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To Bill Thurston on the occasion of his sixtieth birthday

Given a triangulation of a closed, oriented, irreducible, atoroidal 3-manifold
every oriented, incompressible surface may be isotoped into normal position
relative to the triangulation. Such a normal oriented surface is then encoded
by nonnegative integer weights, 14 for each 3-simplex, that describe how
many copies of each oriented normal disc type there are. The Euler charac-
teristic and homology class are both linear functions of the weights. There is
a convex polytope in the space of weights, defined by linear equations given
by the combinatorics of the triangulation, whose image under the homology
map is the unit ball, B, of the Thurston norm.

Applications of this approach include (1) an algorithm to compute B and
hence the Thurston norm of any homology class, (2) an explicit exponential
bound on the number of vertices of B in terms of the number of simplices
in the triangulation, (3) an algorithm to determine the fibred faces of B and
hence an algorithm to decide whether a 3-manifold fibres over the circle.

This work was inspired by a desire to understand the topological significance
of the faces of the unit ball of the Thurston norm. The main result of this paper
implies that the unit ball of the Thurston norm for a closed, orientable, irreducible,
atoroidal 3-manifold is the projection under a linear map of a certain polyhedron
in transversely oriented normal surface space. This polyhedron can be computed
from a triangulation using linear algebra. In order to make this paper accessible
to a wide audience we do not assume that the reader is familiar with the theory of
normal surfaces. To keep the paper short we have considered only the case that
M is closed and orientable and have introduced the bare minimum of the theory
of transversely oriented normal surfaces for this application. To facilitate a quick
overview, we first state most definitions and results leading up to the main result
(Theorem 5) as well as the applications, and fill the gaps at the end of the paper.
A more general treatment is to be found in [Cooper and Tillmann ≥ 2008], and
references to normal surface theory can be found in [Jaco and Rubinstein 2003].
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Transversely oriented normal surfaces. An arc α in a 2-simplex 1 is a normal arc
if α∩∂1=∂α, and in addition the endpoints of α lie in the interior of distinct edges

of 1. A transversely oriented normal arc (α,να) is a normal arc
α in 1 together with a transverse orientation να to α in 1. Two
such arcs are equivalent if there is a homeomorphism of 1 to
itself which preserves each edge of 1 and takes one arc with
its transverse orientation to the other. There are 6 equivalence
classes.

A disc D in a 3-simplex τ is a normal disc if
D ∩ ∂τ = ∂ D is a union of normal arcs, no two
of which lie in the same face of τ . The disc D is
called a triangle if the boundary consists of three
normal arcs; otherwise the boundary has four nor-
mal arcs and D is called a quad. A transversely oriented normal disc (D,νD) is
a normal disc D together with a transverse orientation νD . Two such discs are
equivalent if there is a homeomorphism of τ to itself which preserves each face
of τ and takes one disc with its transverse orientation to the other. There are
14 equivalence classes. The boundary of a transversely oriented normal disc is a
collection of transversely oriented normal arcs, three for a triangle and four for
a quad. Each transversely oriented normal arc is contained in the boundary of
exactly one equivalence class of transversely oriented normal triangles and one of
transversely oriented normal quads in τ .

Unless stated otherwise, M denotes a closed, oriented, irreducible 3-manifold
and T a triangulation of M with t 3-simplices. It is convenient to allow triangula-
tions of M which are more general than a simplicial triangulation. The interior of
every simplex σ in T, of every dimension, is required to be embedded in M , but
there may be self-identifications on the boundary of σ . A triangulation is 0-efficient
if every normal 2-sphere is vertex linking, that is, it bounds a ball contained in a
small neighbourhood of a vertex. Jaco and Rubinstein [2003] showed that if M
is not homeomorphic to RP3 or L(3,1), then any minimal triangulation of M is
0-efficient. A minimal triangulation of M has the property that no triangulation of
M contains fewer 3-simplices.

