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ON THREE-MANIFOLDS WITH BOUNDED GEOMETRY

MICHEL BOILEAU AND DARYL COOPER

Abstract. In this note we combine some of Cheeger-Gromov’s results
[CG1,CG2,CG3] from the geometry of collapses of Riemannian 3-manifolds
together with some three-dimensional topology to prove results which say
that there are at most finitely many diffeomorphism classes of prime non-
geometrizable three-manifolds which admit a metric of bounded geometry
(i.e. with bounded sectional curvatures and bounded volume).

0. Introduction

Definition. A compact orientable 3-manifold is geometrizable if it has a split-
ting along a finite collection of disjoint essential spheres and tori into finitely
many compact 3-manifolds whose interiors each admit a complete homogeneous
riemannian metric (after capping off their boundary spheres by balls).

Thurston’s geometrization conjecture states that all 3-manifolds are geomet-
rizable.

There are eight homogeneous riemannian metric, which are locally modelled
on the following 3-dimensional geometries: S3, E3, H3, S2 ×E1, H2 ×E1, Nil,
˜SL2(R) and Sol.
A 3-manifold M is:
• prime if it is not the connect sum of two 3-manifolds neither of which is

S3.
• irreducible if every smoothly embedded sphere in M bounds a ball M.
• ∂-irreducible if for every smooth properly embedded disc D in M there is

a ball B ⊂ M and a disc D′ ⊂ ∂M such that ∂B = D ∪D′.
• atoroidal if every Z2 subgroup in π1M is conjugate into π1∂M and in

addition π1M does not contain the fundamental group of the klein bottle.

A prime orientable 3-manifold which is not irreducible is homeomorphic to
S2 × S1, and hence geometric. An irreducible orientable 3-manifold such that
every Z2 subgroup of π1M is conjugate into π1∂M is either atoroidal, or else the
orientable I-bundle over the Klein bottle which is geometric.

By Thurston’s hyperbolization theorem [Th2](cf. [Ka], [Ot1,2]) and the Torus
theorem ([CJ],[Ga]), a non-geometrisable prime 3-manifold is irreducible, ator-
oidal and does not contain any embedded, incompressible, orientable surface. In
particular it has an empty boundary.
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Given a positive real number v > 0, let M(v) be the set of diffeomorphism
classes of closed orientable 3-manifolds which admit a Riemannian metric g with
bounded sectional curvature |Kg| ≤ 1 and bounded volume vol(M, g) ≤ v.

There are infinitely many geometrizable 3-manifold in M(v). In fact by the
work of Cheeger and Gromov [CG1,CG2] all closed graph 3-manifolds (to be
defined in §1) belong to M(v) for any v > 0, and this characterizes graph 3-
manifolds. More precisely, there is a constant v0 > 0 such that: ∀v ≤ v0,M(v) =
M(v0) is the set of closed graph 3-manifolds.

By the work of Jørgensen and Thurston, for v sufficiently large (eg. bigger or
equal to the hyperbolic volume of the figure eight knot complement), there are
infinitely many closed hyperbolic 3-manifolds in M(v).

The main result of this note is the following finiteness result concerning non-
geometrizable prime summands of 3-manifolds in M(v).

Theorem (0.1). Given v > 0 there is only a finite set NG(v) of orientable,
non-geometrizable 3-manifolds that may occur as a prime summand in the con-
nected sum decomposition of a 3-manifold in M(v). Moreover for every 3-
manifold in M(v) the number of such non-geometrizable prime summands is
bounded above by a number p(v) depending only on v.

As straightforward corollaries we obtain:

Corollary (0.2). There is a constant n(v) depending only on v such that
M(v) contains at most n(v) prime 3-manifolds which are not geometrizable.

Corollary (0.3). There is a constant s(v) depending only on v such that
M(v) contains at most s(v) homotopy spheres.

Definition. For a compact orientable 3-manifold M , let Minvol(M) =
inf{vol(M, g)}where g runs over all Riemannian metrics on int(M) with bounded
curvature |Kg| ≤ 1.

Let A denote the set of compact orientable irreducible and atoroidal 3-mani-
folds, with zero Euler characteristic, and which do not admit a spherical metric
(such a manifold is not a graph manifold). We denote by H ⊂ A the subset of
3-manifolds which admit a complete hyperbolic structure of finite volume. By
Thurston’s hyperbolization theorem for Haken 3-manifolds, a manifold with non
empty boundary in A belongs to H. Thurston’s geometrisation conjecture states
that H = A.

