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Abstract

For the figure eight knot, we show that slopes with even numerator are slopes of immersed surfaces
covered by incompressible, boundary-incompressible embeddings in some finite ca2@@0
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1. Introduction

Definition 1.1. A slopeon atorusy, is the isotopy class of an essential un-oriented simple
closed curveg, on T. Suppose thaX is a three manifold with a boundary component
which is a torusT. An immersed boundary slopen 7 is a slope,«, on T such that
there is a proper immersion of a compact, connected, oriented, surfac¥ wtach is
m1-injective and which is an embedding in a neighborhood of the bounda¥y défe also
require that the surface cannot be homotoped into the boundarpph proper homotopy.
The boundary of the surface consists of loopsioparallel to«. If the immersion is an
embedding then we also call the slope embedded boundary slopé.the immersion

is covered by an embedding in some finite cover, then we also call the slopeally
embedded boundary slope

It is known that a knot has only finitely marsmbeddedoundary slopes [5]. It is
easy to see that a torus knot has only two immersed boundary slopes, and these are also
embedded boundary slopes. Several examples of immersed boundary slopes which are
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not embedded boundary slopes have been constructed. Some immersed boundary slopes
have been found for the figure eight knot [7]. It was first shown in [1] that a compact
3-manifold with boundary a single torus may have infinitely many immersed boundary
slopes by exhibiting a large family of once punctured torus bundlesSveith infinitely

many virtually embedded boundary slopes. It is shown in [13] that there is a compact
3-manifold with torus boundary such that every slope is an immersed boundary slope,
though it is not known if they are virtually embedded boundary slopes. Recently Joseph
Maher [11] has used Theorem 1.4 to show that every hyperbolic 2-bridge knot and every
hyperbolic punctured torus bundle has the property that every slope is a virtually embedded
boundary slope.

Proposition 1.2. Suppose thatX is a compact Seifert fibered three-manifold with
boundary an incompressible tor@s Then there are only two immersed boundary slopes.
These are the slope of a regular fiber and the slope whichiiis H1(X). These are both
embedded boundary slopes. There is an essential embedded vertical annulus with slope the
regular fiber. In particular the only immersed boundary slopes of the exterior afithg)

torus knot ared and pg and these are both embedded boundary slopes.

In this paper we construct many virtually embedded boundary slopes in the figure eight
knot exterior, in particular:

Theorem 1.3. Every slope is a virtually embedded boundary slope for the two-fold cover
of the figure eight knot exterior.

The main tool for this is the following general result which gives conditions under which
homology classes in finite covers give rise to virtually embedded boundary slopes.

Theorem 1.4.Let M be a compact, connected, orientable, atoroidal and irreducible

3-manifold with boundary a finite number of tori. Suppose that a compact, connected,

non-separating, orientable, incompressible surface properly embeddédvitnich is not

a fiber of a fibration ofM. Also suppose thdtS contains some components with slepe

on atorus,T, in the boundary oM. Thene is a virtually embedded boundary slope.
Moreover there is a finite cyclic cover,: M — M dualtoS and a compact, connected,

orientable, incompressible, boundary-incompressible, surfaceproperly embedded

in M. The boundary of consists of a non-empty set of essential, parallel curves lying

on some componerﬁ, of 3M which coversT. Alsox|F is an immersion which is an

embedding in a neighborhood of the boundary, and the boundary is mapped to loops

parallel to .

This theorem provides a method for finding virtually embedded boundary slopes. One
constructs a finite covek, of the knot exteriotX. Then one determines the kernel of the
map

incl, : H1(dX) — Hi(X).
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An element,s, of the kernel is the boundary of a compact orientable incompressible
surface,S, in X. This surface may be chosen to be non-separatirgyig a primitive
element of the kernel. To apply the theorem, we need to knowS&hatnot a fiber of
some fibration of¥. This can be guaranteedsfis disjoint from at least one component
of 3X, since it is clear that a fiber must meet every boundary component. Thus one has the
homological problem of finding elements, in the kernel which also lie in the homology
of the boundary minus some torus. Theis a sum of loops, each on one of the boundary
tori, and one of these loops is choserwasf the surfaceS is not connected, one may use
one of the components &. In order to obtain a surface i which is embedded in a
neighborhood 06 X one also needs thatprojects one-to-one intdX.