The transversely oriented normal disc space N Dν(T) is the real vector space of
dimension 14t with a basis consisting of the equivalence classes of the transversely
oriented normal discs in each 3-simplex of T. A properly embedded surface S ⊂

M is a normal surface if the intersection of S with every 3-simplex of T is a
collection of pairwise disjoint normal discs. If the normal surface S has a transverse
orientation, νS , then it determines a unique point xν(S,νS) ∈ N Dν(T), where the
coefficient of (D,νD) is the number of transversely oriented normal discs of that
type in S. The following result is routine [Haken 1961; Jaco and Oertel 1984]:
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Proposition 1 (Incompressible is isotopic to normal). Every closed, incompress-
ible surface in a closed, irreducible, triangulated 3-manifold is isotopic to a normal
surface.

There is a linear subspace N Sν(T) ⊂ N Dν(T) defined by the matching equa-
tions. There is one matching equation for each equivalence class of transversely
oriented normal arc (α,να) in each 2-simplex 1 of T. The two sides of 1 in M
are labelled + and − arbitrarily. The matching equation is

t− + q− = t+ + q+.

Here t− (respectively q−) is the coefficient of the equivalence class of transversely
oriented normal triangles (respectively quads) on the − side of 1 which contains
(α,να) in its boundary. Similarly for the + side. This equation expresses that
there are the same number of transversely oriented normal discs containing (α,να)

in their boundary on either side of 1. It follows that if (S,νS) is a transversely
oriented normal surface in M , then xν(S,νS) ∈ N Sν(T).

An open normal i-cell in M is the interior of a normal disc if i = 2, the interior
of a normal arc if i = 1, and a point in the interior of a 1-simplex of M if i = 0.
A branched immersed normal surface in M is a pair (S, f ), where S is a closed
surface equipped with a cell decomposition and f : S → M satisfies

(1) if σ is an open i-cell in S, then f |σ is a homeomorphism onto an open normal
i-cell in M , and

(2) for every open 1-cell e in S let U be a small open disc neighborhood of e in S
such that e separates U into two connected components U±, then f (U±) lie
on locally opposite sides of the 2-simplex in M which contains f (e).

It follows that f is locally injective except at the 0-cells. At each 0-cell x in S
choose a small disc D ⊂ S containing x . Let e be the 1-cell in T containing f (x)

and B a small ball in M containing f (x) such that e ∩ B is an arc. The branch
index β( f ; x) of f at x is the absolute value of

f∗([∂ D]) ∈ H1(B \ e) ∼= Z.

This is just the local winding number of f |∂ D around e.
As an example, suppose F is an embedded normal surface in M and π : S → F

is a branched cover branched over a subset of the intersection of F with the 1-
skeleton of M . Then π composed with the inclusion of F into M is a branched
immersion of S into M . The cell decomposition of S is just the lift of the cell
decomposition of F given by the normal discs and arcs that comprise F .

Proposition 2 (Branched immersions). Every nonzero point in N Sν(T) with non-
negative integral coordinates is represented by a transversely oriented normal
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branched immersion of a closed orientable surface. Conversely, a transversely ori-
ented normal branched immersion of a closed orientable surface, ( f,ν f ) : S → M ,
determines a unique point, xν( f,ν f ), in N Sν(T).

A convex polytope is the intersection of a finite number of closed affine half-
spaces in Euclidean space. A point, x , in such a polytope is called a vertex if there
is a codimension-1 hyperplane whose intersection with the polytope equals x . It is
easy to see that a compact, convex polytope is the convex hull of its vertices; see
[Ziegler 1995]. The normal surface space is

N Sν
+
(T) = N Sν(T) ∩ [0,∞)14t .

It is a cone on the compact convex polytope C = N Sν
+
(T) ∩ V , where V is the

affine subspace consisting of all points whose coordinates sum to one. Whence C

is the intersection of a simplex of dimension 14t − 1 with a linear subspace and is
therefore a compact convex polytope called the projective solution space. Given a
transversely oriented normal surface, we would like to know its Euler characteristic
as well as which homology class it represents. This information is given by the
linear maps described in the following two results.

