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The geometric structure on a closed orientable hyperbolic 3-
manifold determines a discrete faithful representation ρ of its
fundamental group into SO+(3, 1), unique up to conjugacy. Al-
though Mostow rigidity prohibits us from deforming ρ, we can
try to deform the composition of ρ with inclusion of SO+(3, 1)
into a larger group. In this sense, we have found by exact com-
putation a small number of closed manifolds in the Hodgson-
Weeks census for which ρ deforms into SL(4, R), thus showing
that the hyperbolic structure can be deformed in these cases
to a real projective structure. In this paper we describe the
method for computing these deformations, particular atten-
tion being given to the manifold Vol3.

1. INTRODUCTION

Following the seminal work of M. Culler and P. Shalen
[Culler and Shalen 83], and that of A. Casson [Akbu-
lut and McCarthy 90], the theory of representation and
character varieties of 3-manifolds has come to be recog-
nized as a powerful tool, and has duly assumed an impor-
tant place in low-dimensional topology. Among the many
papers that have appeared in this context, we mention
[Culler et al. 87, Cooper et al. 94, Boyer and Zhang 98].
Most of the work carried out to date is concerned with
representations into Lie groups of 2 × 2 matrices, owing
mainly to connections with actions on trees and the isom-
etry groups of hyperbolic space in dimensions 2 and 3,
but also owing to the extreme difficulty of computations
beyond the realm of such matrices.

This paper was originally motivated by the following
question: under what circumstances can one take the hy-
perbolic structure on a closed hyperbolic 3-manifold and
deform it to a real projective structure? In the language
of representations, this amounts to beginning with an
SO+(3, 1)-representation φ0 of the fundamental group of
the manifold, given by the hyperbolic structure, and then
endeavoring to compute the component of the SL(4, R)-
representation variety containing φ0. Using a computer,
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it is relatively easy to see that for many closed hyperbolic
3-manifolds there are linear obstructions to deforming,
but when these obstructions vanish it is of considerable
interest to see whether genuine deformations exist. The
purpose of this article, then, is to describe a method for
the exact computation of the representation varieties of
closed hyperbolic 3-manifolds into SL(4, R). For simplic-
ity we restrict our attention to orientable manifolds with
2-generator fundamental groups.

The technique is sufficiently practical that we have
used it to compute 21 varieties of this type exactly,
and have investigated numerically the first 4500 closed
orientable manifolds with 2-generator groups in the
Hodgson–Weeks census [Hodgson and Weeks 00]. Nu-
merical evidence strongly suggests that only 52 of these
4500 manifolds admit nontrivial deformations of φ0 into
SL(4, R). When these deformations do occur, they
lead to a number of interesting constructions, includ-
ing families of real projective structures on the mani-
fold and families of discrete faithful representations into
PU(3, 1), the group of orientation-preserving isometries
of 3-dimensional complex hyperbolic space. These and
other theoretical aspects are considered in more depth in
[Cooper et al. 05]; in this paper we concentrate on the
computational aspects of the investigation.

The presence of an embedded totally geodesic sur-
face in the manifold guarantees the existence of a well-
established type of deformation known as bending, but
owing to their small volume, the census manifolds cannot
contain such surfaces [Kojima and Miyamoto 91]. The
underlying reason for the sporadic occurrence of these
deformations is still a mystery.

In order to make the paper reasonably self-contained,
there now follows a section summarizing the necessary
background information.

2. BACKGROUND

2.1 The Minkowski Model for Hyperbolic Space

A hyperbolic structure on a 3-manifold M corresponds
to a discrete faithful representation of the fundamental
group of M into the group of isometries of 3-dimensional
hyperbolic space H3. In the case that M is closed, by
Mostow rigidity the structure is unique up to isometry
(if M is noncompact and of finite volume, we also have
uniqueness if we add the requirement that the geometric
structure be complete).

In this article we shall focus our attention on closed
orientable hyperbolic 3-manifolds M . Thus the geometric

structure on M corresponds to a discrete faithful repre-
sentation φ0 : π1(M) → Isom+ H3, unique up to conju-
gacy; here Isom+ H3 denotes the group of orientation-
preserving isometries of H3. In the upper-half-space
model for H3, the group Isom+ H3 is naturally identified
with PSL(2, C), the group of Möbius transformations of
the boundary, but for us it will be more propitious to
work in the Minkowski model for H3, since our intention
is to consider Isom+ H3 as a subgroup of SL(4, R) and
search for deformations of the composite homomorphism
π1(M)

φ0−→ Isom+ H3 ↪→ SL(4, R).
Minkowski space of dimension n+1, denoted by Mn+1,

is the real vector space Rn+1 endowed with a quadratic
form Q of signature (n, 1), which we take without loss of
generality to be

Q(x0, x1, . . . , xn) = −x2
0 + x2

1 + · · · + x2
n.

The group of isometries of Mn+1 is the Lorentz group
O(n, 1); it consists of those (n + 1) × (n + 1) matrices A

satisfying A−1 = FAtF , where the superscript t denotes
transpose, and where F is the diagonal (n + 1)× (n + 1)
matrix with entries −1, 1, . . . , 1. An excellent reference
is [Epstein and Penner 88].

Let x denote (x0, x1, . . . , xn) ∈ Mn+1. In the
Minkowski model, real hyperbolic n-space is the “up-
per sheet” of the hyperboloid Hn = {x : Q(x) = −1},
namely the set of points of this hyperboloid for which
x0 > 0. We note that Hn is asymptotic to the light cone
C = {x : Q(x) = 0}, and that Q(x) > 0 if and only if
the vector x points in a direction outside C. It is not
hard to see that the tangent vectors at any point of Hn

satisfy this condition, whence the (3, 1)-form of Mn+1 is
positive definite on the tangent bundle of Hn; indeed, it
induces the expected Riemannian metric of constant neg-
ative curvature. The boundary of Hn in the Minkowski
model is the space whose points are rays of the light
cone C. The group Isom+ Hn is the subgroup SO+(n, 1)
of O(n, 1) consisting of linear transformations that (i)
have determinant 1, and (ii) preserve the sheets of the
hyperboloid {x : Q(x) = −1}. The group SO+(n, 1) has
index 4 in O(n, 1), and is the component subgroup of the
identity.

Let us specialize to the case n = 3. The assignment

(t, x, y, z) �→
[

t + z x + iy
x − iy t − z

]
defines an R-vector space isomorphism from R4 to the
space H2 of 2 × 2 Hermitian matrices over the com-
plex numbers; the quadratic form in H2 corresponding
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to Q under this isomorphism is simply the negative of
the determinant. We therefore have an isomorphism
M4 = (R4, Q) ≈ (H2,−det). It is then easy to construct
an isomorphism from PSL(2, C) to the group of isome-
tries of M4: we simply assign to each matrix A ∈ SL(2, C)
the map H �→ A∗HA(H ∈ H2), where ∗ denotes Her-
mitian transpose. We may construct an explicit isomor-
phism from PSL(2, C) to SO+(3, 1) by choosing a specific
basis for H2, for example{[

1 0
0 1

]
,

[
1 0
0 −1

]
,

[
0 1
1 0

]
,

[
0 i

−i 0

]}
,

and then computing the matrix of the linear transforma-
tion H �→ A∗HA with respect to this basis.

2.2 Eigensystems of Isometries of Hyperbolic Space

The isomorphism given above may be used to determine
the eigenvectors and corresponding eigenvalues of the
various kinds of isometry of H3 in the Minkowski model.
The situation may be summarized as follows.

