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On the Topology of the Character

Variety of a Free Group

Stuart Bratholdt and Daryl Cooper (∗)

Summary. - We investigate the topology of the space of characters

of a free group into SL2R, SL2C, SO2 and SU2.

We investigate the topology of the character varieties for repre-
sentations of a free group into SO2, SU2, SL2R and SL2C. This work
is a summary of the PhD thesis of the first author written under the
direction of the second author. Since Bratholdt has not continued
in mathematics, the second author has prepared this report so that
the work is not lost.

Let Fn denote the free non-abelian group of rank n, and G a linear
group. In this paper we will be concerned with the cases G = SL2K
and SU2K where K is one of the fields R or C and SU2R ≡ SO2. The
space Hom(Fn, G) with the compact-open topology is homeomorphic
to Gn. The quotient Hom(Fn, G)/G by the action of G by conjugacy
is Hausdorff for the case G = SU2K but not for G = SL2K. The
character variety X(Fn, G) is the set of characters χ(ρ) as ρ varies
over Hom(Fn, G). It is an affine algebraic set which we refer to as a
variety (X(Fn, SU2(C)) is a real algebraic set). The topology of the
space of representations modulo conjugacy is closely related to that
of the corresponding character variety.

There is a natural map X : Hom(Fn, G)/G → X(Fn, G) which
is a homeomorphism for G = SU2. For G = SL2C and n > 1 the
restriction to the subspace of conjugacy classes of irreducible repre-
sentations is a homeomorphism onto a dense open subset. There is
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an element of SL2C whose action on H
3 restricts to an orientation

reversing isometry of H
2. From this one sees that the normalizer of

SL2R in SL2C contains SL2R as a subgroup of index 2. Thus the
map X is generically 2 : 1 for G = SL2R or SO2. From this it is easy
to see that

Theorem 1. X(Fn, SO2) ∼= T n/Z2 where T n is the n-torus and the

involution sends

[exp(iθ1), · · · , exp(iθn)] to [exp(−iθ1), · · · , exp(−iθn)].
In particular for n = 2 we get X(F2, SO2) is homeomorphic to S2.

These representation spaces and character varieties have been
studied by a number of people, usually from an algebraic perspec-
tive [2],[3],[4],[5],[6],[7]. We are concerned with the topology of the
character varieties. It is well known that X(F2, SL2C) = C

3.

Theorem 2. For K = R or C there is a strong deformation retrac-

tion of X(Fn, SL2K) onto X(Fn, SU2K).

Theorem 3. X(F3, SU2) is homeomorphic to S6.

Theorem 4. For n ≥ 4 the space X(Fn, SU2) is not a manifold. In

fact, for n ≥ 4, the character of an abelian representation with image

not contained in the center of SU2 has a neighborhood in X(Fn, SU2)
homeomorphic to cone(CPn−2) × R

n

The group S3 of unit quaternions is isomorphic to SU2. The
standard Riemannian metric on S3 is bi-invariant for the Lie group
structure on S3, and so conjugacy by an element of S3 gives an
isometry of S3 which fixes the identity element I of S3 and every
such orientation preserving isometry is given by some conjugacy.

A representation ρ : Fn −→ S3 is uniquely determined by an
n-tuple (x1, · · · , xn) of points in S3 given by the images under ρ of
an ordered basis of Fn. We thus see that the problem of determining
Hom(Fn, S3)/S3 is equivalent to the classification, up to orientation
preserving isometry of S3 fixing the identity, of n-tuples of points in
S3. If we define x0 = I this is equivalent to the classification, up to
the action of Isom+(S3), of (n + 1)-tuples (x0, · · · , xn) of points in
S3. We regard S3 as the unit sphere in Euclidean space R

4 centered
on the origin, and write < x, y > for the standard inner product on
R

4. Then we identify Isom+(S3) with SO(4). Thus we have:
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Lemma 5. The quotient Hom(Fn, S3)/S3 by conjugacy is homeo-

morphic to the quotient of (S3)n+1 by the diagonal action of SO(4)
acting standardly on each S3 factor.

By a tetrahedron in S3 we mean a 4-tuple A = (x1, · · · , x4)
of points, called vertices, in S3. We will regard A as a 4 × 4 ma-
trix with rows xi. Observe that the edges of the tetrahedron are not
specified, and that we allow two or more vertices to coincide. We re-
gard the vertices as marked and are interested in the classification of
such tetrahedra up to (orientation preserving) isometry of S3 which
preserves the marking.