The idea for proving Theorem 1.4 is that of [3]. One takes two I§tsand Sn, of S to
M which are “far apart”. Then one connects pairs of boundary componerﬁ@mndsn
by boundary parallel tubes to obtain a closed, embedded, sudfacel/. The techniques
of [3] can be extended to show that is incompressible. One now deletes frathan
essential boundary-parallel annulus and pushes the boundary of the new surfadé into
This is the incompressible surfade For the sake of variety, we will give a somewhat
different proof thatH is incompressible.

Proof of Proposition 1.2. Since X is Seifert fibered with non-empty boundary there is
a finite cyclic cover,X, of X on which the induced Seifert fibering is a circle bundle
p:f — Tp over a compact surfacdp, with one boundary component. Siné& is
incompressible it follows thafp is not a disc. Thus it suffices to show that the only
immersed boundary slopes in this circle bundle are a fiber éongude i.e., an essential
curve ind X which is zero inHy (X, Q).

Leto:F — X be a propetrs-injective map which is not homotopic rélF into X,
Now K = ker{p,: 711X — mTo] = 715t is a normal cyclic subgroup ofl(X) We will
identify 1 F with the subgroup, 1 F of 711(X). The intersection oker p, with 1 F is
a cyclic normal subgroupH, of 71 F. SinceF is an orientable surface with non-empty
boundary, eithelH is trivial or F is an annulus. Thus if{ is non-trivial thenF is an
annulus whose fundamental group interse€tsn a non-trivial subgroup. Nowrs F is
generated by a boundary component,of F. Also C is a loop ondX and some power
of C is in H. Thus some power of is freely homotopic inX to a power of a fiber. By
considering the action af on the universal cover one sees thias a homotopic to a fiber
in 9X. Inthe remaining case thél is trivial thenp o 0 : F — Tp is a propetri-injective
map. Therefore it is either homotopic 1&F into d T or is homotopic to a finite covering.
In the first case this homotopy is covered by a homotopy o€l 9 F into 3X which is
not allowed. Hence o 6 is homotopic to a covering and therefore has non-zero degree.
Thusé,[d F] is non-zero inHl(a)N(). This class is the boundary 6f[ F]. It follows that
the boundary of" consists of longitudes. O

Question 1.5.1s every immersed boundary slope also a virtually embedded boundary
slope?
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Question 1.6.1f M is a compact 3-manifold with boundary a torus and/ifis atoroidal
and not a Seifert fiber space, is every boundary slope an immersed boundary slope?

In order to apply the theorem more generally one needs to know if the following is
possible:

Question 1.7. Suppose thak is a compact, atoroidal manifold with boundary a tofus
Suppose thak is not a Seifert fiber space. Is it possible that there is an essential simple
closed curvex on T such that for every finite coveX — X and every closed cune in

X which projects to some non-zero multiplesfthat[a] =0 in Hi(X, Q). In particular,

can this happen for a knot exterior witha longitude?

2. Product regions

Definition 2.1. Let N be a connected 3-manifold with connected boundary. Suppose that
dy N is a compact subsurface &V such that each component is an annulus. Suppose that
dy N separate8 N into two incompressible components with clos§seS1 and which are
diffeomorphic. Also suppose that each annulus has one boundary component in ach of
andsSi. We callg, N theverticalboundary ofNV, andd, = SoU S1 thehorizontal boundary.

We call N arelative cobordisnbetweenSg andS;. A vertical arcis an arc inN with one
endpoint in each ofp and S1. A vertical squareis a discD properly embedded iV
which intersect®, N in two vertical arcs which are called thertical boundaryf D and
written 9, D. Thehorizontal boundaryf D is 9, D = D N9, N. A vertical square is called
essentialf it is not isotopic rel boundary into the boundary 8f An annulus embedded

in N is calledverticalif it has one boundary component in eachSgfand S;. We denote

the unit interval ad = [0, 1]. A product regionfor N is a submanifoldd x I of N such
that® is a compact, possibly disconnected, surface and 00, 1 we have® x i is an
incompressible subsurface 8f We also require thab x I containsd, N, and that each
component ofp x I intersect9, N.