(i) The eigensystem of a loxodromic. Let g ∈ Isom+ H3

be a loxodromic; then g acts freely on H3 and fixes two
points on the boundary of H3. In the upper-half-space
model, the boundary is identified with the extended com-
plex plane, and with suitable choice of coordinates we
may assume that the fixed points of g are 0,∞. Then
g corresponds to a dilation z �→ az on the boundary,
where the complex number a is the dilation factor of g

(see [Maskit 80]). We may think of g as the composi-
tion of a “pure translation” with axis the geodesic join-
ing 0 and ∞, together with a rotation (elliptic) about
that axis through an angle arg(a). The isometry g cor-
responds to the element of PSL(2, C) represented by the
matrix

[
a1/2 0

0 1/a1/2

]
, where a1/2 is either of the square

roots of a.
Application of the above isomorphism yields the fol-

lowing matrix in SO+(3, 1):⎡⎢⎢⎣
p q 0 0
q p 0 0
0 0 r s
0 0 −s r

⎤⎥⎥⎦ ,

where

p =
1
2

(
|a| + 1

|a|
)

, q =
1
2

(
|a| − 1

|a|
)

,

r = �e
(

a

|a|
)

, s = �m
(

a

|a|
)

.

The eigenvalues of this matrix are |a|, 1
|a| , eiθ, e−iθ,

where θ = arg(a). The eigenspaces of the real eigenvalues

|a|, 1
|a| are the two rays of the light cone identified with

the fixed points of g. Indeed, the subspace spanned by
these two rays meets H3 precisely in the axis of g. The
pairing of each eigenvalue with its inverse corresponds to
the fact that the axis of g admits two orientations. It can
happen that θ = 0, in which case the isometry is a pure
translation.

(ii) The eigensystem of an elliptic. Let g be an ellip-
tic isometry. Since we may regard g as a degenerate
loxodromic, with dilation factor on the unit circle, the
corresponding matrix in SO+(3, 1) will have eigenvalues
1, eiθ, e−iθ, where θ is the angle of rotation, as before.
The eigenspace of the eigenvalue 1 is the 2-dimensional
subspace of M4 containing the two rays on the light cone
corresponding to the ends of the axis of g.

(iii) The eigensystem of a parabolic. Let g be parabolic;
then g has one fixed point on the boundary, and g ef-
fects a Euclidean translation along each horosphere cen-
tered at this fixed point. If we choose coordinates in the
upper-half-space model such that the fixed point is ∞,
then g corresponds to the element of PSL(2, C) repre-
sented by [ 1 a

0 1 ], where the complex number a describes
the Euclidean translation. The corresponding matrix in
SO+(3, 1) is ⎡⎢⎢⎣

1 + p p r s
−p 1 − p −r −s
r r 1 0
s s 0 1

⎤⎥⎥⎦ ,

where

p =
1
2
|a|2, r = �e a, s = �m a.

This matrix has a single eigenvalue 1 with al-
gebraic multiplicity 4 and geometric multiplicity 2.
The eigenspace is spanned by a vector (in this case
(−1, 1, 0, 0)) pointing along the ray on the light cone cor-
responding to the single fixed point of g, and an orthogo-
nal vector (in this case (0, 0,−�m a,�e a)), whose direc-
tion encodes the direction of the Euclidean translation.

3. TRACE CALCULUS

The ultimate aim of this paper is to compute represen-
tation varieties of π1(M) into SL(4, R). Since any repre-
sentation can be composed with an inner automorphism
of the target group to produce another, we are content
to find just one representation in each such equivalence
class. In essence we are computing a variety V that is
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an embedded copy of the character variety in the full
representation variety.

If the variety V has dimension n, then the image
of each generator of π1(M) is a matrix whose entries
are algebraic functions of n independent parameters
u1, . . . , un. The matrix entries at a generic point of the
variety can therefore be considered to lie in a field F of
transcendence degree n over R, and V is then specified
by a single “tautological” representation Ψ into SL(4, F).
Individual representations are obtained from Ψ by eval-
uating at specific points (u1, . . . , un) in parameter space.
Clearly Ψ depends on a choice of parameterization of V.

Two important fields in this context are (i) the field
K generated by the entries of image matrices, and (ii)
the subfield T of K generated by the traces of image
matrices. By conjugating judiciously, we can guarantee
that the field K (hence also T ) is algebraic of finite degree
over the purely transcendental extension Q(u1, . . . , un)
of the rationals. The trace field T is independent of the
choice of conjugation, and in practice it is often easy to
guess T . However, in order to compute the variety V, we
shall need to specify generators for K over the base field
Q(u1, . . . , un); the elementary proposition given below
will be helpful in that regard.

In order to state Proposition 3.1 it will be conve-
nient to introduce some notation. Let a = (aij) be
any n × n matrix over a commutative ring R, and let
σ = (n1, . . . , nk) be any cyclically ordered sequence of
distinct numbers from {1, 2, . . . , n} (thus we regard the
sequences (n1, n2, n3, . . . , nk) and (n2, n3, . . . , nk, n1) as
being identical). Then we define aσ to be the following
element of R: aσ = an1n2an2n3 · · · ankn1 .

The proof of Proposition 3.1 is greatly facilitated by
having a computer algebra system to hand, for example
Mathematica or Maple.

Proposition 3.1. Let G be a subgroup of SL(4, C) gener-
ated by matrices a, b, where b is a diagonal matrix

b =

⎡⎢⎢⎣
λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

⎤⎥⎥⎦ .

Suppose further that

(i) the λi are all distinct;

(ii) tr(b) �= 0;

(iii) (tr(b))3 �= tr(b3).

Let T be the trace field of G, and let K be the field
obtained by adjoining λ1, λ2, λ3, λ4 to T . Then for each
cycle σ of length 1, 2, or 3 in {1, 2, 3, 4}, we have aσ ∈ K.

Proof: First we deal with the case in which σ has length
1, i.e., the diagonal entries aii (1 ≤ i ≤ 4). It is readily
checked that the four traces tr(a), tr(ab), tr(ab2), tr(ab3)
are all linear expressions in the entries aii over the field
K. We therefore have a system of linear equations for
the aii over K, and it is easily verified (using, for exam-
ple, Mathematica) that the determinant of the matrix of
coefficients is

∏
i<j(λi−λj). Therefore, from the hypoth-

esis that the λi are distinct, the system has a (unique)
solution and the aii have been shown to lie in the field K.

Next, consider the six products corresponding to cy-
cles of length 2, namely

a12a21, a13a31, a14a41, a23a32, a24a42, a34a43.

Let B denote the inverse of b. The trace of any word
in the generators a, b involving precisely two occurrences
of a (and no occurrences of a−1) is a linear expres-
sion in these six products with coefficients in the field
T (λ1, λ2, λ3, λ4, a11, a22, a33, a44), which we now
know to be equal to K. The six traces

tr(aa), tr(aab), tr(aaB), tr(aabb), tr(abab), tr(aBab)

therefore give rise to a linear system in the six products
over this field, and one can verify that the determinant
of the matrix of coefficients is 4

∏
i<j(λi − λj)2. Again,

this determinant is nonzero, and it follows that the six
products corresponding to cycles of length 2 are in the
field K.

The eight products corresponding to cycles of length
3 are dealt with similarly, using the traces of the words

aaa, aaab, aaabb, aaBab, aabaB,

aaBabb, abaBabb, abaBBabbb.

This time the determinant of the 8 × 8 matrix of coeffi-
cients is(∏

i<j

(λi − λj)4
)

tr(b)
(
(tr(b))3 − tr(b3)

)
,

and the result follows.