Lemma 3 (χ∗
= χ for immersions). There is a linear map χ∗

: N Sν(T) → R with
the property that if ( f,ν f ) : S → M is a transversely oriented normal (unbranched)
immersion, then χ∗(xν( f,ν f )) = χ(S).

The equality in the above lemma does not hold for branched immersions.
If (S, f ) is a branched immersed normal surface, and S is oriented, then the ori-

entation on M determines an induced transverse orientation for the immersion ν f .
Conversely, given a transversely oriented normal branched immersion of a closed
surface S, the transverse orientation and the orientation on M determine an orien-
tation of S. This observation leads to:

Proposition 4 (Homology map). There is a surjective homomorphism

h : N Sν(T) → H2(M;R),

called the homology map, with the following property: If ( f,ν f ) : S → M is a
transversely oriented normal branched immersion, then f∗([S]) = h(xν( f,ν f )),
where S is given the induced orientation.

A point x ∈ N Sν
+
(T) is admissible if at most one quad type appears in each

3-simplex (though both orientations are allowed). Two points x, y ∈ N Sν
+
(T) are

compatible if x + y is admissible.

Theorem 5 (Thurston norm via normal surfaces). Let M be a closed, orientable,
irreducible, atoroidal 3-manifold with simplicial or 0-efficient triangulation T. Let
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C be the projective solution space and B be the convex hull of the finite set of points{ v

|χ∗(v)|
: v is a vertex of C which is admissible and satisfies χ∗(v) < 0

}
.

If dim H2(M)>0, then h(B) is the unit ball, B, of the Thurston norm on H2(M;R).
In particular, B has at most 214t vertices.

Algorithm 6 (Fibred faces). Let M be a closed, orientable, irreducible, atoroidal
3-manifold. The following is an algorithm to determine the fibred faces of B and
hence to determine whether M fibres over the circle:

0. We may assume that M is given via a (simplicial or 0-efficient) triangulation.

1. If dim H2(M) = 0, then M is not fibred. Otherwise compute the unit norm ball
of the Thurston norm using the above theorem.

2. Determine the top-dimensional faces.

3. For each top-dimensional face F of B:

a Let F̂ be the barycentre of F and let α ∈ H2(M;Z) be the smallest integral
multiple of F̂.

b Find an embedded, norm minimising, transversely oriented normal surface S
without sphere or torus components representing α.

c Use Haken’s algorithm to check whether M \ S is homeomorphic to S×[0,1];
see [Matveev 2003].

Then F is a fibred face if and only if Step 3.c yields an affirmative answer.
Moreover, M fibres over the circle if and only if at least one face is fibred.

This paper gives a self-contained proof of Theorem 5 for a 0-efficient trian-
gulation. In the case of a simplicial triangulation, work by Tollefson and Wang
[1996] is used to prove Theorem 5. An alternative approach to construct B is
given in [Tollefson and Wang 1996, Algorithm 5.9], and used by Schleimer [2001]
to obtain an algorithm to determine whether a 3-manifold fibres over the circle.
The algorithm to compute B given here is practical in the sense that the authors
hope to implement it on a computer.

Proofs, neat position and algebraically aspherical solutions.

Proof of Proposition 2. A nonzero point in N Sν(T) with nonnegative integral
coordinates determines an abstract collection of normal discs. Since the integers
satisfy the matching equations, we may identify the edges of these discs in pairs to
produce a closed surface S with a cell decomposition such that there is a map of S
into M mapping each 2-cell in S to a normal disc in M . This map is an immersion
on the complement of the set, V , of vertices of S, and thus a branched immersion.
The transverse orientations on the discs match along edges, so this map extends
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to a map of S × [−1,1] into M which is an immersion on the complement of
V × [−1,1]. The map of S therefore has a transverse orientation and, since M is
orientable, it follows that S is orientable. The converse direction is obvious. �

