Virtually Haken fillings and semi-bundles

DARYL COOPER
GENEVIEVE S WALSH

Suppose that M is a fibered three-manifold whose fiber is a surface of positive genus with one boundary component. Assume that M is not a semi-bundle. We show that infinitely many fillings of M along ∂M are virtually Haken. It follows that infinitely many Dehn-surgeries of any non-trivial knot in the three-sphere are virtually Haken.

57M10; 57M25

1 Introduction

In this paper manifold will always mean a compact, connected, orientable, possibly bounded, three-manifold. A bundle means a manifold which fibers over the circle. A semi-bundle is a manifold which is the union of two twisted I–bundles (over connected surfaces) whose intersection is the corresponding I–bundle. An irreducible, ∂–irreducible manifold that contains a properly embedded incompressible surface is called Haken. A manifold is virtually Haken if has a finite cover that is Haken.

Waldhausen’s virtually Haken conjecture is that every irreducible closed manifold with infinite fundamental group is virtually Haken. It was shown by Cooper and Long [1] that most Dehn-fillings of an atoroidal Haken manifold with torus boundary are virtually Haken provided the manifold is not a bundle.

Theorem 1 Suppose that M is a bundle with fiber a compact surface F and that F has exactly one boundary component. Also suppose that M is not a semi-bundle and not $S^1 \times D^2$. Then infinitely many Dehn-fillings of M along ∂M are virtually Haken.

Corollary 2 Let k be a knot in a homology three-sphere N. Suppose that $N - k$ is irreducible and that k does not bound a disk in N. Then infinitely many Dehn-surgeries along k are virtually Haken.

The main idea is to construct a surface of invariant slope (see Section 3) in a particular finite cover of M. Such surfaces are studied in arbitrary covers using representation theory in a sequel [2]. While writing this paper we noticed that Thurston’s theory
of bundles extends to semi-bundles, and in particular there are manifolds which are semi-bundles in infinitely many ways. We discuss this in the next section.

We thank the referee for several helpful comments. The first author was partially supported by NSF grant DMS-0405963.

2 Bundles and semi-bundles

Various authors have studied semi-bundles, in particular Hempel and Jaco [6] and Zulli [10; 11]. Suppose a manifold has a regular cover which is a surface bundle. We wish to know when a particular fibration in the cover corresponds to a bundle or semi-bundle structure on the quotient. The following has the same flavor as some results of Hass [5].

Theorem 3 Let M be a compact, connected, orientable, irreducible three-manifold, $p: \tilde{M} \to M$ a finite regular cover, and G the group of covering automorphisms. Suppose that $\phi: \tilde{M} \to S^1$ is a fibration of \tilde{M} over the circle. Suppose that the cyclic subgroup V of $H^1(\tilde{M}; \mathbb{Z})$ generated by $[\phi]$ is invariant under the action of G. Then one of the following occurs:

1. The action of G on V is trivial. Then M also fibers over the circle. Moreover there is a fibering of M which is covered by a fibering of \tilde{M} that is isotopic to the original fibering.

2. The action of G on V is non-trivial. Then M is a semi-bundle. Moreover there is a semi-fibering of M which is covered by a fibering of \tilde{M} that is isotopic to the original fibering.

Proof Define $N = \ker[\phi_*: \pi_1 \tilde{M} \to \pi_1 S^1]$. Since ϕ is a fibration N is finitely generated. If N is cyclic then the fiber is a disc or annulus. In these cases the result is easy. Thus we may assume N is not cyclic. Because V is G–invariant, it follows that N is a normal subgroup of $\pi_1 M$ and $Q = \pi_1 M/N$ is infinite. Using [6, Theorem 3] it follows that M is a bundle or semi-bundle (depending on case 1 or 2) with fiber a compact surface F and N has finite index in $\pi_1 F$. The pull-back of this (semi)fibration of M gives a fibration of \tilde{M} in the cohomology class of ϕ and is therefore isotopic to the given fibration. \hfill \square

Suppose that $G \cong (\mathbb{Z}_2)^n$ acts on a real vector space V and let $X = \text{Hom}(G, \mathbb{C})$ denote the set of characters on G. Then $X \cong \text{Hom}(G, \mathbb{Z}_2)$. For each $\epsilon \in X$ there is a G–invariant generalized ϵ–eigenspace

$$V_{\epsilon} = \{ v \in V : \forall g \in G \ g \cdot v = \epsilon(g)v \}.$$
Then V is the direct sum of these subspaces V_ϵ.