When M admits a complete hyperbolic structure of finite volume g0, a deep
result, due to Besson-Courtois-Gallot [BCG] in the closed case and to Boland-
Connel-Souto [BCS] in the cusp case, shows that the hyperbolic metric realizes
the Minvol i.e. Minvol(M) = V ol(M, g0).

Since there is no graph 3-manifold in A, it follows from Cheeger-Gromov’s
work [CG1,CG2] that a 3-manifold in A has a strictly positive Minvol. By
Corollary (0.2), for a given value v > 0, the set {Minvol ≤ v} ∩ A contains at
most finitely many prime, non-geometrizable 3-manifolds since they belong to
M(v + 1).
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Since the geometrizable 3-manifolds in A are exactly the subset H of hyper-
bolic 3-manifolds, the following result is a direct consequence of [BCG], [BCS],
[Th,chap.5] and of Corollary (0.2). It shows that the set of values of the Minvol
for manifolds in A behave like the set of volumes of hyperbolic manifolds.

Corollary (0.4). The map Minvol : A → (0,+∞) is finite to one and the
set of values Minvol(A\H) is discrete. In particular the set of values Minvol(A)
is a well-ordered subset of R+ whose limit points coincide with the limit points
of the subset Minvol(H).

There are two parts in the proof of Theorem (0.1). The first part (cf. §1)
follows from Cheeger-Gromov’s theory of collapses for riemannian manifolds with
bounded sectional curvature. The second part (cf. §2) is a generalization of
Thurston’s hyperbolic Dehn filling theorem to the case of graph-fillings

1. Thick parts of Riemannian manifolds with bounded volume

A phenomenon which has received much attention in all dimensions from
geometers is the notion of collapse : we say that a family of Riemannian metrics
on a manifold collapses with bounded geometry if all the sectional curvatures
remain bounded while the injectivity radius goes uniformly everywhere to zero.

For example any flat torus T n collapses to any small dimensional torus T k

with k < n by rescaling the metric on some of the S1 factors.

Cheeger and Gromov [CG1,CG2] have proved that a necessary and sufficient
condition for a manifold to have such a collapse with bounded geometry is the
existence of a “generalized torus action” which they call an F-structure. F
stands for “flat” in this terminology.

Intuitively an F -structure corresponds to different tori of varying dimension
acting locally on finite coverings of open subsets of the manifold. Certain com-
patibility conditions on these local actions on intersections of these open subsets
will insure that the manifold is partitioned into disjoint orbits of positive dimen-
sion. A precise definition of an F -structure can be given using the notion of
sheaf of local groups actions, but we will not need it here.

A compact orientable 3-manifold M with an F -structure admits a partition
into orbits which are circles and tori, such that each orbit has a saturated subset.
A 3-manifold M has a graph structure in the sense of Waldhausen [Wa] and is a
graph manifold if it can be obtained by glueing Seifert fiber spaces together along
torus boundary components. These tori are not required to be incompressible.
It follows from the definition of F -structure that such a partition corresponds to
a graph structure on M (see [Ro1,§3]).

Another description of the family of all graph manifolds is that they are
precisely those compact three manifolds which can be obtained, starting with the
family of compact geometric non-hyperbolic three-manifolds, by the operations
of connect sum and of glueing boundary tori together. Thus they arise naturally
in both the Geometrization conjecture and in Riemannian geometry.



46 MICHEL BOILEAU AND DARYL COOPER

The aim of this section is to prove the following proposition which is true in
any dimension:

Proposition (1.1). Let M be a closed Riemannian n-manifold with |Kg| ≤ 1
and vol(M, g) ≤ v. Then M has a decomposition M = N ∪G into two compact
n-submanifolds such that:

• G admits an F -structure such that ∂N = ∂G is an union of orbits.
• N belongs, up to diffeomorphism, to a finite set N(n, v) of smooth, compact,

orientable n-manifolds.