Proof of Lemma 3. The degree of a 1-simplex e in T is the number of 3-simplices
in T which contain e counted with multiplicity. This means that if a 3-simplex τ

has n of its edges identified with e then τ contributes n to this count. We define
χ∗ on each transversely oriented normal disc (D,νD) as follows, and then extend
linearly. For each vertex x ∈ ∂ D let δ(x) denote the degree of the 1-simplex in T

that contains x . Then define

χ∗(D,νD) = 1 −
#(∂ D)

2
+

∑
x∈∂ D

1
δ(x)

,

where #(∂ D) is the number of sides of ∂ D (three for a triangle and four for a
quad). A normal immersion of a surface S gives it a cell decomposition into normal
triangles and quads. Every 1-cell appears in two 2-cells, and every 0-cell x appears
in δ(x) 2-cells. Summing the formula then gives the usual formula for the Euler
characteristic for S using this cell decomposition. �

Proof of Proposition 4. Denote by C2(M) the 2-dimensional singular chain group
of M with real coefficients R. A homomorphism h : N Dν(T) → C2(M) is first
constructed. Suppose (D,νD) is a transversely oriented normal disc in some 3-
simplex of T. The orientation of M and the transverse orientation νD determine
an orientation µD of D. If D is a normal triangle then (D,µD) may be regarded
as a singular 2-simplex. If D is a normal quad, we add a diagonal to subdivide D
into two triangles and obtain the sum of two singular 2-simplices. This defines h
on a basis and we extend linearly. It is easy to see that if x ∈ N Sν(T) then h(x)

is a singular 2-cycle. See [Cooper and Tillmann ≥ 2008] for details. We define
h(x) = [h(x)]. It is also easy to see that if ( f,ν f ) : S → M is a transversely
oriented branched normal immersion then f∗([S]) = h(xν( f,ν f )). The map h
is surjective since every homology class is represented by an embedded, closed,
oriented surface which may be isotoped to be normal. �

We obtain the theory of normal surfaces if we forget transverse orientations.
Thus N D(T) is the vector space of dimension 7t with basis the equivalence classes
of normal discs in each 3-simplex of T. There is one unoriented matching equation
for each equivalence class of normal arc in each 2-simplex in T. The solutions of
the matching equations give a linear subspace N S(T) ⊂ N D(T), and

N S+(T) = N S(T) ∩ [0,∞)7t .

A point in N S+(T) is admissible if in each 3-simplex the coefficient of at most
one quad type is nonzero.
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We now describe the geometric sum of two embedded normal surfaces. This idea
goes back to Haken [1961]. Suppose D, D′ are two normal discs in a 3-simplex
τ which intersect transversely in an arc α. After cutting D and D′ along α there
are two possible ways to cross join to obtain two disjoint discs. There is exactly
one way which yields disjoint normal discs unless D and D′ are quads of different
types. In that case there is no cross join which gives disjoint normal discs. The
direction of the cross join is determined by the way the normal arcs intersect in the
boundary. Now suppose S and F are two normal surfaces. We may isotope them
so they intersect transversely and, for every 3-simplex τ ∈ T, the intersection of
a normal disc in S ∩ τ with one in F ∩ τ is either empty or a single arc. If S and
F are compatible, that is, the sum of their normal coordinates is admissible, then
there is a unique way to cut and cross join S and F along S ∩ F to obtain a new
(possibly not connected) normal surface denoted S + F .

The pair (S, F) is disc reduced if no curve of intersection in S∩ F bounds a disc
in both S and F . An innermost discs argument shows that S and F can be replaced
by normal surfaces S′ and F ′ homeomorphic to (but possibly not normally isotopic
to) S and F respectively such that (S′, F ′) is disc reduced and S′

+ F ′ is normally
isotopic to S+F . An ambient isotopy of M is a normal isotopy if it preserves every
cell in the triangulation T. The following is well known (see [Tollefson 1995]):

Proposition 7 (Admissible implies unique embedded normal surface). Suppose
M is a closed, triangulated 3-manifold. There is a one-to-one correspondence be-
tween admissible nonnegative integral points in N S(T) and normal isotopy classes
of embedded normal surfaces in M. Furthermore, addition of compatible points
corresponds to geometric sum of compatible normal surfaces.