Given a tetrahedron A then B = A · At is a symmetric matrix
with entries < xi, xj > . The matrix B determines the spherical
tetrahedron A up to right multiplication by an element of O(4).
Define Q to be the set of all such matrices A · At.

Let Sym(4) denote the space of real symmetric 4 × 4 matrices.
There is a continuous map

σ : S3 × S3 × S3 × S3 −→ Sym(4)

given by σ(A) = A · At. Furthermore σ descends to a well defined
continuous map

σ : S3 × S3 × S3 × S3/O(4) −→ Sym(4).

We will show that this map is a homeomorphism onto a compact
6-dimensional cell. First we show that σ is injective.

Suppose we are given two n-tuples (x1, · · · , xn) and (x′
1, · · · , x′

n)
of points in R

n such that for all i, j we have < xi, xj >=< x′
i, x

′
j > .

It is elementary to show that there is T in O(n) with T (xi) = x′
i

for all 1 ≤ i ≤ n. Furthermore we may choose T to be orientation
preserving if and only if

det[x1, · · · , xn] · det[x′

1, · · · , x′

n] ≥ 0.

Applying this to tetrahedra gives the injectivity of σ. Now the do-
main of σ is compact and the image is Hausdorff thus σ is a homeo-
morphism onto its image.

Define Sym1(4) to be the subspace of Sym(4) consisting of those
symmetric matrices which have every diagonal entry equal to 1.
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Thus Sym1(4) is an affine 6-dimensional subspace of the vector space
Sym(4). Define Q ⊂ Sym1(4) to be the subspace of matrices which
correspond to positive semi-definite quadratic forms.

Lemma 6. The image of σ is Q.

Proof. First observe since the rows of A are unit vectors it follows
that B = A · At has every diagonal entry equal to 1. This matrix is
symmetric. We show next that B is positive semi-definite. There is
an orthonormal basis B which diagonalizes B. Thus there is P ∈ O(4)
with D = P tAAtP diagonal. Now D = C · Ct where C = P tAP.
Thus the rows of C are orthogonal vectors and the diagonal entries
of D are the squares of the lengths of these row vectors. Hence
D is a non-negative diagonal matrix. Let q be the quadratic form
corresponding to B with respect to the standard basis of R

4. Then
the matrix of q with respect to B is D and hence q is positive semi-
definite. We have now established that the image of σ is contained
in Q.

It remains to show surjectivity. Given B in Q we must find
a real matrix A such that A · At = B. The symmetric matrix B
determines a quadratic form q on R

4. There is an orthonormal change
of coordinates on R

4 which diagonalizes this quadratic form. Let D
be the matrix of q in this basis, thus B = P tDP where P ∈ O(4)
is the change of basis matrix. Since q is positive semi-definite there
is a non-negative diagonal square root C =

√
D, thus D = C · Ct.

Define A = P tCP which is the matrix with respect to the standard
basis of the quadratic form with matrix C in the new basis. Then
A · At = P tC · CtP = B as required.

Lemma 7. Q is a compact 6-dimensional cell.

Proof. Observe that Q is a convex subset of Sym1(4) since the set
of positive semi-definite quadratic forms is convex. Since Q is the
continuous image of a compact set under the map σ it is compact and
clearly has dimension 6. Thus Q is a compact convex 6-dimensional
cell contained in Sym1(4).

Corollary 8. The set of isometry classes of non-degenerate

marked spherical tetrahedra is an open convex set, int(Q), with re-

spect to the cosines of the lengths of the edges.
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The proof of 3 follows from 6 and the following:

Corollary 9. The quotient of (S3)4 by the diagonal action of SO(4)
acting standardly on each factor is homeomorphic to S6.

Proof. Consider the map

φ : (S3)4 −→ Q× R

given by φ(A) = (σ(A), det(A)). It is clear that this factors through
a map

φ : (S3)4/SO(4) −→ Q× R.

We will show that φ is a homeomorphism onto its image. Indeed,
the proof follows from what has been done before together with the
observation that an orientation reversing isometry, τ, sends a tetra-
hedron A to another, τ(A), with det(τ(A)) = −det(A).

Assertion det(A) = 0 if and only if σ(A) ∈ ∂Q.