Suppose that M is an atoroidal irreducible manifold with boundary consisting of incompressible tori. According to Thurston there is a finite collection (possibly empty), $\mathcal{C} = \{C_1, \ldots, C_k\}$, called fibered faces. Each fibered face is the interior of a certain top-dimensional face of the unit ball of the Thurston norm on $H_2(M, \partial M; \mathbb{R})$. It is an open convex set with the property that fibrations of M correspond to rational points in the projectivized space $\mathbb{P}(\cup_i C_i) \subset \mathbb{P}(H_2(M, \partial M; \mathbb{R}))$.

Let $G = H_1(M; \mathbb{Z}/2)$. The regular cover \tilde{M}_s of M with covering group G is called the \mathbb{Z}_2–universal cover. Let $\mathcal{D} = \{D_1, \ldots, D_l\}$ be the fibered faces for this cover. For each $\epsilon \in H^1(M; \mathbb{Z}_2)$ there is an ϵ–eigenspace $H_{2,\epsilon}$ of $H_2(\tilde{M}_s, \partial \tilde{M}_s; \mathbb{R})$. For each $1 \leq i \leq l$ and $\epsilon \in H^1(M; \mathbb{Z}_2)$ we call $S_{i,\epsilon} = D_i \cap H_{2,\epsilon}$ a semi-fibered face if it is not empty. It is the interior of a compact convex polyhedron whose interior is in the interior of some fibered face for \tilde{M}_s. Let S_i be the union of the $S_{i,\epsilon}$ where ϵ is non-trivial.

Theorem 4 With the above notation there is a bijection between isotopy classes of semi-fiberings of M and rational points in $\mathbb{P}(\cup_i S_i)$.

Proof A semi-fibration of M gives such a rational point by considering the induced fibration on \tilde{M}_s. The converse follows from Theorem 3. We leave it as an exercise to check uniqueness up to isotopy. □

We believe that all points in $\mathbb{P}(\cup_i S_i)$ correspond to isotopy classes of non-transversally-orientable, transversally-measured, product-covered 2–dimensional foliations of M. This is true for rational points and therefore holds on a dense open set (using the fact that the set of non-degenerate twisted 1–forms is open). However, since we have no use for this fact, we have not tried very hard to prove it.

Definition A manifold is a *sesqui-bundle* if it is both a bundle and a semi-bundle.

An example is the torus bundle M with monodromy $-\text{Id}$. This is the quotient of Euclidean three-space by the group G_2 (Wolf [8, Theorem 3.5.5]). M has infinitely many semi-fibrations with generic fiber a torus and two Klein-bottle fibers. In addition, M is a bundle thus a sesqui-bundle.

A hyperbolic example may be obtained from M as follows. Let C be a 1–submanifold in M which is a small C^1–perturbation of a finite set of disjoint, immersed, closed geodesics in M chosen so that:

1. No two components of C cobound an annulus and no component bounds a Mobius strip.
Daryl Cooper and Genevieve S Walsh

intersects every flat torus and flat Klein bottle.

Each component of C is transverse to both a chosen fibration and semi-fibration.

Let N be M with a regular neighborhood of C removed. Then the interior of N admits a complete hyperbolic metric. By (3) it is a sesqui-bundle. This answers a question of Zulli who asked in [11] if there are non-Seifert 3–manifolds which are sesqui-bundles.

3 Virtually Haken fillings

The following is well-known, but we include it here for ease of reference.

Lemma 5 Suppose M is Seifert fibered and has one boundary component. Then one of the following holds:

1. M is $D^2 \times S^1$ or a twisted I–bundle over the Klein bottle.
2. Infinitely many Dehn-fillings are virtually Haken.