Here is a straightforward corollary in dimension 3:

Corollary (1.2). Every manifold M ∈ M(v) has a decomposition M =
N ∪G into two compact (maybe not connected) 3-submanifolds such that:

• G is a (maybe empty) graph manifold.
• N belongs, up to homeomorphism, to a finite set N(v) of compact orientable

3-manifolds with zero Euler characteristic. 
�

Riemannian geometry takes an important part in the proof of Proposi-
tion (1.1). This proposition is the analogue in bounded variable curvature of
Jørgensen’s finiteness theorem [Thm 5.12], which states that all complete hy-
perbolic 3-manifolds of bounded volume can be obtained by surgery on a finite
number of cusped hyperbolic 3-manifolds. The finiteness of hyperbolic manifolds
with volume bounded above and injectivity radius bounded below is a precursor
to Gromov’s compactness theorem, while the Margulis lemma takes the place of
the Cheeger-gromov thick/thin decomposition [CG2, Thm.0.1].

The following theorem is a precise version of Cheeger-Gromov’s thick/thin
decomposition (see [CFG, Thm.1.3 and 1.7] for a proof). We recall that the
ε-thin part of a Riemannian n-manifold (M, g) is the set of points F(ε) = {x ∈
M , inj(x, g) < ε}

Theorem (1.3). For each n, there is a constant μn, depending only on the
dimension n, such that for any 0 < ε ≤ μn and any complete Riemannian n-
manifold (M, g) with |Kg| ≤ 1, there exists a Riemannian metric gε on M such
that:

(1) The ε-thin part F(ε) of (M, gε) admits an F -structure compatible with the
metric gε, whose orbits are all compact tori of dimension ≥ 1 and with diameter
< ε.

(2) The Riemannian metric gε is ε-quasi-isometric to g and has bounded co-
variant derivatives of curvature, i.e. it verifies the following properties:

• e−εgε ≤ g ≤ eεgε.
• ‖∇g −∇gε‖ ≤ ε, where ∇ and ∇gε are the Levi-Civita connections of g

and gε respectively.
• ‖(∇gε)kRgε‖ ≤ C(n, k, ε), where the constant C depends only on ε, the

dimension n and the order of derivative k.

Using Cheeger-Gromov’s chopping theorem [CG3, Thm.0.1] one can prove the
following:
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Proposition (1.4). For each integer n ≥ 2, there are constants μn > 0,
Λn > 0, δn > 0 and cn > 0, depending only on n, such that for any closed
Riemannian n-manifold (M, g) with |Kg| ≤ 1, there is a metric gn which is μn-
quasi-isometric to g, with |Kgn | ≤ Λn and a decomposition M = N ∪G where:

• G is a compact n-submanifold which admits an F -structure compatible with
gn and ∂N = ∂G is saturated.

• The injectivity radius for gn at every point x ∈ N verifies inj(x, gn) ≥ δn.
• The second fundamental form of ∂N for the metric induced by gn is bounded:

‖IIgn∂N‖ ≤ cn.
• The volume vol(∂N, gn) ≤ cn · vol(M, gn).

Proof. We apply theorem (1.3) with the constant ε = μn. So there is a metric
gn which is μn-quasi-isometric to g and such that M = B(μn) ∪ F(μn), where
B(μn) = {x ∈ M , inj(x, g) ≥ μn} and the μn-thin part F(μn) admits an F -
structure compatible with gn. Moreover, since the covariant derivatives of the
curvature of gn have bounded norm by theorem (1.3), it follows that there is a
constant Λn > 0 such that |Kgn | ≤ Λn. Therefore by the uniform decay of injec-
tivity radius [GLP, Prop.8.22], there is a universal function φn(−,−), depending
only on n, such that: ∀x, x′ ∈ M , inj(x′, gn) ≥ φn(inj(x, gn), dn(x, x

′)).
If B(μn) = ∅, we take N = ∅ and G = M .
We assume for the rest of the proof that B(μn) �= ∅. We denote by dn the

distance on M associated with the metric gn. Let X ⊂ F(μn) be the set of
points: X = {x ∈ F(μn) , dn(x, ∂(B(μn)) ≥ 1 + 2μn}.

If X = ∅, then every point of M is at distance less than 2(1 + μn) from
a point of B(μn). It follows from the uniform decay of injectivity radius that
inj(x, gn) ≥ φn(μn, 2(1 + μn)) = δn for every point x ∈ M . So we take N = M
and G = ∅.