Remark 3.2. The choice of words at each stage of the
proof of Proposition 3.1 is certainly not unique, but the
eight words used for the last stage need to be chosen quite
carefully in order that the matrix of coefficients should
have full rank.
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Remark 3.3. If M is a closed, orientable, hyperbolic 3-
manifold, then each nontrivial element g ∈ π1(M) is
loxodromic. Let φ0 : π1(M) → SO+(3, 1) be the rep-
resentation given by the geometric structure; then the
eigenvalues of φ0(g) are distinct if and only if g is not
a pure translation. Therefore, if b is the diagonaliza-
tion of φ0(g) and g has a nontrivial rotational compo-
nent, then at least condition (i) of Proposition 3.1 is met.
Condition (ii) is automatically met because the trace of
φ0(g) cannot equal zero; this follows directly from the
fact, explained in Section 2.2, that φ0(g) has eigenvalues
|a|, 1

|a| , eiθ, e−iθ with |a| �= 1. Condition (iii) has also
been met for all manifolds we have investigated. Fur-
thermore, these three properties are “open conditions,”
so if they are satisfied for φ0(g), they are also satisfied
for φ1(g), given that φ1 is sufficiently close to φ0.

Remark 3.4. It often happens in practice that the char-
acteristic polynomial of the image of g ∈ π1(M) under
the tautological representation Ψ is reciprocal, meaning
that its roots are in reciprocal pairs; equivalently, the co-
efficients of the polynomial form a palindromic sequence.
If φ0(g) is not a pure translation, and if φ is an eval-
uation of Ψ close to the SO+(3, 1) representation φ0,
then the two “rotational” eigenvalues λ3, λ4 of φ(g)
are nonreal. If λ2 = 1/λ1 and λ4 = 1/λ3, then we
have λ3 + 1/λ3 ∈ T (λ1), whence λ3, 1/λ3 are roots of
a quadratic over the field T (λ1). Therefore K has degree
2 over T (λ1), and T (λ1) = K ∩ R.

The hypotheses of the following corollary are obviously
not best possible, but the corollary suits our purpose in
obtaining representations for which the matrix entry field
is algebraic over Q(u1, . . . , un).

Corollary 3.5. Let G,K be as in Proposition 3.1, and
let us impose the extra hypothesis that all off-diagonal
entries of a are nonzero. Let c be the matrix

c =

⎡⎢⎢⎣
1 0 0 0
0 a12 0 0
0 0 a12a23 0
0 0 0 a12a23a34

⎤⎥⎥⎦ .

Then the field generated by the matrix entries of cGc−1

is precisely K.

Proof: The group cGc−1 is generated by cac−1 = a′, say,
and cbc−1 = b. Let K ′ be the field generated by the
matrix entries of cGc−1. Since conjugation by c has not
affected traces or the diagonal matrix b, K is contained in

K ′. On the other hand, the (1, 2), (2, 3), (3, 4) entries of
the matrix a′ are all equal to 1, whence the matrix entries
of a′ are all expressible as products of the a′

σ and their
inverses. We now apply Proposition 3.1 to the group
〈a′, b〉, deducing that each entry of a′ is in K; it then
follows at once that K ′ ⊂ K.

4. CANONICAL FORM FOR REPRESENTATIONS

In this section we explain how to conjugate a representa-
tion φ : π1(M) → SL(4, R) into a convenient “standard”
form. As always, we are assuming that M is a closed, ori-
entable, hyperbolic 3-manifold and that its fundamental
group is generated by a pair of elements α, β. Let a, b

denote the images of α, β respectively under φ, and let
a0, b0 denote the corresponding images under the “base”
representation φ0 : π1(M) → SO+(3, 1). Since all non-
trivial elements of π1(M) are loxodromic, the matrix b0

is diagonalizable; also, as explained in Section 2.2, b0

has two distinct real eigenvalues and two other mutu-
ally conjugate eigenvalues. If φ is sufficiently close to φ0,
continuity together with the fact that the characteristic
polynomial of b has real coefficients ensures that the ma-
trix b enjoys the same properties. We make the further
assumption that the diagonalization of b satisfies con-
ditions (i), (ii), (iii) of Proposition 3.1. As explained in
Remark 3.3 above, condition (ii) is automatically met for
representations φ close to φ0, and in all observed cases
the other two conditions are also met; should this happen
not to be so, one could resort to changing the generating
set for π1(M).

Let the two real eigenvalues of b be λ1, λ2, and let
the other two eigenvalues be λ3, λ3. Since b is an
automorphism of R4, we may choose real eigenvectors
v1,v2 for λ1, λ2 respectively, and eigenvectors v3,v3

for λ3, λ3. Since these four eigenvectors form a lin-
early independent set over C, the set of real vectors
{v1,v2,v3 + v3, i (v3 − v3)} is also linearly independent
over C, hence also over R. Therefore each vector in R4

is uniquely expressible as a real linear combination of
v1,v2,v3 + v3, i (v3 − v3), or alternatively as a linear
combination k1v1 + k2v2 + k3v3 + k3v3, where k1, k2 are
real.

Let us now consider the matrices a1, b1 ∈ SL(4, C)
representing the same linear transformations as a, b re-
spectively, but with respect to the basis of eigenvectors
{v1,v2,v3,v3}. Then b1 is diagonal, and from the discus-
sion in the previous paragraph, the entries of the upper
left 2 × 2 submatrix of a1 are real. Assuming that the
off-diagonal entries of a1 are nonzero, we see that we may
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adjust v2 by a real scalar so that the (1, 2) entry of a1 is 1.
We may independently adjust the last two eigenvectors
by scalars so that the (2, 3) and (3, 4) entries are also 1.
Then, from Corollary 3.5, all entries of a1 lie in the field
K obtained by adjoining the eigenvalues λ1, λ2, λ3, λ4 to
the trace field T .

We can improve matters slightly by conjugating a1, b1

to new matrices a2, b2 by means of a further change of
basis, namely to {v1,v2, a(v1), a(v2)}.1 Note that each
of these basis vectors is real, so the resulting matrices
have real entries. Indeed, they have the convenient form

a2 =

⎡⎢⎢⎣
0 0 ∗ ∗
0 0 ∗ ∗
1 0 ∗ ∗
0 1 ∗ ∗

⎤⎥⎥⎦ , b2 =

⎡⎢⎢⎣
λ1 0 ∗ ∗
0 λ2 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

⎤⎥⎥⎦ .

Since the transition matrix corresponding to this latest
change of basis has columns⎡⎢⎢⎣

1
0
0
0

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0
1
0
0

⎤⎥⎥⎦ , a1 ·

⎡⎢⎢⎣
1
0
0
0

⎤⎥⎥⎦ , a1 ·

⎡⎢⎢⎣
0
1
0
0

⎤⎥⎥⎦ ,

its entries are in K, and we infer that the entries of a2, b2

are in K ∩ R. In particular, if the characteristic polyno-
mial of b is reciprocal, by Remark 3.4, a2, b2 are matrices
over the field T (λ1).

Remark 4.1. Matrices with reciprocal characteristic poly-
nomials are particularly desirable, because their eigen-
values admit relatively simple expressions in terms of the
coefficients. Indeed, the roots of 1 + px + qx2 + px3 + x4

are

1
4

(
−p −

√
p2 − 4q + 8

±
√

2
(
p2 − 2q − 4 + p

√
p2 − 4q + 8

))

and

1
4

(
−p +

√
p2 − 4q + 8

±
√

2
(
p2 − 2q − 4 − p

√
p2 − 4q + 8

))
,

as is easily verified by substituting y = x + 1/x.

1In practice, this set of vectors has always been found to be
linearly independent within a neighborhood of φ0.

5. INFINITESIMAL AND ACTUAL DEFORMATIONS

Since a representation of π1(M) into a linear group G is
determined by its effect on the generators of π1(M), we
may consider the representation variety Hom(π1(M), G)
as being a subspace of the k-fold product of G, where k

is the number of generators. In particular, if k = 2 and
G = SL(4, R), we consider the variety to be a subspace
of SL(4, R) × SL(4, R), which in turn embeds naturally
into R32 if we use matrix entries as coordinates. Since
M is closed, π1(M) has deficiency zero (recall that the
deficiency of a finitely presented group is the maximum
over all finite presentations of the number of generators
minus the number of relators).