Proof. First assume that every simplex in T is embedded. A point x ∈ N S+(T)

determines a collection of normal discs in each 3-simplex of T. These in turn de-
termine a number of distinct points on each 1-simplex of T. Up to normal isotopy,
the position of these points on each 1-simplex is unique. These points determine a
collection of normal arcs in each 2-simplex of T. Up to normal isotopy there is a
unique way to embed these arcs in each 2-simplex. Thus, up to normal isotopy, x
determines a unique set of disjoint simple closed curves, C(x,τ ), in the boundary
of each 3-simplex τ ∈T. Up to normal isotopy there is a unique set of disjoint discs
in τ with boundary C(x,τ ). These discs are normal discs if and only if each simple
closed curve in C(x,τ ) meets each face of τ at most once. This happens if and
only if x is admissible. If x is admissible these normal discs are identified along
their boundaries to produce a normal surface S which is thus unique up to normal
isotopy. In the general case that T contains simplices which are not embedded,
the above argument is modified by lifting back the construction from M to the 3-
simplices of the triangulation. �



8 DARYL COOPER AND STEPHAN TILLMANN

The proof of Proposition 7 relies on the fact that up to normal isotopy a family of
disjoint normal arcs in a 2-simplex, 1, is determined by the number of endpoints
of those arcs on each edge of 1. In the transversely oriented setting there are
two types of points on each edge, distinguished by transverse orientation. We no
longer have a unique way, up to isotopy, to arrange these points along each edge;
for example we can distinguish the linear orderings ++− from +−+. Instead we
make a natural choice called neat position: on each edge we put all the + points
at one end and all the − points at the other end. This gives a way to position an
admissible family of transversely oriented normal discs in a 3-simplex based only
on the number of each type of transversely oriented points on each edge of the
3-simplex. We show this leads to an (unbranched) immersion.

However, if we start with an embedded transversely oriented normal surface, F ,
and decompose it into transversely oriented normal discs (with disjoint interiors),
the + and − points we obtain may alternate along an edge. The neat position
construction described below reorders these points and changes the positions of
the normal discs comprising F . The discs might now intersect. The resulting neat
position surface, F ′, obtained by identifying the boundaries of the neatly positioned
discs is not embedded, even though it is made up of the same number of each type
of transversely oriented normal discs as F . The discs are glued differently.

Proposition 8 (Admissible implies immersed transversely oriented normal). If M
is a closed, orientable, triangulated 3-manifold, then every admissible nonnegative
integral point in N Sν(T) is the coordinate of a transversely oriented (unbranched)
normal immersion of a closed oriented surface.

Proof. A nonnegative admissible integral point xν
∈ N Sν(T) determines a collec-

tion of transversely oriented normal discs in each 3-simplex. We embed each of
these discs in the simplex in a canonical neat position defined below. In each 3-
simplex the boundary arcs of different discs may intersect but only in the interior of
2-simplices in T, and canonical means that the normal discs in adjacent 3-simplices
have boundary arcs that match pairwise with matching transverse orientations to
give a transversely oriented immersed normal surface realising xν .

First we define neat position. Suppose (α,να) is a
transversely oriented normal arc in a 2-simplex 1. The
transverse orientation is thought of as a function on the
components of 1\α which sends one component to +1
and the other to −1. Denote the former by C+ and let σ =

σ(α,να) denote the maximal subsimplex of 1 contained
in C+. There are 6 such simplices and they are in bijective correspondence with
the equivalence classes of (α,να). The arc is called short if σ is a 0-simplex.
Otherwise σ is a 1-simplex and the arc is called long. The standard 2-simplex
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means an equilateral triangle in the Euclidean plane with each side of length 1.
A family of transversely oriented normal arcs in 1 is in neat position if there is
an identification of 1 with the standard 2-simplex such that the arcs in the family
satisfy:

• every arc is straight,

• every point on each arc (α,να) in the family is within distance 1
10 of σ(α,να),

• arcs of the same unoriented type are pairwise disjoint, and

• every short arc is disjoint from every other arc.