If X �= ∅, let F(X) be the union of all the orbits of points in X for the
F -structure on F(μn), compatible with gn. It is a compact saturated subset
of F(μn). Since the diameter of the orbits of the F -structure is at most μn,
it follows that dn(y, ∂(B(μn)) > 1 for all point y ∈ F(X). In particular the
closed tubular neighborhood of radius 1 around F(X), T1(F(X)), is contained
in F(μn). Since the local torus groups act by isometries, the equivariant form of
Cheeger-Gromov’s chopping theorem [CG3, Thm.0.1] (see also [Ro2, Thm.2.1]),
shows that there is a compact n-submanifold U ⊂ M with smooth boundary ∂U
such that for some constant cn > 0 depending only on n:

• F(X) ⊂ U ⊂ T1(F(X)) ⊂ F(μn) and U is saturated for the F -structure;
• ‖IIgn∂U‖ ≤ cn;
• vol(∂U, gn) ≤ cn · vol(T1(F(X)), gn) ≤ cn · vol(M, gn).

We set G = U and N = M\int(U). Since X ⊂ U , for every point x ∈ N
we have dn(x, ∂(B(μn)) ≤ 2(1 + μn). By the uniform decay of injectivity radius
[GLP, Prop.8.22], we obtain as above that inj(x, gn) ≥ δn for every point x ∈
N .

Proof of Proposition (1.1). By proposition (1.4), for some constants μn > 0,
Λn > 0, δn > 0 and cn > 0, depending only on n there is a metric gn on M , which
is μn-quasi-isometric to g, with |Kgn | ≤ Λn and a decomposition M = N ∪ G
such that:
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• G is a compact n-submanifold which admits an F -structure compatible with
gn and ∂N = ∂G is saturated.

• The injectivity radius for gn at every point x ∈ N verifies inj(x, gn) ≥ δn.
• The second fundamental form of ∂N for the metric induced by gn is bounded:

‖IIgn∂N‖ ≤ cn.
• The volume vol(∂N, gn) ≤ cn · vol(M, gn).

In particular, the volume of (M, gn) verifies: vol(M, gn) ≤ V (n, v) for a con-
stant V (n, v) depending only on μn and v, and thus only on n and v. Since
|Kgn | ≤ Λn and inj(x, gn) ≥ δn for every point x ∈ N , the diameter of N
verifies: diam(N, gn) ≤ D(n, v), where the constant D(n, v) depends only on
v(n, v), δn and Λn, and hence only on n and v.

To show that N belongs , up to diffeomorphism, to a finite set N(n, v) of
smooth, compact, orientable n-manifolds, we use S. Kodani’s extension [Ko] of
Gromov’s convergence theorem to some classes of Riemannian manifolds with
boundary.

Let i∂ be the infimum of inward normal injectivity radii of the boundary
points of N . Then i∂ is the infimum of the focal radius of ∂N and of half the
length of a shortest geodesic which orthogonally intersects ∂N at the end points.
(cf. [Ko, Lemma 6.3]). Let iN be the minimum of i∂ and the infimum of the
injectivity radii of points at distance greater than i∂ from ∂N . If iN < i∂ , then
iN is the infimum of the conjugate radii and of half the lengths of geodesic loops
with base points at distance at least i∂ from ∂N . In order to apply Kodani’s
results we need to have a lower bound on iN , therefore we need to control the
inward normal injectivity radius to ∂N . To do so the idea is to add a collar to
∂N . The following construction has been pointed out by J. Porti.

Since ∂N is a hypersurface in M , the uniform bounds |Kgn | ≤ Λn and
‖IIgn∂N‖ ≤ cn imply that the focal radius of ∂N in M is bounded below by a con-

stant rn = 1√
Λn

arctan(
√
Λn

cn
). Therefore the exponential map exp : ν−rn

2
(∂N) →

M is a smooth immersion, where ν−rn
2
(∂N) is the subspace of the normal bundle

of ∂N which consists of normal vectors of length smaller or equal to rn
2 and

pointing ouside N . We use the exponential map to pull back the Riemannian
metric gn of M onto the collar ν−rn

2
(∂N) of ∂N . We glue this collar to N along

∂N to get a Riemannian manifold N ′ with the same topological type as N and
endowed with the metric g′n which coincides with gn on N and with the pull
back metric on the collar ν−rn

2
(∂N).