In the above definition we do not assume tNais compact. In the applicatiod will be
a compact manifold minus some components of its boundary. Our first goal is to now show
that there is a maximal product region which is unique up to isotopy. This assertion follows
from the existence and properties of the characteristic submanifold &¥e will give a
direct proof instead of deducing it from standard statements: [10,8]. Also compare [3].

Lemma 2.2. Suppose that N is an orientable, irreducible relative cobordism Bnid a

vertical square inN. If A is an incompressible vertical annulus properly embeddesl in
then we may isotop® rel 8, D so thatD N A consists of vertical arcs. ID’ is another
vertical square inN and if 3, D and 9, D’ are disjoint then we may isotog® rel 9, D so

that D N D’ consists of vertical arcs.
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Proof. SincedA = 9,A we may isotopeD rel 9, D so thatA and D are transverse and
their intersection has the smallest number of components. Sugpasa component of
AN D.If Cis a circle thenC bounds a disd1 C D. SinceA is incompressibl& also
bounds a dis&A ¢ A. ChooseC innermost onA then the union of these discs is a sphere
D1 U A, which bounds a ballB, becauseV is irreducible. The interior oB is disjoint from
D. Thus the disd can be isotoped acrogs(without hitting D) to removeC. Repeating
this, gives an isotopy ab fixed on the boundary, which removes all circle components.

If C is an arc with both endpoints afp then there is a disa in A with boundaryC
plus an arcg, in 9A. We may choose an innermost such disc so that the interiar isf
disjoint fromD. There is also a dis@’ in D with boundaryC plus an arce’, in dD. Then
a Uca' is aloop inSp which bounds the disgA U A” and, sinceSp is incompressible, this
loop bounds a disc isp. We may choose U «’ to be an innermost loop ifig. But then
C can be removed by an isotopy &f. Similarly arcs with both endpoints if; can be
removed. Hencel N D consists of vertical arcs.

A similar argument works for a disb’ in place of the annulud. O

Theorem 2.3. Suppose tha¥ is a relative cobordism betweely and S1 and assume that
N is orientable and irreducible. Then there is a product regi@nx I in N such that every
vertical square inNV can be properly isotoped int@ x I.

Proof. Observe that a regular neighborhoodipiV is a product region fov. Consider
a product regiond x I of N with minimal Euler-characteristic. We will regad as a
subsurface oby. Observe that since every componentfotontains a component 6fSp,
no component o is a disc. In particular, since is incompressible it follows that
x (@) > x(So) and so there is such & with minimal Euler characteristic. Observe that
(0@) x I is a collection of vertical annuli. Now given a vertical squérewe can isotope
it so that the intersection db with (9®) x I consists of vertical arcs, and has the minimum
number of such arcs. Since a product region must comtaihand sinceD contains two
vertical arcs in its boundary, it follows that eithéx is contained in® x I or elsed, D
intersectso® in the interior of N. In the latter case, there is an aie, in 9, D with
endpoints ind@ and interior disjoint from®. Theny is not isotopic rel endpoints into
@ for otherwise we could isotopB to reduce the number of vertical arcs of intersection
of D with A. Letd1, 82 be the two vertical arcs i N A which have endpoints in common
with y. Then there is a sub-disb_ of D with boundarys; Uy U 82 Uy’ wherey’ is
contained inD N Sj.

Define R to be a regular neighborhood @f x I U D_. ThenR = ¥ x I where¥
is a regular neighborhood @ U y in Sp. Sincey is not isotopic rel endpoints int@, it
follows that¥ is incompressible thu® is a product region with lower Euler characteristic,
a contradiction. O

We shall call such a product regionreaximal product regionThis terminology will be
justified soon.
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Theorem 2.4. Suppose thaV is a relative cobordism betweely and S; and assume that
N is orientable and irreducible. Suppose thatx I is a maximal product region foN
and that¥ x I is any product region inV. Then there is an ambient isotopy @fwhich
takes¥ x [ into @ x I.