Given a closed orientable hyperbolic 3-manifold M ,
the first step in deciding whether φ0 : π1(M) →
SO+(3, 1) deforms into SL(4, R) is to linearize the prob-
lem and see whether there exist perturbations φ :
π1(M) → GL(4, R) of φ0 that preserve the group rela-
tions to first order. Such perturbations are called in-
finitesimal deformations or deformations to first order,
and form the Zariski tangent space at φ0.

There now follows a brief review of the Zariski tangent
space. Our discussion is specific to the current context,
but is easy to generalize. Suppose that we have a group
G = 〈x, y | R1, R2〉 and that we wish to investigate the
possibility that a representation ρ : G → SL(4, R) can
be smoothly deformed. If such a deformation were pos-
sible, there would exist a smooth path of representations
(xt, yt) for which (x0, y0) was the given initial represen-
tation (ρ(x), ρ(y)). Clearly, we must have R1(xt, yt) = I,
R2(xt, yt) = I all along the path, but this condition is
usually hard to work with; indeed, it is the main con-
cern of this article. It is much easier to focus on the
corresponding linearized condition at t = 0, thereby ob-
taining a necessary (but not sufficient) condition for the
existence of deformations. Writing xt = vtx0, yt = wty0,
we see that a smooth path (xt, yt) corresponds to pair of
paths vt, wt in the Lie group SL(4, R) through the iden-
tity. Let v,w be the tangent vectors at I to the paths
vt, wt, respectively. The vectors v,w are elements of the
Lie algebra sl(4, R) and satisfy a certain linear condition
easily obtainable from the group relators R1, R2 by tak-
ing Fox derivatives. The Zariski tangent space for the
deformation problem is the subspace of sl(4, R)⊕sl(4, R)
consisting of all ordered pairs (v,w) satisfying this linear
condition. Intuitively, these ordered pairs can be consid-
ered as “infinitesimal deformations.” There is of course
no guarantee that a given vector in the Zariski tangent
space is integrable, i.e., that it corresponds to an ac-
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tual deformed representation; indeed, there is in general
an infinite sequence of obstructions that have to be sur-
mounted (see [Kapovich 00, p. 71] for a discussion of this
issue).

The Zariski tangent space is relatively easy to com-
pute in Mathematica or Maple as the kernel of a Jaco-
bian matrix J ; since usually we are interested only in
its dimension, we merely compute the nullity of J . The
method is illustrated in Section 7 for the fundamental
group of the manifold Vol3.

At this point it is necessary to discuss a fundamen-
tal issue regarding the practicalities of computation. A
computer has two distinct modes of computation, namely
integer and floating-point, each with its advantages and
drawbacks. Assuming freedom from programming error,
integer computations are exact, and their output may be
used directly in a mathematical proof. However, in many
situations, for example if one wishes to solve a nonlinear
equation by means of an iterative method based on ana-
lytical principles, integer computations are not appropri-
ate. Floating-point computations, on the other hand, are
inherently inexact, however many decimal places of accu-
racy are used, since the result of any arithmetic operation
is rounded off before being stored for further processing.
With floating-point calculations it is possible to assert
that a result is accurate within certain specified bounds
if one keeps track of the propagation of roundoff errors.
Therefore, for example, with sufficient working accuracy
and with due cause, one can assert that the result of a
computation is nonzero; however, one can never infer,
solely on the basis of a floating-point computation, that
a number is exactly zero.

The computation of the dimension of the Zariski tan-
gent space takes place in floating-point mode. Therefore,
strictly speaking, by computing the nullity of the Jaco-
bian J we are computing only an upper bound for the
dimension. However, for theoretical reasons we do have
a lower bound. There are two kinds of “inessential” in-
finitesimal deformations that we must exclude from our
count. First, composition with inner automorphisms of
GL(4, R) gives rise to 16− 1 = 15 dimensions of inessen-
tial infinitesimal deformations (we subtract 1 from 16
since the center of GL(4, R) has dimension 1, and abso-
lute irreducibility of the representation guarantees that
only scalar matrices can commute with the generators).
Second, suppose that H1(M) has a free summand of rank
r. Then there exists an epimorphism η of π1(M) to the
direct sum of r copies of Z, and we have r independent
1-parameter families of inessential infinitesimal deforma-
tions φi,λ : g �→ λwi(g) · φ0(g), where the parameter λ is

a nonzero real number, and the “weight function” wi is
the composition of η with projection to the ith summand
of Z ⊕ · · · ⊕ Z (1 ≤ i ≤ r).2 Manifolds for which ν(J) is
found to equal 15+ r are rigid, in the sense that χ(φ0) is
an isolated point in the character variety. This assertion
is justified by the fact that 15+r is both an upper bound
(as a result of the computation) and a lower bound (from
the theory). The excess of ν(J) over 15 + r is the poten-
tial dimension of the character variety of deformations of
φ0 into SL(4, R); as already mentioned, quite apart from
the uncertainty due to roundoff error, there is no guar-
antee that an infinitesimal deformation is integrable to
an actual deformation.

It is possible in principle to calculate ν(J) exactly,
since J depends only on the base representation φ0 :
π1(M) → SO+(3, 1). However, in order to be able to
paint a broad picture relatively quickly, we have chosen
to compute ν(J) in floating-point mode, using an ap-
proximation of J to 1000 decimal places. To obtain this
accuracy, we start with the representation ρ : π1(M) →
SL(2, C) given by SnapPea [Weeks 90] to machine accu-
racy, and then increase the accuracy of ρ to the required
level by means of a few iterations of Newton’s method, us-
ing the group relations, before converting to a very accu-
rate approximation of φ0 : π1(M) → SO+(3, 1). In cases
in which the computed dimension of the Zariski tangent
space exceeds the known dimension of the representation
variety, the stated dimension of the Zariski tangent space
is therefore not rigorous, albeit almost certainly correct.

This computation was carried out for the first 4500
2-generator closed orientable manifolds in the Hodgson–
Weeks census [Hodgson and Weeks 00], and it was found
that only 61 of these manifolds admit nontrivial infinites-
imal deformations. Of these, 21 have been shown rigor-
ously to admit actual deformations, and there is com-
pelling numerical evidence that a further 31 do. Of the
remaining 9 manifolds, 3 have been proved to be rigid us-
ing a certain third-order obstruction explained in [Cooper
et al. 05], and numerical evidence strongly suggests that
the remaining 6 are rigid. These results are set out in Ta-
ble 1. A check mark in the last column indicates that the
variety has been computed exactly and has been shown
rigorously to have the stated dimension; absence of a
check mark should be interpreted as “compelling numer-
ical evidence only.” Details of the computation for the
manifold m007(3, 1) are given in Section 7 of this paper.

2Of course, these are not infinitesimal deformations into
SL(4, R), but for computational expediency we first consider all
infinitesimal deformations into GL(4, R) and then take an appro-
priate subspace.
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The outcome for v2678(2, 1) is of interest. This man-
ifold apparently has a 5-dimensional space of essential
infinitesimal deformations, whereas the SL(4, R) charac-
ter variety apparently has two 3-dimensional branches
meeting in a 1-dimensional subvariety containing χ(φ0).
It would follow that χ(φ0) is not a smooth point of the
variety. It is also interesting that from the first 2000 man-
ifolds in the census, v2678(2, 1) appears from numerical
evidence to be the only example admitting deformations
into SO(4, 1). K. Scannell [Scannell 00] has proved that
m036(−3, 2), the double cover of Vol3, admits infinitesi-
mal deformations into SO(4, 1); however, numerical evi-
dence suggests that these are not integrable.