Proof The base orbifold Q has one boundary component and no corners. If $\chi^{orb} Q > 0$ then Q is a disc with at most one cone point thus $M = D^2 \times S^1$. If $\chi^{orb} Q = 0$ then Q is a Mobius band or a disc with two cone points labeled 2 and in either case Q has a 2–fold orbifold-cover that is an annulus A. But then M is 2–fold covered by a circle bundle over A. Since M is orientable it follows that this bundle is $S^1 \times A$ and hence M is a twisted I–bundle over the Klein bottle.

Finally, if $\chi^{orb}(Q) < 0$ then all but one filling of M is Seifert fibered. There are infinitely many fillings of M which give a Seifert fibered space, P, with base orbifold Q' and $\chi^{orb}(Q') < 0$. There is an orbifold-covering of Q' which is a closed surface of negative Euler characteristic. The induced covering of P contains an essential vertical torus and is therefore virtually Haken.

Definitions A slope on a torus T is the isotopy class of an essential simple closed curve on T. We say that a slope lifts to a covering of T if it is represented by a loop which lifts. The following is immediate:

Lemma 6 Suppose $\mathcal{T} \to T$ is a finite covering. Then the following are equivalent:

1. Some slope on T lifts to \mathcal{T}.
2. The covering is finite cyclic.
(3) Infinitely many slopes on \(T \) lift to \(\widetilde{T} \).

The distance, \(\Delta(\alpha, \beta) \), between slopes \(\alpha, \beta \) on \(T \) is the minimum number of intersection points between representative loops. If \(\alpha \) is a slope on a torus boundary component of \(M \) then \(M(\alpha) \) denotes the manifold obtained by Dehn-filling \(M \) using \(\alpha \). A surface \(S \) in a manifold \(M \) is essential if it is compact, connected, orientable, incompressible, properly-embedded, and not boundary-parallel. Let \(M \) be a manifold with boundary a torus and \(\alpha \subset \partial M \) a slope. Suppose that \(N \) is a finite cover of \(M \). An essential surface \(S \subset N \) has invariant slope \(\alpha \) if \(\partial S \neq \emptyset \) and every component of \(\partial S \) projects to a loop homotopic to a non-zero multiple of \(\alpha \). We call a finite cover \(p: N \to M \) a \(\partial \)–cover if there is an integer \(d > 0 \) and a homomorphism \(\theta: \pi_1(\partial M) \to \mathbb{Z}_d \) such that for every boundary component \(T \) of \(N \) we have \(p_*(\pi_1 T) = \ker \theta \). The existence of \(\theta \) ensures each component of \(\partial N \) is the same cyclic cover of \(\partial M \).

The following lemma reduces the proof of the main theorem to constructing an essential non-fiber surface of invariant slope in a \(\partial \)–cover of \(M \).

Lemma 7 Suppose that \(M \) is a compact, connected, orientable irreducible 3–manifold with one torus boundary component. Suppose that there is a \(\partial \)–cover \(N \) of \(M \) and an essential non-separating surface \(S \subset N \) of invariant slope. Assume that \(S \) is not a fiber of a fibration of \(N \). Then \(M \) has infinitely many virtually-Haken Dehn-fillings.

Proof We first remark that the particular case that concerns us in this paper is that \(M \) is a bundle with boundary and thus \(M \) is irreducible. Since \(M \) is irreducible at most 3 fillings give reducible manifolds (Gordon and Luecke [4]). A cover of an irreducible manifold is irreducible (Meeks and Yau [7]). Therefore it suffices to show there are infinitely many fillings of \(M \) which have a finite cover containing an essential surface.

If \(M \) contains an essential torus then this torus remains incompressible for infinitely many Dehn-fillings by Culler–Gordon–Luecke–Shalen [3, Theorem 2.4.2]. If \(M \) is Seifert fibered then by Lemma 5 either the result holds or \(M = S^1 \times D^2 \) or is a twisted \(I \)–bundle over the Klein bottle. The latter two possibilities do not contain a surface \(S \) as in the hypotheses. By Thurston’s hyperbolization theorem we are reduced to case that \(M \) is hyperbolic.

Since \(p: N \to M \) is a \(\partial \)–cover there is \(d > 0 \) such that every component of \(\partial N \) is a \(d \)–fold cover of \(\partial M \). Let \(k \) be a positive integer coprime to \(d \). Let \(p_k: \widetilde{N}_k \to N \) be the \(k \)–fold cyclic cover dual to \(S \). We claim that there is a homomorphism \(\theta_k: \pi_1 M \to \mathbb{Z}_{kd} \) such that every slope in \(\ker \theta_k \) lifts to every component of \(\partial \widetilde{N}_k \).