Proof. Suppose that there is a componentpf 3, x I which is not contained i x 1.
Then A is a vertical annulus. Because each componen¥ afontains a component of
9S50, we may choose an arg, in & from 3.Sp to a point,x, on A N Sg. There is an patts,
which runs along’ then runs roundi N Sp and then back along, and by moving this path
slightly we may supposgis an arc embedded . The vertical squaré x I contained in
¥ x I may be isotoped rel vertical boundary irkox I. It is now easy to isotope the rest
of Ainto @ x I. We do this for each component&fe x 1. After these isotopied, ¥ x 1

is contained ind x I and henc& x I is contained ind x I. O

Theorem 2.5. Suppose thatV is a relative cobordism and tha¥ is orientable and
irreducible. If® x I and¥ x I are maximal product regions &, then there is an ambient
isotopy ofN which takesV x I onto® x I.

Proof. By Theorem 2.4 we can isotople x I into @ x I and we may also isotope x /
into ¥ x I. Combining these, we may isotogex I so that it is contained i x I and
contains this manifold minus a collar. Uniqueness of collars now showsg/tlxal may be
isotopedtoequab x I. O

With the hypotheses of Theorem 1.4, defitfe” to be the 3-manifold obtained from
M by removing all boundary components &f which are disjoint fromS. Define N to
be the 3-manifold obtained by removing fram~ the interior of a regular neighborhood
of S. We will regard the interior ofV as equal ta~ — S. There are two copiesp and
S1, of S in the boundary ofvV. ThusM ™~ is obtained fromN by identifying Sp with S1
via a homeomorphisrmp : S — Sp. SinceS is incompressible inV, it follows that N is
a relative cobordism betweesy and S1. Let 7 : M~ — M~ be the infinite cyclic cover
dual to S, and letSp be a lift of S to M~. Let r be a generator of the group of covering
transformations and sé}, = t"Sp. We can regard/~ as|J; N; whereN; is a copy of
N with N; N N;jy1 = S; andtN; = Ni 1. DefineY, to be the submanifold, = J/_; N;
of M—. ThenY, is a relative cobordism betweefy and S,,. Since M~ is irreducible it
follows from the equivariant sphere theorem [12,4,9] thiat is irreducible. Nowy, is a
submanifold ofd ~ bounded by incompressible surfaces helgés irreducible. Define
P, to be a maximal product region i),.

Lemma 2.6. With the hypotheses of Theordnd, after an isotopy ofP; in Y; we may
arrange that fori < k that P, N'Y; is contained in the product regioR; of ¥;.

Proof. Suppose thatP is a component ofP,. The first step is to arrange that for all
0<i <k, thatR = S; N P is a connected incompressible surfacePinThis is already



M. Baker, D. Cooper / Topology and its Applications 102 (2000) 239-252 245

true fori =0, k. Now d R is contained irp, P which is a union of annuli. Suppose there is
a component, of d R which bounds a disd), in 9, P. Then, since§ is incompressible,
C bounds a discq, in S;. If we chooseC innermost ons; thenD U A is a sphere which
bounds a ballB, in Y; sinceY; is irreducible. Also the interior oB is disjoint from

dy P. Thus we can isotop® across the ball to remow@. We may thus assume that every
component 0B R is essential ird, P.

Suppose thaD is a compressing disc faR in P. SinceS; is incompressible iy,
there is a dis in §,~ with the same boundary d%. ThenA intersects), P in circles, and
sinced, P is incompressible irYy, these circles bound discs #y P. But these circles are
in R and so there are no such circles. Thuiss contained inP, henceA C R SOR is
incompressible irP.