It follows that the short arcs are contained in small neighborhoods of the vertices
of 1 which are disjoint from the long arcs, and each long arc is very close to some
edge of 1, and that two arcs intersect if and only if they are both long and of
different unoriented types. In this case they intersect once transversely, and the
intersection point is in the interior of 1. Given specified numbers of each type of
transversely oriented normal arc, it is clear that, up to normal isotopy of 1 and
permutation of the arcs, the configuration of the arcs in 1 is unique.

Suppose (D,νD) is a transversely oriented normal disc in a 3-simplex τ . As
above, a component of τ \ D is labelled C+ using νD . Let σ(D,νD) denote the
maximal subsimplex of τ contained in C+. There are 14 such simplices and they are
in bijective correspondence with the equivalence classes of transversely oriented
normal discs. A transversely oriented normal triangle, (D,νD), is called small if
σ = σ(D,νD) is a 0-simplex and otherwise it is called large (in which case σ is a
2-simplex).

A family of transversely oriented normal discs in a 3-simplex τ is in neat posi-
tion if

• the family is in general position, and

• the intersection of the family with each 2-simplex 1 ⊂ ∂τ is a family of
transversely oriented arcs in neat position.

Suppose we are given a collection of transversely oriented normal discs in a
3-simplex τ which is admissible: only one quad type appears but both transverse
orientations are allowed. We show below that these discs may be placed in neat
position. Though we do not need this fact, it is easy to see that two quads of
different unoriented types can never be in neat position.

It suffices to show that it is possible to place
in neat position one copy of each transversely
oriented normal triangle in τ together with two
normal quads which differ only in transverse ori-
entation. Having done this, one may take closely
spaced parallel copies of these discs. The figure
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shows how to place the discs. First place the large triangles in neat position. Next
place each transversely oriented quad in a small neighborhood of the 1-simplex of
σ it determines, so that it is disjoint from the large triangles it can be made disjoint
from. Finally place the small triangles in small neighbourhoods of the vertices
disjoint form all other discs. This completes the claim.

We now describe canonical neat position for admissible solutions. To do this
we put compatible Euclidean structures on the 2-simplices as follows. First we
choose an identification of each 1-simplex in T with the unit interval. This puts
a path metric on each 1-simplex. Next we choose an identification of every 2-
simplex, 1, in T with the standard 2-simplex so that the induced metric on each
1-simplex, σ , in the boundary of 1 agrees with that given by the identification of
σ with the unit interval.

A vector xν in N S+(T) determines, for each 1-simplex e of T, a finite number
of transversely oriented points on e. We first position these points on e in neat
position which just means within distance 1

10 of the end of e determined by the
transverse orientation on that point, and equally spaced apart. The vector xν also
determines a family of transversely oriented normal arcs types in each 2-simplex
of T. By the previous discussion, there is a unique way to place these normal
arcs in neat position with endpoints the chosen neatly positioned points. Since
xν is admissible, there is then a unique way to place the transversely oriented
normal disc types determined by xν in each 3-simplex of T into neat position so
the boundary is the set of neatly positioned arcs. This is the canonical neat position.

Since M is orientable and the immersed surface constructed above is trans-
versely orientable it is also orientable. �

An orientable surface S is aspherical if no connected component of S is a sphere.
We wish to have an algebraic criterion for deciding whether a transversely oriented
normal surface is aspherical depending only on its transversely oriented normal
coordinates. There is a partial order ≥ on N Dν(T), where x ≥ y if and only if
every coordinate of x is greater than or equal to the corresponding coordinate of y.

Definition. A point x ∈ N Sν
+
(T) is algebraically aspherical if for all y ∈ N Sν

+
(T)

such that x ≥ y, we have χ∗(y) ≤ 0.