Assuming this, the filling \(M(\gamma) \) of \(M \) is covered by a filling, \(\widetilde{N}_k(\gamma) \), of \(\widetilde{N}_k \) if and only if the slope \(\gamma \subset \partial M \) lifts to each component of \(\partial \widetilde{N}_k \). Since \(S \) is non-separating,
We claim that there is an essential surface S.

Also H.

Geometries and boundary.

For γ.

F.

We attempt to construct M.

Proof of Theorem 1.

Every slope on ∂M.

Let T.

It only remains to prove the claim. Let T.

Proof of Theorem 1.

We attempt to construct S.

Therefore there is an essential surface F_k.

Let \tilde{T}.

Let \tilde{T}. Since k'.

Every slope on ∂M.

We claim that there is an essential surface S.

Using real coefficients, all cohomology groups have direct-sum decomposition into ± 1 eigenspaces for τ^*.
with obvious notation, it swaps \(\mu_1 \) with \(\mu_2 \) and \(\lambda_1 \) with \(\lambda_2 \). If \(\epsilon = \pm 1 \) then \(V_\epsilon \) has basis \(\{ \mu_1 + \epsilon \mu_2, \lambda_1 + \epsilon \lambda_2 \} \) and thus has dimension 2. Let

\[
K = \text{Im} \left[\text{incl}^*: H^1(\overline{W}; \mathbb{R}) \to H^1(\partial \overline{W}; \mathbb{R}) \right].
\]

Decompose \(K = K_+ \oplus K_- \). We claim that \(\dim(K_+) = \dim(K_-) = 1 \). Since \(\dim(K) = 2 \) the only other possibilities are that \(K_+ = V_+ \) or \(K_- = V_- \). The intersection pairing on \(\partial \overline{W} \) is dual to the pairing on \(H^1(\partial \overline{W}, \mathbb{R}) \) given by \(\langle \phi, \psi \rangle = (\phi \cup \psi) \cap [\partial \overline{W}] \). This pairing vanishes on \(K \). Since \(\langle \mu_1 + \epsilon \mu_2, \lambda_1 + \epsilon \lambda_2 \rangle = 2 \langle \mu_1, \lambda_1 \rangle = \pm 2 \), the restriction of \(\langle , \rangle \) to each of \(V_\pm \) is non-degenerate. This contradicts \(K = V_\pm \).

Choose a primitive class \(\phi \in H^1(\overline{W}; \mathbb{Z}) \) with \(\text{incl}^* \phi \in K_- \). Let \(S \) be an essential oriented surface in \(\overline{W} \) representing the class Poincaré dual to \(\phi \). Then \(\tau_*[S] = -[S] \) as required.

The 1–manifold \(\alpha_i = T_i \cap \partial S \) with the induced orientation is a 1–cycle in \(\partial \overline{W} \). Then \([\partial S] = [\alpha_1] + [\alpha_2] \in H_1(\partial \overline{W}) \). Since \(T_i \) is a torus all the components of \(\alpha_i \) are parallel. Since \(\tau(T_i) = T_2 \) all components of \(\partial S \) project to isotopic loops in \(\partial W \) thus \(S \) has invariant slope for the cover \(\overline{W} \to M \). This gives:

Case (i) If \(S \) is not the fiber of a fibration of \(\overline{W} \) then the result follows from Lemma 7.

Thus we are left with the case that \(S \) is the fiber of a fibration of \(\overline{W} \). Let \(N \) be the \(\mathbb{Z}_2 \)–universal covering of \(W \). This is a regular covering and each component of \(\partial N \) is a two-fold cover of \(\partial W \). We claim that the composition of coverings \(N \to W \to M \) is regular.