Now P = | x & for some compact connected surfateand R is an incompressible
surface, possibly disconnected, inx @ such thatdR is contained inl x 9®. Suppose
that Rg is a component oR. The projection off x @ onto O0x @ mapsRy w1-injectively
and sends boundary to boundary. Applying Theorem 13.1 of [#gteither this map is
homotopic to a covering, aRg is an annulus and the map is homotopic rel boundary into
d®. In this case, both boundary components®gfare on the same annulus component of
I x 3®. Thus there is an annulus, in 9 P with the same boundary a@& andB U Ry is
the boundary of a solid torus iA. Then, after choosing an innermost such solid torus, we
can isotopeB across this solid torus to remowg from R. Thus we may assume the map
of Ry — & is homotopic to a covering. Defin€ to be a component afSo N &. Recall
that every component of a product region contains a compon@ﬁbofn particular there
is a component;’, of 8 Ry which maps onte. But C’ is the only component dfS; which
maps toC and soRp = R is connected.

Now P is a productl x @. Also R is an incompressible surface lwhich separateg.

In addition, R is disjoint fromal x &. It follows from the homotopy cobordism theorem
for Haken manifolds that the submanifold Bfbetween Ox @ andR is a product region
for Y,,. SinceY,, is irreducible, Theorem 2.4 applied 1y implies that this product region
may be isotoped int@;. O

It now follows from Lemma 2.6 that there is an ambient isotopyjofaking P11 N Y
into Py, thus we may assume that

Ye O Pryp C P

Thus the compact subsurfacés= 3‘0 N P are decreasing in other wordg 1 C Ag, and
each isr1-injective. We will defineAg = So.

Lemma 2.7. With the hypotheses of Theorém, then for eactk > 0, one of the following
occurs

e Ay is a regular neighborhood afSg in So.

o x(Ak+1) < x(Ag).
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Proof. Since all these subsurfaces are incompressible (and none are discs) it follows that
x (Ar+1) < x (Ay) with equality if and only ifAx41 is isotopic toA,. Suppose thati; 1
is isotopic toAy. Let

M > M~
be the generator of the group of covering transformations suchrthat= S1. Then
Prir1NtYy isaproductregioninY, and can therefore be isotopediky; into the maximal
such product region which isP,. Therefore the surfac® = P41 N 3‘1 can be isotoped
in 3‘1 into t Ay. SincePy1 is a productRr is diffeomorphic toA; 1, hence tad;. Now R
is armi-injective subsurface of Ax, andR is diffeomorphic tor A;. ThereforeR can be
isotoped in§1 so thatR = t A;. The submanifold) = P41 N Y1 now has boundary

3O = AU (I x dAr) Ut Ag.

The image;yr Q, of Q in M~ is obtained fromQ by identifying Ay andtr Ay via . Thus
7 Q@ has boundary consisting of tori

AT Q)= St x 9A;.

Since every essential torus M is boundary parallely (z Q) is contained in a regular
neighborhood ob M, henced Ay is contained in a regular neighborhood&ﬁo. SinceM
does not fiber over the circle with fib&r the product region oW is not all of N so Ay is
a proper subsurface 6. ThusA, is contained in a regular neighborhoodac%. O

Lemma 2.8. With the hypotheses of Theordnd, for n sufficiently large every vertical
square inY, is inessential.

Proof. By Lemma 2.7,y (Ay) is strictly decreasing. Also sincé; is an incompressible
subsurface ofg it follows that x (So) < x (Ax). Hence for sufficiently large we have
that A, is a regular neighborhood ®fSo. Hence the product regioR, is contained in
a regular neighborhood @&fY,,. But now by Theorem 2.3 every vertical squareYipis
inessential. O

The following argument was told to us by Gabai.

Lemma 2.9. Suppose that/ and N are irreducible relative cobordisms which do not
contain essential vertical squares. Suppose that

oM = So U S1, opN =ToU Ty

and thatg : S1 — Tp is a homeomorphism. Lét be the3-manifold formed frond and N
by identifyingS1 with Tp via ¢. ThenP has incompressible boundary.

Proof. Suppose thab is a compressing disc faP. Note thatP is a relative cobordism
betweenSy and7;. We may isotopeD so that

e D is transverse t§1 = Tp.

e The intersection 0d D with 9, P consists of a vertical arcs.
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A

A
B

Fig. 1. Outermost arc oD.