Lemma 9 (Properties of aspherical elements). The following properties follow di-
rectly from the definition:

(1) If x ∈ N Sν
+
(T) is algebraically aspherical, χ∗(x) ≤ 0.

(2) If x =
∑

xi is algebraically aspherical and xi ∈ N Sν
+
(T) for each i , then each

xi is algebraically aspherical.

(3) If x ∈ N Sν
+
(T) is algebraically aspherical, so is αx for any α > 0.
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Proposition 10 (embedded aspherical in 0-efficient ⇒ algebraically aspherical).
Let M be a closed, oriented 3-manifold with 0-efficient triangulation T. If (F,νF )

is an embedded transversely oriented normal surface in M and no component of
F is a sphere, then xν(F,νF ) is admissible and algebraically aspherical.

Proof. Since F is embedded xν
= xν(F,νF ) is admissible. Forgetting transverse

orientations gives a linear map ϕ : N Sν(T)→ N S(T), and we write x =ϕ(xν). The
topology of the embedded normal surface F is determined (up to normal isotopy)
by x . If xν is not algebraically aspherical, we will show that there is an integer
n > 0 such that nx > y, where y = x(S) for some embedded normal sphere S.
Then

nx = (nx − y) + y,

where nx, (nx − y), y ∈ N S+(T) are compatible admissible nonnegative integral
solutions to the unoriented matching equations. By Proposition 7 for each admis-
sible z ∈ N S+(T) there is an embedded normal surface F(z) in M with normal
coordinates z, and this surface is unique up to normal isotopy. Thus F(y) is nor-
mally isotopic to S. Since T is 0-efficient S is a vertex linking sphere and so may
be isotoped into a small neighborhood of that vertex disjoint from F(nx − y).
Let n · F denote an embedded normal surface consisting of n parallel disjoint
copies of the normal surface F . The uniqueness part of Proposition 7 implies
F(nx)= n ·F . The above equation implies n ·F is normal-isotopic to the geometric
sum of F(nx − x(S)) and S. Since these surfaces are disjoint, their geometric sum
equals their disjoint union. Thus n · F contains a sphere normally isotopic to S,
which is a contradiction.

It remains to prove that if xν is not algebraically aspherical, then S exists. If
xν is not algebraically aspherical, then there is aν

∈ N Sν
+
(T) with xν

≥ aν and
χ∗(aν) > 0. We may assume aν has nonnegative rational coordinates. Then there
is an integer n > 0 so that bν

= naν has integer coordinates and nxν
≥ bν . Now

χ∗(bν) = nχ∗(aν) > 0. Since xν is admissible, bν is admissible and hence

b = ϕ(bν) ∈ N S+(T)

is admissible. The map χ∗ factors through a linear map χ∗
un : N D(T) → R with

the property that if A is an embedded normal surface, then χ∗
un(x(A)) = χ(A). So

χ∗(bν) = χ∗
un(ϕ(bν)) and since F(b) is an embedded normal surface,

χ(F(b)) = χ∗

un(b) = χ∗(bν).

Hence χ(F(b)) > 0. Thus F(b) contains a component S with χ(S) > 0. Since
S ⊂ F(b) are normal surfaces it follows that b ≥ x(S). If S = RP2 then, since
M is orientable, a small regular neighborhood of S is bounded by a 2-sphere S′,
and x(S′) = 2x(S). Since T is 0-efficient, S′ is a vertex linking sphere. But this
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implies that x(S) is not an integral solution, giving a contradiction. Thus S is a
sphere and nx ≥ b ≥ x(S). �

If S is a closed surface, then −χ−(S) is the sum of the Euler characteristics over
all connected components of S with negative Euler characteristic (see [Thurston
1986]). If c ∈ H2(M), then the Thurston norm of c is

‖c‖ = inf
S:[S]=c

χ−(S).

If M is irreducible, discarding sphere components from S does not change [S] or
χ−(S) and so the infimum can be taken over surfaces containing no spheres.