Recall that a subgroup \(H < G \) is characteristic if it is preserved by \(\text{Aut}(G) \). The \(\mathbb{Z}_2 \)–universal covering \(N \to W \) corresponds to the characteristic subgroup \(\pi_1 N < \pi_1 W \). The cover \(W \to M \) is cyclic and so \(\pi_1 W \) is normal in \(\pi_1 M \). A characteristic subgroup of a normal subgroup is normal. Hence \(\pi_1 N \) is also normal in \(\pi_1 M \). This proves the claim. It follows that \(N \to M \) is a \(\partial \)–cover. A pre-image, \(\tilde{S} \), of \(S \) in \(N \) is a fiber of a fibration.

Case (ii) Suppose the one-dimensional vector space of \(H_2(N, \partial N; \mathbb{R}) \) spanned by \([\tilde{S}] \) is invariant under the group of covering transformations of \(N \to M \).

Then, by Theorem 3, \(M \) is semi-fibered which contradicts our hypothesis. This completes case (ii). Therefore there is some covering transformation, \(\sigma \), such that \(\sigma_*[\tilde{S}] \neq \pm [\tilde{S}] \).
Because \widetilde{S} and $\sigma \widetilde{S}$ are fibers, they both meet every boundary component of N. Since S has invariant slope for the cover $N \to M$ it follows that \widetilde{S} and $\sigma \widetilde{S}$ have the same invariant slope for this cover.

Case (iii) Suppose S is a fiber and $[\partial \widetilde{S}] \neq \pm \sigma_* [\partial \widetilde{S}] \in H_1(\partial N)$.

Given a boundary component of N, there are integers a and b such that the class $a[\widetilde{S}] + b \cdot \sigma_* [\widetilde{S}] \in H_2(N, \partial N)$ is non-zero and represented by an essential surface G that misses this boundary component. Thus G is not a fiber of a fibration. Clearly G has invariant slope. The result now follows from Lemma 7 applied to the surface G in the ∂–cover N. This completes case (iii). The remaining case is:

Case (iv) S is a fiber and there is $\epsilon \in \{ \pm 1 \}$ with $\sigma_* [\partial \widetilde{S}] = \epsilon \cdot [\partial \widetilde{S}] \in H_1(\partial N)$.

Consideration of the homology exact sequence for the pair $(N, \partial N)$ shows $x = \sigma_* [\widetilde{S}] - \epsilon \cdot [\widetilde{S}] \in H_2(N, \partial N)$ is the image of some $y \in H_2(N)$. Using exactness of the sequence again it follows that $y + \iota_* H_2(\partial N)$ is not zero in $H_2(N)/\iota_* H_2(\partial N)$. Hence every filling of N produces a closed manifold with $\beta_2 > 0$. Infinitely many slopes on ∂M lift to slopes on ∂N. The result follows. This completes the proof of case (iv) and thus of the Theorem 1.

Proof of Corollary 2 Let $\eta(K)$ be an open tubular neighborhood of k. By hypothesis the knot exterior $M = N \setminus \eta(K)$ is irreducible. Every semibundle contains two disjoint compact surfaces whose union is non-separating, thus the first Betti number with mod-2 coefficients of a semi-bundle is at least 2. Because N is a homology sphere $H_1(M; \mathbb{Z}_2) \cong \mathbb{Z}_2$, therefore M is not a semi-bundle. Since N is a homology sphere it, and therefore M, are orientable.

If M is a bundle with fiber F then, since N is a homology sphere, F has exactly one boundary component. Since k does not bound a disk in N it follows that $M \neq D^2 \times S^1$. The result now follows from Theorem 1. If M contains a closed essential surface then infinitely many fillings are Haken, [3, Theorem 2.4.2]. The remaining possibilities are that M is hyperbolic and not a bundle, or else Seifert fibered. The hyperbolic non-bundle case follows from [1].

This leaves the case that M is Seifert fibered. The manifold M is not a twisted I–bundle over the Klein bottle because the latter has mod-2 Betti number 2. The result now follows from Lemma 5.

References

DC: Math Department, UCSB, Santa Barbara, CA 93106, USA
GW: Department of Math, Tufts University, Medford, MA 02155, USA, and Département de Mathématiques, UQAM, Montréal, QC H3C 3J7, Canada

cooper@math.ucsb.edu, genevieve.walsh@tufts.edu

Proposed: David Gabai Received: 23 September 2004
Seconded: Cameron Gordon, Joan Birman Revised: 8 March 2006