By [KO, Lemmas 3.1 and 3.2], see also [BZ, Chap. 6], the norm of the jacobian
of the exponential map is uniformly bounded on ν−rn

2
(∂N) above by a constant

bn and below by a constant an > 0, which depend only on Λn and cn. It follows
that the Riemannian metric (N ′, g′n) has the following properties:

• |Kg′
n
| ≤ Λ′

n where Λ′
n depends only on Λn, cn, an, bn, hence only on n.

• ‖IIg′
n

∂N ′‖ ≤ c′n, where the constant c′n depends only on Λn, cn, an, bn by [KO,
Lemma 3.1].

• vol(N ′, gn) ≤ (1 + (an)
−n)vol(M, gn) ≤ (1 + (an)

−n)V (n, v) = V ′(n, v).
• iN ′ ≥ δ′n, where δ′n depends only on n, Λ′

n, c
′
n, bn and rn, thus only on n .

This follows from the uniform decay of injectivity radius in M , the uniform upper
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bound on the jacobian of the exponential map and the uniform lower bounds on
the conjugate radius of N ′ and focal radius of ∂N ′.

• diam(N ′, g′n) ≤ D′(n, v), since the volume of N ′ is bounded above by a
constant V ′(n, v) and the injectivity radius of N ′ is bounded below by a constant
δ′n.

Therefore (N ′, g′n) belongs to the class of n-dimensional compact Riemann-
ian manifolds with bounded sectional curvature |Kg′

n
| ≤ Λ′

n and a lower bound

on the injectivity radius iN ′ ≥ δ′n. Moreover, if ∂N ′ �= ∅, ‖IIg′
n

∂N ′‖ ≤ c′n. It
follows from [GLP, Prop.7.5] and [Ko, Thm.A] in the case with boundary, that
the Gromov-Hausdorff and the Lipschitz topology coincide for this class of man-
ifolds. Furthermore vol(N ′, gn) ≤ V ′(n, v) and diam(N ′, gn) ≤ D′(n, v), so
the Riemannian manifold (N ′, g′n) belongs to a class of riemannian manifolds
which is precompact for the Gromov-Hausdorff topology by [GLP, Prop.5.2],
and thus for the bilipschitz topology. It follows from the definition of the bilips-
chitz topology that there are, up to diffeomorphism, only finitely many manifolds
in a precompact family with respect to this topology. Therefore there are, up to
diffeomorphism, only finitely many manifolds N ′ and hence only finitely many
manifolds N .

2. Graph-fillings

Definition. A graph-filling of a compact orientable 3-manifold N is the oper-
ation of gluing a compact orientable (maybe not connected) graph 3-manifold G
to N by identifying some toral components of ∂N with some toral components
of ∂G.

A graph-filling is a generalization of a Dehn filling where each connected
component of G is a solid torus.

Corollary (1.2) implies that every M ∈ M(v) either is a graph manifold,
or belongs to N(v), or is obtained from a manifold in N(v) by a graph filling.
Hence Theorem (0.1) is a straightforward consequence of Corollary (1.2) and the
following result:

Proposition (2.1). Let M be a compact orientable 3-manifold with non
empty boundary a collection of tori. There is only a finite set NG(M) of com-
pact, orientable, non-geometrizable 3-manifolds that may occur as prime factors
of the connected sum decompositions of all the compact, orientable 3-manifolds
obtained by graph fillings of M . Moreover the number of such prime factors
(counted with multiplicity) is also bounded above by a constant depending only
on M .

The purpose of this section is to prove Proposition (2.1). Before starting the
proof we give some definitions.

Definition. Let M be a compact orientable 3-manifold and let T ⊂ ∂M be a
boundary torus. A slope α ∈ H1(T,Z) is a homology class corresponding to an
essential simple closed curve on T . We denote by M(α) the compact orientable
3-manifold obtained by Dehn filling T with slope α i.e. by gluing a solid torus
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S1×D2 along T in such way that the boundary of a meridian disk {∗}×∂D2 has
slope α on T . By convention ∞ will denote the empty slope, so M(∞) means
that no Dehn filling occurred along T .