Assuming this, the diagonal action of O(4) on (S3)4 induces an
involution on (S3)4/SO(4) corresponding to some reflection. Let
τ be the involution on Q × R which is trivial on the first factor,
and is given by multiplication by −1 on the second factor. These
involutions correspond via the map φ.

Consider the map

θ : (S3)4/O(4) −→ Q× [0,∞)

given by θ(A) = (σ(A), |det(A)|). By 7 this is a homeomorphism
onto its image which is thus a compact 6-dimensional cell C. By the
assertion ∂C = C ∩ (Q× 0).

Thus the image of φ is C∪τ(C). Furthermore C∩τ(C) = ∂C thus
C is the union of two 6-cells identified along their common boundary
and is thus homeomorphic to a 6-sphere.

It remains to prove the assertion. Observe that det(A) = 0 if and
only if A · At in not strictly positive definite. Thus the assertion is
equivalent to the assertion that Q−∂Q is the subspace consisting of
strictly positive definite quadratic forms. Since being strictly positive
definite is an open condition it follows that strictly positive definite
forms are in the interior of Q. For the converse, observe that ∂Q
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equals the frontier of Q in Sym1(4). Given q ∈ Q the matrix of q in
the standard basis may be written as I + M where M is symmetric
with every diagonal entry 0. If q is not strictly positive definite then
det(q) = det(I + M) = 0 thus M has an eigenvalue of −1. For ǫ > 0
the matrix I + (1 + ǫ)M corresponds to a form in Sym1(4) which
has an eigenvalue of −1 − ǫ. Thus q is in the frontier of Q.

Proof of 4

Every abelian subgroup of SU2 is conjugate to a diagonal subgroup
(here we are identifying S3∼=SU2) so suppose that ρ∈Hom(Fn, SU2)
is a diagonal representation. If there is an element α of Fn with
ρ(α) 6= ±I then we may choose a basis α1, α2, · · · , αn of Fn with
ρ(αi) 6= ±I for every 1 ≤ i ≤ n.

By choosing a small neighborhood N in X(Fn, SU2) of χ(ρ), we
may suppose that for all χ(ρ′) in N that ρ′(αi) 6= ±I for all 1 ≤ i ≤ n.
We can vary ρ′ in its conjugacy class so that ρ′(α1) is diagonal.
Furthermore the choice of ρ′ is unique up to conjugacy by an element
of Normalizer(S1) where S1 is the subgroup of SU2 consisting of
diagonal matrices. Now Normalizer(S1) ∼= O2, thus if we set

N1 = {ρ′ : χ(ρ′) ∈ N & ρ′(α1) ∈ S1}

then N1/(O2 − conjugacy) is homeomorphic to N . We choose a
parameterization Ψ of N1

Ψ : N1 −→ (D2)n−1 × (S1)n

as described below. We will show that the image of Ψ consists of
two components, N±

1 , each homeomorphic to (D2)n−1 × R
n.

The epimorphism SU2 −→ SO3 gives an action of SU2 on S2.
Under this action, the subgroup S1 of SU2 is the double cover of the
group SO2 acting on S2 by Euclidean rotations around a fixed axis.
We denote by p one of the points on S2 lying on this axis, and thus
fixed by this SO2 action.

Fix ǫ ∈ (0, π/2) and identify D2 with the disc in S2 of radius
ǫ centered on p. For each k the isometry ρ(αk) fixes p. Thus if the
neighborhood N1 is chosen sufficiently small then for all ρ′ ∈ N1 and



ON THE TOPOLOGY OF THE CHARACTER ETC. 51

for each k the isometry ρ′(αk) 6= ±I is a rotation which fixes a unique
point in D2. Given ρ′ in N1 we obtain a point in (D2)n−1 by taking
the endpoints of the axes of ρ′(αk) which lie in D2 for 2 ≤ k ≤ n.

For 1 ≤ k ≤ n define θk ∈ S1 to be the angle of rotation of
ρ(αk). Now choose ǫk > 0 small enough that the points ±1 in S1

do not lie in (θk − ǫk, θk + ǫk). By choosing N1 small enough we
can ensure that for ρ′ ∈ N1 the angle of rotation of ρ′(αk) lies in
(θk − ǫk, θk + ǫk)⊔ (−θk − ǫk,−θk + ǫk). This assigns to ρ′ a point in
(S1)n.