6. SUMMARY OF THE COMPUTATIONAL
PROCEDURE

We are now ready to give an outline of the entire compu-
tational procedure. A feature of the method is that the
trace field, matrix entry field, and exact matrix entries
are derived by informed guesswork based on numerical
data; it is only at the very last step that the existence of
the representation variety is proved, by checking formally
that the proposed matrices Ψ(α),Ψ(β) satisfy the two re-
lations of π1(M). Initial data needed to get started, i.e.,
generators and relations for π1(M) and φ0 accurate to a
few decimal places, can easily be obtained using SnapPea
[Weeks 90] or Snap [Coulson et al. 00].

Step 1. Compute the dimension of the Zariski tangent
space at the SO+(3, 1) representation φ0, using a highly
accurate approximation to the Jacobian matrix; the com-
putational details are best understood by reading the ac-
count of this step in Section 7. If the manifold is found
to be rigid, then there are no deformations, and we quit.

Step 2. Apply a small random perturbation to φ0 by
slightly modifying the matrices φ0(α), φ0(β), and then
perform Newton’s method to try to converge to a rep-
resentation φ1 : π1(M) → SL(4, R) not conjugate to φ0

(the test is to compare characteristic polynomials of ma-
trices φ0(g), φ1(g) for various elements g ∈ π1(M)). The
32 unknowns at each stage of the Newton process are the
adjustments to the 32 matrix entries needed to cancel out
the residuals to first order. The two defining relations
of the group provide 32 constraints for these unknowns,
but in the case that H1(M) has a free direct summand
it will be necessary to add constraints det(φ1(α)) = 1,
det(φ1(β)) = 1. Since there are now more equations than
unknowns, we use the QR decomposition of the matrix
of coefficients (i.e., the Jacobian matrix) to find a least-
squares solution to the linear system.

It can happen that the manifold is rigid despite the ex-
istence of a nontrivial Zariski tangent; this phenomenon

manifests itself here by the Newton process refusing to
converge.3 To prove rigidity one then has to compute
a higher-order obstruction, for example the third-order
obstruction described in [Cooper et al. 05]. Referring
to Table 1, in this way it was proved that m149(−4, 1),
m159(2, 3), m293(4, 1) are all rigid. The six outstanding
cases listed in Table 1 have not been checked rigorously,
but there is strong evidence that they are rigid.

If the Newton process converges satisfactorily to a rep-
resentation φ1 distinguished from φ0 by examination of
characteristic polynomials, we move on to Step 3. We
note that because we are using floating-point arithmetic,
we cannot yet assert definitely that we have found a gen-
uine representation φ1.

Step 3. Find a suitable parameterization of the charac-
ter variety. The character variety can always be param-
eterized by means of coefficients of characteristic poly-
nomials, but the aim is to find parameters u1, . . . , un

for which the trace field has small degree over the field
Q(u1, . . . , un). This usually involves a modest amount of
experimentation. From Step 1 we have an upper bound
on the number of parameters n.

From Step 2 we already know of at least one trace that
varies as one moves away from φ0, say tr(φ(g)), where
g ∈ π1(M). Add a constraint to the Newton process of
Step 2, declaring that this trace is some rational number
reasonably close to the value of this trace at φ0. This
might make the convergence of the Newton process less
robust, in which case it will be necessary to control the
step length, by multiplying the adjustments at each stage
by some dynamically controlled scale factor. Once one
has achieved convergence, determine by means of LLL
[Lenstra et al. 82] (or an alternative, e.g., PSLQ [Bailey
and Ferguson 91]) whether all other traces now appear
to be algebraic numbers, and if so, note the degree and
complexity of their minimal polynomials. If some trace
appears not to be algebraic, select it as an additional
parameter, add an extra constraint declaring it to equal
an appropriate rational number, and repeat the process.
We note that the proof of Proposition 3.1 provides a list
of traces that is sufficient for this purpose.

Eventually, we should achieve a numerical approxi-
mation to a representation where LLL declares that all
traces are algebraic. In practice, one would not wish
to compute a variety for which n > 2, although we have
used this method to work out the deformation variety for
one 3-dimensional example, the cusped manifold m007.
In the last section of this paper, we take the reader in
some detail through a 1-dimensional example, namely
the closed manifold m007(3, 1) known as Vol3.

3This is probably because the vanishing of the first-order ob-
struction to the existence of a variety implies the vanishing of the
second-order obstruction also; see, for example, [Cooper et al. 05].
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manifold volume inf. actual

m007(3, 1) 1.014941 1 1 �
m036(−3, 2) 2.029883 1 1 �
m034(−4, 1) 2.195964 1 1 �
m160(−3, 2) 2.595387 1 1 �
m082(1, 3) 2.786804 1 1 �
m078(5, 1) 2.816179 1 1 �
m100(2, 3) 2.882494 1 1 �
m149(−4, 1) 3.044824 1 0 �
m188(2, 3) 3.044824 1 1 �
m247(−1, 3) 3.044824 1 1 �
m159(2, 3) 3.044824 1 0 �
m115(5, 2) 3.060334 1 1 �
m121(−4, 3) 3.195780 1 1 �
m336(−1, 3) 3.663862 2 2 �
m303(−1, 3) 3.663862 1 1 �
s572(1, 2) 3.663862 1 1 �
m293(4, 1) 3.663862 1 0 �
s645(−1, 2) 3.663862 1 1 �
m312(−1, 3) 3.663862 2 2 �
s778(−3, 1) 3.663862 1 1 �
m304(5, 1) 3.663862 1 1
s682(−3, 1) 3.663862 3 2
s350(−4, 1) 3.663862 1 0
m294(4, 1) 3.663862 1 0
s495(1, 2) 3.663862 1 0
s235(−3, 4) 3.794090 1 1
m290(−3, 4) 3.818259 1 1
m350(−1, 3) 3.861814 1 1
m360(−2, 3) 3.861814 1 1
s287(3, 4) 3.896345 1 1
m346(2, 3) 3.933297 1 1

manifold volume inf. actual

s912(0, 1) 4.059766 2 2
m401(−2, 3) 4.059766 2 2
v825(4, 1) 4.059766 1 1
m358(1, 3) 4.059766 1 1
m368(−4, 1) 4.059766 1 0
s778(−3, 2) 4.059766 2 2 �
s779(1, 2) 4.059766 2 2
m395(−2, 3) 4.059766 2 2
s440(−1, 3) 4.059766 1 1
v2678(2, 1) 4.116968 5 3
s500(4, 1) 4.116968 1 1
v2334(−1, 2) 4.116968 2 0
s490(−4, 1) 4.116968 1 1
s668(4, 1) 4.221804 1 1
s518(−1, 4) 4.400901 1 1 �
v2817(−3, 1) 4.407345 1 1
s533(1, 4) 4.422687 1 1
m402(2, 3) 4.436783 1 1
v1461(1, 3) 4.598034 1 1
s636(−1, 4) 4.598853 1 1 �
s618(1, 4) 4.598853 1 1 �
v1222(−5, 1) 4.626243 1 1
v1251(4, 3) 4.686034 1 1
s666(−4, 3) 4.686034 1 1
v2413(−3, 2) 4.686034 2 0
v1695(−5, 1) 4.834441 1 1
v1860(2, 3) 4.974542 1 1
v1847(−4, 3) 5.016110 1 1
v1845(−5, 2) 5.017640 1 1
v3283(−3, 1) 5.171469 1 1

TABLE 1. Infinitesimal and actual deformations of closed manifolds.