Definition. Let V be a soli torus, a cable space is the complement of an open
tubular neighborhood of a (r, s)-cable of the core of V , where r, s are coprime
integers with s ≥ 2. It has a Seifert fibration over an annulus with one single
cone point.

Definition. A compact orientable 3-manifold H is hyperbolicabled if there is
a finite (maybe empty) set of disjoint compact cable subspaces C1, . . . , Ck in
H such that Ci ∩ ∂H is a torus component of ∂Ci, for i = 1, . . . , k, and that
H0 = H\∪k

i=1Ci is not empty and admits a complete hyperbolic metric of finite
volume on its interior. When the family of cable subspaces {Ci}i=1,...,k is empty,
the manifold H is said to be hyperbolic. Observe that a hyperbolicabled manifold
is geometrizable.

The following lemma is a straightforward extension of Thurston’s hyperbolic
Dehn filling Theorem [Th1, Chap 5] :

Lemma (2.2). Let H be a compact, orientable, hyperbolicabled 3-manifold ,
with q toral boundary components T1, . . . , Tq. Then on each torus component
Ti ⊂ ∂H there is a finite exceptional set of slopes Si such that for any collection
of slopes (α1, . . . , αq) ∈ (H1(T1,Z)∪{∞}\S1)× . . . (H1(Tq,Z)∪{∞}\Sq), the 3-
manifold H(α1, . . . , αq) obtained by Dehn filling of H is irreducible, ∂−irreducible
and geometrizable.

Proof. Let H0 = H\ ∪k
i=1 Ci be the hyperbolic part of H , with k ≤ q. By

Thurston’s hyperbolic Dehn filling theorem [Th1, Chap. 5], on each torus com-
ponent T ′

i ⊂ ∂H0, i = 1, . . . , q, there is a finite exceptional set of slopes S′i
such that for any collection of slopes (β1, . . . , βq) ∈ (H1(T

′
1,Z) ∪ {∞}\S′1) ×

. . . (H1(T
′
q,Z) ∪ {∞}\S′q), the 3-manifold H0(β1, . . . , βq) obtained by Dehn fill-

ing of H0 admits a complete hyperbolic structure of finite volume on its interior.
Let Ti ⊂ ∂H be a boudary component. If Ti = T ′

i ⊂ ∂H0, then the exceptional
set of slopes Si = S′i. Otherwise Ti ⊂ ∂Ci, where Ci is a cable subspace of H
and T ′

i = ∂Ci\Ti ⊂ H0.
If intersection number of the slope α ⊂ Ti with the fibre f ⊂ Ti of the Seifert

fibration of Ci is |Δ(α, f)| ≥ 2, then the Dehn filled 3-manifold Ci(α) is a Seifert
manifold over a disk, with two exceptional fibres and incompressible boundary.
Hence gluing Ci(α) to a boundary component of an hyperbolic 3-manifold still
yields an irreducible, ∂−irreducible and geometrizable 3-manifold.

If |Δ(α, f)| = 1, then Ci(α) is a solid torus. A homological calculation shows
that the intersection numbers of two slopes β and β′ on T ′

i corresponding to
the boundaries of meridian disks of Ci(α) and Ci(α

′) verifies: |Δ(β, β′)| =
s2i |Δ(α, α′)|, where si ≥ 2 is the order of the exceptional fibre of Ci (cf. [Go,
Lemma 3.3]). Then the existence of a finite exceptional set of slopes S′i on
T ′
i ⊂ ∂H0 implies the existence of a finite exceptional set of slopes Si on Ti.

Let M be a compact irreducible and ∂-irreducible, orientable 3-manifold with
non-empty boundary a finite collection of tori. Using the JSJ-decomposition it is
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easy to show that M contains a finite (possibly empty) minimal collection T of
disjoint essential tori such that the closure of each component of M\T is either
a graph or a hyperbolicabled 3-manifold each of whose cable subspaces contains
a boundary component of M . It is a subcollection of the JSJ-family of tori of
M . One calls T the reduced JSJ-family of tori.

Let T ⊂ ∂M be a torus component and let WT be the closure of the connected
component of M\T containing T in its boundary.

Definition. A bad slope α ⊂ T is a slope such that either:
• WT is a graph manifold and WT (α) is either reducible, or ∂-compressible,

or
• WT is hyperbolicabled and α belongs to the exceptional set of slopes S ⊂ T

given by the lemma (2.2).