It is now clear that the image of Ψ is as asserted and that
N1/O2 = N+

1 /SO2. The action of SO2 on each D2 factor is by
rotation fixing p, and hence the quotient of (D2)n−1 by the di-
agonal action of SO2 is cone(CPn−2). To see this we can iden-
tify D2 with the unit disc in the C and then ∂(D2)n−1/SO2 is
homeomorphic to CPn−2. Now (D2)n−1 = cone(∂(D2)n−1) hence
(D2)n−1/SO2

∼= cone(CPn−2). The action of SO2 on the (S1)n fac-
tor is trivial, hence N+

1 /(SO2 − conjugacy) ∼= cone(CPn−2)×R
n as

claimed.

We conclude with an outline of the proof of 2. The proof is based
on:

Theorem 10. Let Irrepn ⊂ Hom(Fn, SL2C) be the subspace con-

sisting of irreducible representations. Then there is a continuous

map C : Irrepn → H
3 such that for every ρ ∈ Irrepn and A ∈ SL2C

we have C(A · ρ · A−1) = A(C(ρ)).

Proof. In [1] Bestvina introduced the notion of the center, x0, of an
irreducible representation, ρ, of a finitely generated group G into
PSL2(C). One fixes a finite generating set S of G and then con-
siders the partial orbit ρ(S)x of an arbitrary point x in H

3. If ρ is
irreducible then there is an x which minimizes the diameter of ρ(S)x.
Furthermore the subset of H

3 consisting of such points is compact.
The center of mass of the convex hull of this set is the center of
ρ.
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Theorem 11. There is a strong deformation retraction

W : SL2C → SU2 called winching which is equivariant with respect

to the action of SU2 by conjugation.

Proof. We identify hyperbolic 3-space with the ball model, and iden-
tify SL2C with the isometries of the ball in such a way that SU2 is
the stabilizer of the center of the ball, which we will denote by x0.

x0

α

σ

L

L'

Suppose that A ∈ SL2C represents a loxodromic isometry α with
axis L. Define L′ to be the geodesic containing x0 obtained by par-
rallel transportation of L along the shortest geodesic from x0 to L.
Thus if L contains x0 then L′ = L. Let φ be the isometry given by
this parallel transport; thus φ(L) = L′. Define σ = φ ◦α ◦φ−1. Thus
σ has the same complex translation length as α.

Now define τ to be the isometry with the same axis and rotational
part as σ but zero translational part. This determines a unique
element of PSU2. Observe that ±trace(τ) = Im(trace(A)). We now
choose the matrix W (A) in SU2 corresponding to τ such that the
imaginary parts of the traces of A and W (A) are equal.

In the remaining case that trace(A) = 2ǫ with ǫ = ±1 define
W (A) = ǫI. It is obvious that W (B · A · B−1) = B · W (A) · B−1 for
B ∈ SU2 and A ∈ SL2C. We leave it as an exercise to check that W
is continuous and a strong deformation retraction.

Consider the subspace Irrepn(x0) ⊂ Irrepn consisting of those
representations with center x0 in the ball model. There is a map
W : Irrepn(x0) → Hom(Fn, SU2) which is obtained by applying the
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winch retraction to each element of the standard basis of Fn. Thus
W(ρ) = (W (ρ(α1)), · · · ,W (ρ(αn))) where α1, · · · , αn is a fixed basis
of Fn. This map is homotopic through maps into Hom(Fn, SL2C) to
the inclusion Irrepn(x0) →֒ Hom(Fn, SL2C). Furthermore it follows
from 11 that W is equivariant with respect to the action of SU2 by
conjugacy.

Now taking characters embeds Irrepn(x0) as a dense subset
X(Irrepn(x0)) ⊂ X(Fn, SL2C). Furthermore two irreducible repre-
sentations have the same character if and only if they are conjugate.
If ρ, ρ′ are conjugate representations in Irrepn(x0) then the conju-
gacy fixes x0 (since this is the unique center of both representations
and using 10). Hence they are conjugate by an element of SU2. It fol-
lows that W induces a map X(W) : X(Irrepn(x0)) → X(Fn, SU2).
Furthermore this map extends to a strong deformation retraction
X(Fn, SL2C) → X(Fn, SU2). This ends the sketch of the proof of 2.
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