Step 4. Compute the trace field T , as an extension of
finite degree over the field Q(u1, . . . , un). This is best
explained by means of a worked example, but broadly
speaking, the method is to compute generators for the
trace field evaluated at each point of a cubic lattice in
parameter space, using LLL, and then obtain generators
for T over Q(u1, . . . , un) using polynomial interpolation.4

The points of the lattice should be chosen to have ratio-
nal coordinates whose denominators are not too large;
moreover, the lattice points should be reasonably close
together. If n > 1 it will be necessary to interpolate
in each of the n coordinate directions, so as to obtain a
polynomial in the n variables u1, . . . , un. In practice, a
row of data points (x1, y1), . . . , (xk, yk) for the interpola-
tion may not lie on the graph of the desired polynomial,
but (x1, λ1y1), . . . , (xk, λkyk) will lie on the graph for in-
tegers λi that are small relative to the yi. Determining
these “multipliers” λi is perhaps the trickiest part of the
entire process, but skill comes with practice! It is usually
self-evident when the correct λi have been found, since
the degree of the interpolating polynomial is then much
smaller than the number of data points.

Once the trace field T has been computed, choose once
and for all a basis τ1, . . . , τm for T as a vector space over
Q(u1, . . . , un).

4Here we use polynomial interpolation of the most basic kind,
namely fitting a polynomial of least degree to finitely many data
points. Functions for this purpose are provided in all standard
computer algebra systems.

Step 5. Choose an element of π1(M) whose image is
to fulfill the role of the matrix b in Section 3. If at all
possible, to avoid field extensions of uncomfortably large
degree, b should have a reciprocal characteristic polyno-
mial. Fortunately, such elements have proved to be avail-
able for all varieties that we have computed. Once this
matrix has been chosen, decide on a basis for the field K
generated by the matrix entries over Q(u1, . . . , un). This
basis will of course be a function of the parameters.

Step 6. Express each trace used in the proof of Propo-
sition 3.1 as a linear combination

∑n
i=1 fiτi, where the

fi are rational functions of the parameters u1, . . . , un.
Again one uses polynomial interpolation, but for deter-
mining the coefficients fi at each lattice point the re-
quired tool is a facility for detecting integer relations.
Pari’s lindep is such a function [Batut et al. 90]. Neither
Mathematica nor Maple has a built-in integer-relation fa-
cility, but notebooks (for Mathematica) and worksheets
(for Maple) are available that will perform this task.

Step 7. Write a program that uses the method of Sec-
tion 4 to compute generating matrices a, b in standard
form, to a large number of decimal places, for each point
of a lattice in parameter space. The “large number” just
referred to depends on the complexity of the situation,
but typically 2000 decimal places are appropriate, so that
the integer-relation detector lindep can produce results
that are not spurious. The number of points in the lat-
tice depends also on the complexity, but usually we have
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found that an n-cube of edge length 50 is sufficient. For-
tunately, this method of computing numerical approxi-
mations to representations is remarkably fast, and even
the computation of the 2500 representations for a 50×50
lattice can usually be accomplished in an hour or two.

Step 8. Determine an exact expression for each matrix
entry in terms of the parameters, using lindep and poly-
nomial interpolation, as in Step 4.

Step 9. Use the formal algebra capabilities of Maple or
Mathematica to verify that the exact matrices obtained
in the previous step satisfy the group relations.

7. THE MANIFOLD VOL3

The first manifold in the census to admit SL(4, R)
deformations is the third manifold listed in the cen-
sus, known as “Vol3.” Its denotation in the census
is m007(3, 1), meaning that it is obtained by (3, 1)-
surgery on the cusped manifold m007. The manifold
m007, in turn, is the seventh in the census of cusped
manifolds obtained by gluing together up to five ideal
tetrahedra (for historical reasons, the prefixes “s” and
“v” are used for 6 and 7 ideal tetrahedra, respec-
tively). Surgery coefficients are given relative to the ba-
sis {[shortest curve], [second-shortest curve]} for the first
homology group of the cusp cross section.

SnapPea gives the following presentation for the fun-
damental group of Vol3:

π1(Vol3) = 〈a, b|aabbABAbb, aBaBabaaab〉,
and the following numerical approximation to a lift
to SL(2, C) of the discrete faithful representation into
PSL(2, C):

a �→
[

α1 α2

α3 α4

]
,

where

α1 = 0.853230696696 − 1.252448658070i,

α2 = −0.500000000000 + 0.866025403784i,

α3 = 0.159374980683 − 2.137255282203i,

α4 = 0.371514174695 + 1.959555439256i,

and

b �→
[

β1 β2

β3 β4

]
,

where

β1 = 0.500000000000 + 0.866025403784i,

β2 = −0.286522831781 + 0.594411651593i,

β3 = 0.658037006476 + 1.365143787662i,

β4 = 0.000000000000 + 0.000000000000i,

Here, for notational convenience, we are using the up-
percase letters A,B to denote a−1, b−1 respectively. Since
we shall be considering only representations of π1(Vol3)
into linear groups within matrix algebras, we shall take
the liberty of considering a, b as matrices and write the
group relations as

r1(a, b) := aabb − BBaba = 0,

r2(a, b) := aBaBa − BAAAB = 0.

We begin by using Newton’s method to improve the
accuracy of the SL(2, C) representation. The procedure
is to compute the residuals y1, y2 of r1, r2, namely their
actual starting values (which are already close to the
zero 2 × 2 matrix), and then solve a linear system to
find changes da, db in the matrices a, b that cancel out
these residuals to first order. For this we compute formal
expressions for the changes dr1, dr2 in r1, r2 effected by
changing a, b to a + da, b + db; we then solve the system
dr1 = −y1, dr2 = −y2.

“Differentiating” mM = I, we obtain (dm)M +
m(dM) = 0, whence dM = −M(dm)M . Therefore

dr1 =
(
(da)abb + a(da)bb + aa(db)b + aab(db)

)
− ((−B(db)B)Baba + B(−B(db)B)aba

+ BB(da)ba + BBa(db)a + BBab(da)
)
,

dr2 =
(
(da)BaBa + a(−B(db)B)aBa + aB(da)Ba

+ aBa(−B(db)B)a + aBaB(da)
)

− ((−B(db)B)AAAB + B(−A(da)A)AAB

+ BA(−A(da)A)AB + BAA(−A(da)A)B

+ BAAA(−B(db)B)
)
.

The eight unknowns of the linear system are the en-
tries of the matrices da, db, and entry-by-entry compar-
ison of dri with −yi (i = 1, 2) provides eight equations
in these unknowns. All this is easy to program in Math-
ematica or Maple, and after a small number of itera-
tions we arrive at an SL(2, C) representation accurate to
1000 decimal places. We note in the case that H1(M)
has a free summand, it is necessary to add constraints
det(a) = 1,det(b) = 1 and then use a QR decomposition
on the resulting rectangular matrix of coefficients.

The accurate SL(2, C) representation that we have just
obtained is now converted to an SO+(3, 1) representa-
tion, using the method explained in Section 2.1. Let
a0, b0 denote the images in SO+(3, 1) of the group gener-
ators. The Jacobian matrix J , whose nullity we need to
compute for Step 1, is obtained using the above expres-
sions for dr1, dr2, with a0, b0 in place of a, b. Since a0, b0

have in total 32 entries, J has size 32× 32. We then find
that the rank of J is 16, whence the nullity of J is also
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16 and from the discussion of Section 5 there is one di-
mension’s worth of essential infinitesimal deformations.5

We now proceed to Step 2. We perturb a0, b0 very
slightly to matrices a1, b1, and then try to converge to a
representation using Newton’s method. The linear sys-
tem to be solved at each iteration uses the matrix J of
the previous step, but with the current matrices a1, b1

in place of a0, b0. As an example, one can obtain matri-
ces a1, b1 giving a representation to 500 decimal places of
accuracy, with characteristic polynomials as follows:

charpoly(a1)

= 1.0000000000000000000000000000000000000000000000

− 2.0000000000000886784402728253059992711608536655x

− 2.0000000000000886784402728253059992711608536655x
3

+ x
4

and

charpoly(b1)

= 1.0000000000000000000000000000000000000000000000

− 1.0000000000000000000000000000000000000000000000x

− 3.0000000000003547137610913090878628538644597935x
2

− 1.0000000000000000000000000000000000000000000000x
3

+ x
4
.