The following is a generalization of the previous lemma (2.2).

Lemma (2.3). Let M be a compact, connected, orientable, irreducible and ∂
irreducible 3-manifold with non-empty boundary a finite collection of tori. Sup-
pose also that M is not a cable space. Then on each torus component T ⊂ ∂M
there are only finitely many bad slopes.

Proof. Let T ⊂ M be the reduced JSJ-family of tori and let WT be the closure
of the connected component of M\T containing T .

We claim that WT is not a cable-space. To see this, suppose that WT is a
cable space. Then ∂WT = T ∪T ′. If T ′ ⊂ ∂M then since M is connected we have
M = WT , which contradicts our hypothesis. Otherwise T ′ is also a boundary
component of some other component, C, of the reduced JSJ decomposition. By
definition of reduced JSJ decomposition we see that C is not hyperbolic. Thus C
is a graph manifold. But then C∪WT is also a graph manifold which contradicts
the minimallity of the collection T of tori in the reduced JSJ decomposition. This
proves the claim. Thus if WT is a graph manifold it is not a cable space hence
by [CGLS,§2] there are only finitely many bad slopes on T .

Otherwise, when WT is hyperbolicabled the set of bad slopes on T is finite by
Lemma (2.2).

Proof of Proposition (2.1). Every graph filling of a graph manifold is a graph
manifold and hence has a geometric decomposition. Thus if M is a graph mani-
fold the set NG(M) is empty. Hence we may assume that M is not a graph man-
ifold. By considering the connected sum decomposition of M in prime factors,
one reduces the proof of Theorem (2.1) to the case where M is irreducible and
not a graph manifold. In particular M is not a solid torus and is ∂-irreducible.

Since any connected sum factor of a graph manifold is a graph manifold, we
have only to consider graph fillings by irreducible graph manifolds. Moreover M
is geometrizable because it is irreducible and ∂M �= ∅, hence graph fillings by
irreducible and ∂-irreducible, orientable graph manifolds always yield geometriz-
able 3-manifolds. Therefore we have only to deal with Dehn fillings by solid tori,
because an orientable, irreducible 3-manifold with a compressible torus in its
boundary is a solid torus.

Now we argue by induction on the number of boundary components of M .
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If there is only one boundary component since M is irreducible and ∂-irre-
ducible, Lemma (2.3) shows that except for finitely many bad slopes α ⊂ ∂M
the Dehn filled 3-manifold M(α) is irreducible and geometrizable. This proves
Theorem (2.1) in this case.

Let T1, . . . , Tq be the boundary components of ∂M . By Lemma (2.3), except
for a finite set of bad slopes Si ⊂ Ti on each boundary torus, any collection of
slopes (α1, . . . , αq) ∈ (H1(T1,Z)∪{∞}\S1)× . . . (H1(Tq,Z)∪{∞}\Sq), yields an
irreducible and ∂-irreducible 3-manifold M(α1, . . . , αq) which is geometrizable.

For any bad slope βi ∈ Si ⊂ Ti, the Dehn filled manifoldM(βi)=M(∞, . . . , αi,
. . . ,∞) is compact orientable with strictly less boundary tori than M . From the
discussion above, clearly NG(M) ⊂ ∪NG(M(βi)), where the union is taken over
the finite set of all bad slopes in ∪q

i=1Si. Then NG(M) is finite since by the in-
duction hypothesis the sets NG(M(βi)) are finite. In the same way the number
of non-geometrizable prime factors for any graph filling of M is bounded above
by the maximum of non-geometrizable prime factors for the graph fillings of the
manifolds M(βi) where βi runs over all bad slopes in ∪q

i=1Si.

We can now prove the main theorem (0.1). By (1.2) there is a finite set N(v)
of compact orientable 3-manifolds such that everyM ∈ M(v) can be decomposed
as M = N ∪ G with N ∈ N(v) and G a graph manifold. Then by (2.1) the set
NG(N) is finite for each N ∈ N(v). The union of these finite sets as N varies over
the finite set N(v) is NG(v) and is therefore finite. Furthermore the number of
non-geometrizable prime summands is bounded by the maximum of the number
of such summands that appear for any graph filling of any N ∈ N(v). Thus this
bound, p(v), depends only on the volume bound v.
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