THE VOLUME OF A CLOSED HYPERBOLIC 3-MANIFOLD
IS BOUNDED BY π TIMES THE LENGTH OF ANY
PRESENTATION OF ITS FUNDAMENTAL GROUP

DARYL COOPER

(Communicated by Ronald A. Fintushel)

Theorem 0.1. Suppose M is a closed hyperbolic 3-manifold. Given a presentation of $\pi_1 M$ let L be the sum of the word-lengths of the relations and n the number of relations of length at least 3. Then $\text{volume}(M) < \pi(L - 2n)$.

Proof. A pleated disc is a map covered by a map of a disc into \mathbb{H}^3 such that there is a triangulation of the disc with vertices only on the boundary of the disc and with the property that the image of each 2-simplex is a geodesic 2-simplex in \mathbb{H}^3.

A presentation of M gives a set of generators and relations. For simplicity, we will assume every relation has word length at least 3. This may be realized geometrically by a map $f : S \to M$ of a 2-complex S which induces an isomorphism of $\pi_1 S$ onto $\pi_1 M$. The map f may be homotoped so that edges map to geodesics and f restricted to each 2-cell is a pleated disc. The area of a pleated disc is at most π times the number of 2-simplices. The boundary of a 2-cell, D, in S represents a relation, and the number of 2-simplices in D is the number of edges in ∂D minus 2. The number of edges in ∂D is the word length of the relation represented by ∂D. Thus the total surface area of $f(S)$ is at most $\pi(L - 2n)$.

Let X be the closure of a component of $M - f(S)$; then X lifts to \mathbb{H}^3. For otherwise, there is a loop γ in X which is not contractible in M. Since S is mapped into $M - \gamma$, the isomorphism $f_* : \pi_1 S \to \pi_1 M$ factors through $\pi_1(M - \gamma)$. Thus the composite

$$\pi_1 M \cong \pi_1 S \to \pi_1(M - \gamma) \to \pi_1 M$$

is the identity, where the second map is induced by inclusion. Now M is aspherical, hence $\pi_2(M - \gamma) = 0$ because otherwise, by the sphere theorem, γ would be contained inside a ball and thus contractible in M. Hence $M - \gamma$ is a $K(\pi, 1)$ and thus the first homomorphism is induced by a continuous map $M \to (M - \gamma)$. Thus the composite

$$M \to (M - \gamma) \to M$$

is a π_1-isomorphism, hence a homotopy equivalence. Consideration of the induced map on H_3 gives a contradiction:

$$H_3(M) \to H_3(M - \gamma) \to H_3(M)$$

since the composite is an isomorphism and M is closed.

Received by the editors August 3, 1998.

1991 Mathematics Subject Classification. Primary 30F40, 57M50.

The author’s research was supported in part by the NSF.

©1999 American Mathematical Society
The isoperimetric inequality (for example [1], p. 283) for \mathbb{H}^3 states that, for a given volume, the smallest ratio of surface area divided by volume is attained by a sphere. Computation shows that this ratio is always greater than 2. This asymptotic ratio is attained by a horosphere. Thus the surface area of the polyhedron X in \mathbb{H}^3 is at least 2 times its volume. Now S may be subdivided so that each 2-cell appears in exactly two such polyhedra, thus the total surface area of S is greater than 1 times the volume of M. Putting this together with the first part gives the result. □

In his thesis, Matt White [2] has obtained (a much deeper result) an explicit bound on the diameter of M in terms of the sum of the lengths of the relations. He also extends these results to the finite volume case.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA AT SANTA BARBARA, SANTA BARBARA, CALIFORNIA 93106-0001

E-mail address: cooper@math.ucsb.edu