On the other hand, the characteristic polynomials of
a0, b0 are

charpoly(a0) = 1 − 2x − 2x3 + x4,

charpoly(b0) = 1 − x − 3x2 − x3 + x4,

and we are encouraged to try taking the trace of a1 as
parameter, v say. Note the symmetric nature of the char-
acteristic polynomials of a1, b1; also note that the trace
of b1 appears to be constant.

Running the Newton program again with the extra
constraint tr(A1) = 2.001, we obtain a representation (to
the same accuracy), with

charpoly(a1) =

1.0000000000000000000000000000000000000000000000

− 2.0010000000000000000000000000000000000000000000x

− 2.0010000000000000000000000000000000000000000000x
3

+ x
4

and

charpoly(b1) =

1.0000000000000000000000000000000000000000000000

− 1.0000000000000000000000000000000000000000000000x

− 3.0040010000000000000000000000000000000000000000x
2

− 1.0000000000000000000000000000000000000000000000x
3

+ x
4
,

5Strictly speaking, because we are working in floating-point
mode, we may assert at present only that the space of essential
infinitesimal deformations has dimension at most 1.

i pi(x)

1 5181915799 − 1490060879x + 104060401x2

2 5389356866 − 1549614193x + 108243216x2

3 5602964647 − 1610935039x + 112550881x2

4 5822860162 − 1674058049x + 116985856x2

5 6049165607 − 1739018191x + 121550625x2

6 6282004354 − 1805850769x + 126247696x2

7 6521500951 − 1874591423x + 131079601x2

8 6767781122 − 1945276129x + 136048896x2

9 7020971767 − 2017941199x + 141158161x2

10 83041 − 10000x

TABLE 2. Minimal polynomials of tr(abAB) at selected
points of V.

and we suspect strongly that the middle term of the char-
acteristic polynomial of b1 is −(v2−1). (A keen observer
might have noticed this earlier.)

We now try to identify the trace field. A quick search
reveals that the trace of the commutator a1b1A1B1 ap-
pears to be irrational, and that according to LLL, for
rational v it appears to be a root of a quadratic over
Q (see the Appendix, Section 8, for a brief descrip-
tion of LLL). We run the Newton program again for
v = 2 + 1

100+i (1 ≤ i ≤ 10), and print out the minimal
polynomials of this trace, as given by LLL. The results
are displayed in Table 2.

We proceed to interpolate the first nine polynomi-
als, assuming that the anomalous degree of the poly-
nomial for i = 10 is caused by accidental rationality of
tr(a1b1A1B1) at v = 2+ 1

110 . The polynomials are defined
only up to integer multiples; however, the coefficients ap-
pear to lie on a “nice” curve, so it probably will not be
necessary to find “multipliers” λi.

Indeed, interpolation reveals that the minimal poly-
nomial for this trace is

1 − (v4 − 2)x + (2v4 + 4v2 + 1)x2,

with discriminant v2(v2 + 2)2(v2 − 4). We are led to
surmise that the trace field is

T = Q(v)(α), where α =
√

v2 − 4;

some support for this conjecture is provided by compu-
tation of several other traces. Incidentally, we note that
for v = 2+ 1

110 , the quantity
√

v2 − 4 is the rational num-
ber 21

110 , explaining the anomalous polynomial of degree
1 for i = 10.

We now proceed to Step 5, where we choose the matrix
to be diagonalized. Since the characteristic polynomial
of b1 is reciprocal, satisfies the conditions of Proposition
3.1, and has roots that are relatively simple expressions
in v, we select b1 for this purpose (in fact, a1 would have
done equally well). Two of the eigenvalues of b1 are real
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for v > 2; they are

λ1 =
1
4

(
1 +

√
5 + 4v2 +

√
2
(
−5 + 2v2 +

√
5 + 4v2

))

and

λ2 =
1
4

(
1 +

√
5 + 4v2 −

√
2
(
−5 + 2v2 +

√
5 + 4v2

))
.

If it should transpire that our guess for the trace field
is correct, we can already predict from the discussion of
Section 4 that the field generated by the matrix entries
will be K = Q(v)(α, λ1), and that a vector space basis for
K over Q(v) will be {1, γ, β, βγ, α, αγ, αβ, αβγ}, where

α =
√

v2 − 4, β =
√

4v2 + 5, γ =
√

2(−5 + 2v2 + β).

We note that the field K is not a Galois extension of Q(v),
since for v > 2 it does not contain the two nonreal roots of
the minimal polynomial of λ1. It has an automorphism
σ1 negating α and fixing γ, and an automorphism σ2

fixing α and negating γ; these automorphisms commute
and generate the automorphism group of K : Q(v), which
is therefore a Klein group of order 4.

Moving on to Step 6, we would now like to produce
representations of high numerical accuracy (2000 decimal
places to be safe) for a sequence of values of the parame-
ter v, say v = 2 + 1

110+i (1 ≤ i ≤ 20) (recall that we wish
to avoid v = 2 + 1

110 ). In the case of Vol3 it is feasible to
obtain these directly from the Newton program; however,
typically this is too slow, and a much better approach is
to use the method of Proposition 3.1.

Thus our immediate task is to identify each of the 18
traces used in that proposition as elements of the trace
field T = Q(v)(α). For this we run the Newton program
as we did earlier for the trace of a1b1A1B1, but this time,
for each trace t, we run the integer-relation detector lin-
dep on the vector (1, α, t) and interpolate the resulting
coefficients over the data points. In this way we obtain a
generic relation p0(v) + p1(v)α + p2(v)t = 0, where each
pi is a polynomial in v with integer coefficients, and we
record that t = −p0(v)

p2(v) − p1(v)
p2(v)α. The results for the 18

traces are set out in Table 3.
These are incorporated into a short program that pro-

duces (numerical approximations to) the canonical forms
a2, b2 defined in Section 4 for the generating matrices, by
solving the linear systems given in the proof of Proposi-
tion 3.1 and then conjugating as described in Section 4.

