \(T_3 \). Each \(T_i \) is paved in an identical way by \(4N \) squares. This paving is the product of a paving of \(S^1 \) by four intervals with a paving of \(S^1 \) by \(N \) intervals. Now pave \(T^2 \times I \) using the product of the paving on \(T^2 \) given by the paving of any \(T_i \), and the paving of \(I \) as a single interval. Take three such paved copies of \(T^2 \times I \) and glue one copy along \(T^2 \times 0 \) onto each of \(T_1, T_2 \) and \(T_3 \) so that
the pavings match up along the glueing. Topologically all we have done is to add a collar onto each boundary component of D. Call the resulting manifold E, and the paving of E, P_E. Then $\sum_S(P_E)$ consists of 12 S^1's, four coming from each of T_1, T_2 and T_3. Each of these S^1's on T_i runs parallel to γ_i. $\sum_S(P_E) = \emptyset$.

Let $p: M \rightarrow S^3$ be a covering of S^3 branched over B. Then identifying $S^3 - B$ with E gives a paving \bar{P}_E of $p^{-1}(E)$ by lifting the paving P_E. Locally the pavings P_E and \bar{P}_E are the same. To obtain a paving of M, we must attach paved solid tori to each boundary component of $p^{-1}(E)$. Let U be a boundary component contained in $p^{-1}(T_i)$, then the paving of U is obtained by taking some abelian cover of the paving of T_i. The framing of the solid torus Y to be glued to U is determined by $\beta_u = U \cap p^{-1}(\gamma_i)$ (γ_i may be regarded as a simple closed curve on T_i). Thus U is paved as a product of a paving of $\beta_u = S^1$ by N_p intervals and a paving of S^1 by $4q$ intervals where the positive integers p, q depend on the abelian cover $U \rightarrow p(U)$. Now choose $N = 4M$, M an integer. Then pave Y as $(S^1$ paved by $4q$ intervals) \times $(D^1$ paved by M_p intervals) \times $(D^1$ paved by M_p intervals). Then Y may be glued onto U so that the pavings match up. This introduces four components to \sum_S, each component is a circle on U which projects down to a meridian of γ_i in T^3. Doing this for each boundary component U gives the required paving of M. □

Remark. This paving puts a Euclidean cone-manifold structure on M, in which the singular locus is a link, and the cone angles are $3\pi/2$ and $5\pi/2$.

Proof of Theorem 1. The cube may be triangulated as $[(3\text{-simplex})]$, see Fig. 1(T2). Each face of the cube is triangulated as cone(δ square). Thus a triangulation of M is obtained from a paving by cubes using this triangulation for each cube. The link of a vertex at the centre of a cube is $(T2)$. The link of a vertex at the centre of a face of a cube is $(T1)$. The link of a vertex v at a corner of a cube is $(T3)$ if v lies on \sum_S, is $(T5)$ if v lies on \sum_S, and is $(T4)$ otherwise. □

Note added in Proof

Kevin Walker has shown independently, using a variant of our method, that 3 vertex link types suffice.

REFERENCE

Mathematics Institute,
Warwick University,
Coventry, CV4 7AL, U.K.

Department of Mathematics,
Princeton University,
Princeton, NJ 08540, U.S.A.