ChooseD, subject to the above, so that it has the minimum number of vertical arcs in
its boundary. If there are no vertical arcs, thRris either contained i/ or in N. Without
loss, we suppose that is contained ilM. ThenD is a compressing disc fdi in M, but
the hypothesis tha¥ is a relative cobordism includes th&t is incompressible. Hence we
have a contradiction. The boundarybfis made up of horizontal and vertical arcs which
alternate. This is shown in Fig. 1, where the vertical arcs are shown thicker.

Observe that since and N are irreducible and they are glued together along
incompressible surfaces, théhis also irreducible and; = Tp is incompressible inP.
The intersection oD with S1 consists of arcs and circles. Singgis incompressible irP,
each such circle bounds a discinand so we may isotopP to remove the circles. Thus
each vertical side ob has an endpoint of exactly one arc of intersection. Now choose an
outermost (onD) arc, «, of intersection onD with S1. We claim that the situation is as
shown in Fig. 1.

Thus there is a disc, in D with boundary the union of and an ar@g in 9D and g
intersects exactly two vertical args,5. Now A is contained in eitheM or in N, without
loss of generality we will assume thatis contained in. ThusA is a vertical disc inV
and soA is boundary parallel. Henc® can be isotoped to reduce the number of vertical
arcs in its boundary, a contradiction

Proof of Theorem 1.4. By Lemma 2.8 there i& > 0 such that the submanifold, of
M~ contains no essential vertical square. Ngw = Y, U 'Y, and Y, N t"Y, = =5,
is incompressible. Thus we may apply Lemma 2.9Ytg and deduce thats, has
incompressible boundary. Sinceis incompressible inVf it follows that dY», is also
incompressible ild—. Now there is an annulug,, in Y2, N3 M~ with boundary consisting
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of two loops which are lifts of.. Let F = dY2, — int(A) isotoped to a properly embedded
surface inM . SincedY>, is incompressible it follows thak is also incompressible and
boundary-incompressible. Observe tlratay be constructed in a finite cyclic covem

3. Virtually embedded slopes for the figure eight knot

In this section,M denotes the exterior of the figure eight kriot This is a punctured
torus bundle over the circle. We regard the punctured tdfgisas a square with a disc
removed from the middle and opposite sides identified.

Let x, y be simple closed curves diy given by the sides of the square. We regard the
square as sitting in they-plane and themD, denotes a right-handed Dehn-twist about the
loopx, andD, denotes geft-handed Dehn-twist about the loppThe monodromy for the
figure eight knot ig = D, o D, (i.e., twist first abouty then abouk) thus

~ Tox[0,1]

T (g(5),0)~ (s,
We choose a base poirit, on the boundary of the puncture so that b x [0,1]/~ is a
meridian fork, andg = 0T is a longitude folX . Now consider the bundl® = Tox I /f
for f = (D;1o D3)2. It was shown in [2, Lemma 7.2] that ; double coversi with the
meridiana s = bg x 1/f of My projecting to the loop?8~tin M.

Next consider the irregular 10-fold covEr— Tp, shown in Fig. 3, to whicly lifts. This
cover is constructed by takingZy/27Z x 7./57 cover of Ty, cutting along the two vertical
arcs pictured, and then identifying the side labeled 1 (respectively 2) on one arc to the side
labeled 1 (respectively 2) on the other arc.

The surfaceF has eight boundary components, 2 of which cover the boundary of
Ty degree-2; these boundary components are labeled 7 and 8. The other 6 boundary
components are labeled 1-6, and cover the boundafy degree-1. Since both, and
D? liftto F, f =~(Dx—1 o D?)? lifts as well. IndeedP?, lifts to simultaneous twists about
y1 andy» while D, can be viewed as a/2 fractional twist abouts andxs. If we require
our lifts to fix the lifted basepoin, thenD, fixes pointwise rows 1 and 3 while shifting
rows 2, 4 and 5 each one square to the right (mod 2).fLke the lift of f fixing &, and
M=F x I/f.ThenM — M is a 10-fold cover (which gives a 20-fold cover &f).