The penultimate stage of the process is to apply lindep
and polynomial interpolation to our data, so as to ob-
tain exact expressions for the matrix entries. The (2, 3)
entry of the matrix a2 gives a good idea as to what is
involved here. Let us denote this entry by x. For each

tr(a) = v tr(aBab) = 1

tr(ab) = v tr(aaa) = 3v + v
3

tr(abb) = v tr(aaab) = v

tr(abbb) = v
3

tr(aaabb) = v

tr(aa) = v
2

tr(aaBab) =
1

2

(
−2v + v

3
+ (2 + v

2
)α
)

tr(aab) = 1 tr(aabaB) =
1

2

(
−2v + v

3 − (2 + v
2
)α
)

tr(aaB) = −1 + 2v
2

tr(aaBabb) =
1

2

(
2v − v

3
+ v

5
+ (2 − v

2 − v
4
)α
)

tr(aabb) = 1 tr(abaBabb) =
1

2

(
2v − v

3
+ v

5
+ (2 − v

2 − v
4
)α
)

tr(abab) = v
2

tr(abaBBabbb) = −3v + 2v
3

+ 2v
5

TABLE 3. Traces of selected words in the fundamental group
of Vol3.

i yi λi

1 9671015960804800 1
2 −510168310445250 −20
3 −1195546153052400 −9
4 2835383895633100 4
5 11949122303635440 1
6 −349544299928850 −36
7 −2649179302985600 −5
8 −3484248880566300 −4
9 −1628653880584800 −9

10 3852395824372810 4
11 16193135112008400 1
12 −94497839870700 −180
13 −17860109073398800 −1
14 4686438400061250 4
15 2185299690910560 9
16 −5156780125192300 −4
17 −4325046517516800 −5
18 −629535323374650 −36
19 23742505309322800 1
20 6216057796580460 4

TABLE 4. Interpolation data for the (2, 3) entry of the
generator a.

v = 2 + 1
110+i (1 ≤ i ≤ 20), we apply lindep to the nine-

component vector (1, γ, β, βγ, α, αγ, αβ, αβγ, x). The
output from Pari is a sequence of 20 nine-component
vectors wi (1 ≤ i ≤ 20), where each component is an
integer of approximately 17 digits. The first component
of each vector is the integer yi in Table 4, from which the
prospect of fitting a reasonable polynomial admittedly
looks bleak.

But we have to bear in mind that the vectors output
by lindep are homogeneous, and that Pari will reduce
each vector so that the greatest common divisor of its
components is 1. Note that y1, y5, y11, y13, y19 look (up to
sign) as if they stand a fair chance of lying on the correct
polynomial curve, so we begin by fitting a polynomial
p(x) to these five data points. Our desired polynomial
will probably have higher degree than p(x), but we hope
that p(x) will be a close approximation. This is given
support by the fact that p(i)/yi is very close to being an
integer for all data points, so we take these integers as
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our multipliers λi. The list of the 20 multipliers λi is
given in Table 4, alongside the yi.

We now interpolate the components of the vectors
λiwi at all 20 data points, obtaining the following 9-
component vector of polynomials in v:

p1 = 10v(v2 − 1)(v2 − 4)(4v2 + 5),

p2 = −v(v2 + 2)(v2 − 4)(4v2 + 5),

p3 = −2v(v2 − 1)(v2 − 4)(2v2 + 15),

p4 = −v(v2 + 2)(v2 − 10),

p5 = 2v2(v2 − 1)(4v2 + 5),

p6 = −v2(v2 + 2)(4v2 + 5),

p7 = −2v2(v2 − 1)(2v2 − 5),

p8 = (v2 + 2)(7v2 − 10),

p9 = −32(v2 − 1)(v2 − 5)(4v2 + 5).

Since the degree of each of these polynomials is much
smaller than the degree of 19 that one would obtain
generically, we are confident that we have the right an-
swer, although this will not be proved until the final for-
mal check of the two group relations.

Therefore we record x = − 1
p9

∑8
i=1 piνi, where

{ν1, . . . , ν8} is the basis we have chosen for the matrix
entry field over Q(v), and we are done. The other entries
of a2, b2 are computed similarly.

Once exact expressions for all entries of the genera-
tors a2, b2 have been computed, it remains for Maple or
Mathematica to check that they are correct by verifying
formally that the group relations are satisfied, i.e., that
r1(a2, b2) = r2(a2, b2) = 0. This can take a moderate
amount of time; the key is to simplify aggressively at
each stage of the computation.

Remark 7.1. The real hyperbolic representation occurs
at v = 2. There are in fact two nonconjugate SL(4, C)
representations for each v ∈ C, v �= 2, corresponding to
the two square roots of α2 = v2−4. There is a symmetry
of the variety interchanging these two representations,
induced by the contragredient automorphism of GL(4, C)
that assigns to each matrix the transpose of its inverse.

Remark 7.2. Further experimentation can sometimes re-
sult in a conjugate family of representations with simpler
expressions for the matrix entries. In the case of Vol3,
a significant improvement may be obtained by exploiting
symmetries of the manifold. The symmetry group of Vol3
is semihedral of order 16 [Hodgson and Weeks 94], and
in particular, there is a rotational symmetry ρ of order 4,
fixing the axis of aBaba and inducing an automorphism
ρ∗ of π1(Vol3) sending a to BA and b to aba. Thus we
may form the orbifold fundamental group π1(Vol3/〈ρ〉) as
a supergroup of π1(Vol3) by adding a new generator u to-
gether with relations u4 = 1, Uau = BA, Ubu = aba. It

follows easily that u2a has order 2, and that π1(Vol3/〈ρ〉)
is generated by u, u2a. Starting from the above family of
representations and considering π1(Vol3/〈ρ〉) as a care-
fully chosen group of isometries of 3-dimensional complex
hyperbolic space, for a suitable range of values of the pa-
rameter v (see [Cooper et al. 05]), the following much
simpler curve of representations was found:

Ψ(u) =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0

√
v2−4
v2+8

√
−2v2−4

v2+8

0 0

√
−2v2−4

v2+8
−
√

v2−4
v2+8

⎤⎥⎥⎥⎥⎥⎦ ,

Ψ(u2a) =

⎡⎢⎢⎢⎣
p 0 q 0

0 p∗ 0 q∗

q 0 −p 0

0 q∗ 0 −p∗

⎤⎥⎥⎥⎦ ,

where

p =
1

4

(
v +

√
v2 + 8

)
,

q = − 1

2
√

2

√
4 − v2 − v

√
v2 + 8 ,

p∗ =
1

4

(
v −

√
v2 + 8

)
,

q∗ = − 1

2
√

2

√
4 − v2 + v

√
v2 + 8 .

Remark 7.3. Earlier, we showed that the trace field con-
tained Q(v)(α), but did not prove equality. However, we
can show equality as follows. Let K be the matrix en-
try field used in the main part of this section, and let
K ′ be the matrix entry field of Remark 7.2. Since the
trace field is invariant under conjugation, it must lie in
K ∩ K ′ = Q(v)(α).

8. APPENDIX: USING LLL

For readers not familiar with this wonderful tool, here
is a very brief description. LLL is available in Pari as
the function algdep( ), in Mathematica as Recognize[ ],
and in Maple as MinimalPolynomial( ). Here we de-
scribe the Pari version.

For algdep( ), one enters as input a complex number t
in floating-point format, a maximum degree d ≥ 1, and a
working precision p. In return, one receives a polynomial
in Z[x] of degree at most d, of which t is a root to within
the working precision. For example, the command

algdep(1.41421356, 2, 6)

yields the answer x2 − 2.
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Of course, the input t is always rational if interpreted
literally, and one should regard as spurious any polyno-
mial whose coefficients are large relative to the declared
working precision p. A good, conservative rule of thumb
is that an answer is trustworthy if the total number of
digits over all coefficients is at most 2p

3 , and that the an-
swer is suspect otherwise. For example, one should reject

algdep(3.1415926535, 10, 10) −→
3x10 − 9x9 − 5x7 + 9x5 − 5x4 + 3x3 + 6x2 + 6x + 1.

The time taken for algdep( ) to complete its task ap-
pears to depend exponentially on the degree d, and also
on the precision p; however, it works well for, say, d = 20
and p = 1000.

The related lindep( ) function of Pari accepts as in-
put a vector [t1, . . . , tn] of floating-point numbers and a
working precision p, and returns a vector [λ1, . . . , λn] of
integers for which

∑
λiti = 0 to within the precision p.

For example, if we set t = 21/2 + 31/3, the command

lindep([1, t, t2, t3, t4, t5, 21/2], 100)

instantly yields the answer

[−1092, 879, −468, −320, 27, 48, −755],

from which one deduces that

√
2 =

1
755

(−1092 + 879t − 468t2 − 320t3 + 27t4 + 48t5
)
.
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