X

>
B

YA/bO Ay
>

Fig. 2. A punctured torus.
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X, >

B
8 row 5
- 112 2|1
=
X
6
J) J) row 4

Y

- B, B,
X, >
()~ O - row 3
~ Bs Be
%, >
O~ ()~ row 2
By B,

1
\4

O~ A OE Arow1

l
Y

Fig. 3. Cross joins irF.

Note thatf fixes the eight boundary circles &f. Denote by; a lift to theith boundary
componend M of the loopa s ondM . Denote byB: theith boundary component af
which covers the boundayy of Ty either degree-1 (for < 6) or degree-2 (for = 7, 8).
Thus(;, B;) is a homology basis for thi¢gh boundary torus o#. The loops; projects to
o281 andp; projects toB or B2 in aM. We claim the following homology relations hold
in Hy(M)

n—rn—rs+15=0, (1)
t3—t1+t5—t7+53+54+55+56=0. (2)

The first of these is in [2, Lemma 7.3]. The second one is derived below. Oédint be
the kernel of the map induced by inclusion

incl, : H1(dM) — Hy(M).
Let
p: H1(8A71) — Hl(TG)

denote the map given by the pI’O]eCtIOI’l obtained from the direct sum decomposition of
H1(dM) coming fromdM = T U (0M — Tg) whereTg is the 6th boundary component.
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Then p(Ker) = H1(T6), since the image of the left hand side of (1ydsand the image

of the left hand side of (2) i which are a homology basis @f1(7s). Givenz in Ker,

there is a compact, oriented, 2-sided surféiceroperly embedded ind with boundary
representingd V] = z. Observe that no classes in boundary component number 8 appear
in (1) and (2). It follows that, by adding discs and annuli to all boundary componets of

on Tg that we may arrange that is disjoint from7g. This implies thatV is not the fiber of

any fibration ofi. We may thus apply Theorem 1.4 ¥oand deduce thai(z) is a virtual
boundary slope oM . Sincep(z) is an arbitrary element /1 (T%) it follows that every
slope ofM s is a virtual boundary slope. Sindé is the 2-fold cover of the exterior of the
figure 8 knot, this proves Theorem 1.3.

4. Calculations

In this section we derive relation (2).
We will derive the following relation inHy (M)
3—t1+t5—t7+x2—x4=0 (3
then (as seen in Fig. 4) using that

xz—X4=53+ﬂ~4+ﬂ~5+56

——0
O——0

2
| o
P,
XZ
631
o, | o
1

*1

Fig. 4. Obtaining relation (2).
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the relation (2) follows. One computes — 1 as follows. Letos; be a simple path in
F x {0} fromt3N F tor1 N F as shown in Fig. 4. Then the disg; x I contained inF" x /
has boundary which gives the relation

t3—1+ (ﬁ [o31] * (73_11) =0.
Herex denotes composition of paths. Similarly, referring to Fig. 4, we obtain
ts — 17+ (ﬁ [o57] * (75_71) =0.

One then verifies that

(Fuloaal * 037") + (Fulos7 % 057') = x2 — xa.

5. Varying the slope for punctured torus bundles

We answer Question 1.7 for punctured torus bundles.fLdy — To be a homeomor-
phism of a punctured torus, arMd; = To x I/f is a fibered 3-manifold with this mon-
odromy. There ig > 0 such thag = f* is congruent mod 2 to the identity BlLoZ. Then
M, is ak-fold cyclic cover ofM ¢. Consider the 4-fold.; x Zz-coverfo of Tp. Theng is
covered by a map of To which preserves boundary components. Alse= My is a 4-fold
cover of M,. Now N has 4 boundary components and they are all tori. On torugth
1<i <4, thereis a curve; which coversdTp. Now perform 0-Dehn filling orfy to ob-
tain a torus bundIMf*. This is covered by a manifold* obtained by doing Dehn-fillings
on the four boundary components 8fby attaching solid tori whose meridian discs cap
off A;. ThenN™ coversM}r and is therefore a torus bundle. Suppose that evegy0 in

Hi(N), thenpa(N1) > 4. SinceN™ is a torus bundle oves! it follows that fo(N*) < 3
which gives a contradiction.
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