A transversely oriented normal surface (F,νF ) in M is called a taut normal sur-
face if it is aspherical and χ(F)=−‖h(xν(F,νF ))‖, and it is least weight taut if F
minimises |F ∩T(1)

| over all taut normal surfaces representing h(xν(F,νF )). The
following is a reformulation of (part of) [Tollefson and Wang 1996, Lemma 3.2].

Lemma 11. Let M be a closed, oriented 3-manifold with simplicial triangulation
T. Let (F,νF ) be least weight taut. Let G, H be orientable normal surfaces such
that

mx(F) = x(G) + x(H)

for some positive integer m and the pair (G, H) is disc reduced. Then the trans-
verse orientation of F induces unique transverse orientations νG and νH on G and
H respectively such that mxν(F,νF ) = xν(G,νG) + xν(H,νH ) and (G,νG) and
(H,νH ) are least weight taut.

Proposition 12 (least weight taut ⇒ algebraically aspherical). Let M be a closed,
oriented, irreducible 3-manifold with simplicial triangulation T. If (F,νF ) is a
least weight taut normal surface in M , then xν(F,νF ) is admissible and alge-
braically aspherical.

The proof of Proposition 10 is modified as follows.

Proof. First note that if (F(nx − y), F(y)) is not disc reduced, then there is y′ such
that (F(nx − y′), F(y′)) is disc reduced and χ(F(y′)) = χ(F(y)) = 2. Lemma 11
implies that F(y′) can be transversely oriented to give a least weight taut normal
surface. Since F(y′) 6= ∅, it follows that a sphere represents a nontrivial homology
class contradicting the assumption that M is irreducible. �

Proof of Theorem 5. We claim that ‖h(y)‖ ≤ |χ∗(y)| for all y ∈ cone(B), the
cone of B over the origin. It then follows that h(B) ⊆ B since B = cone(B) ∩

(χ∗)−1(−1). First we prove the claim in the special case when y = v is a vertex
of B. Since the inequalities defining C have integral coefficients, v has rational
coordinates. Let t > 0 be minimal subject to that x = t · v is an integral point.
Since B ⊂ N Sν

+
(T), x is nonnegative. Since v is admissible, x is admissible.
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By Proposition 8 there is a transversely oriented (unbranched) normal immersion
( f,ν f ) : S → M such that xν( f,ν f ) = x , and Proposition 4 gives h(x) = f∗([S]) ∈

H2(M). Since S is (unbranched) immersed, Lemma 3 yields χ∗(x) = χ(S). If S
is not connected, then x is the sum over all components Si ⊂ S of x(Si ) ∈ cone(C).
Since v is an extreme point of C, it is not a nontrivial convex combination of points
in C. However,

xν( f,νs) =

∑
i

xν( f |Si ,ν f |Si ).

Thus xν( f,νs) is a multiple of xν( f |Si ,ν f |Si ) for every component Si of S. By
minimality of t it follows that S is connected. Now χ∗(x) = tχ∗(v) < 0 and thus
S is not a sphere, hence −χ−(S) = χ(S) = χ∗(x). Gabai [1983] showed that the
embedded norm equals the singular norm, and so

‖h(x)‖ ≤ χ−(S) = |χ(S)| = |χ∗(x)|.

This proves the claim in the special case.
To prove the claim in the general case, assume y =

∑
λivi with λi ≥ 0, where

each vi is a vertex of B. Then h(y) =
∑

λi h(vi ) so ‖h(y)‖ ≤
∑

λi‖h(vi )‖. Now
χ∗(y) = χ∗(

∑
λivi ) =

∑
λiχ

∗(vi ). Since χ∗(vi ) < 0 we get

|χ∗(y)| =

∑
λi |χ

∗(vi )|.

By the special case, ‖h(vi )‖ ≤ |χ∗(vi )|, and it follows that ‖h(y)‖ ≤ |χ∗(y)|,
proving the claim.

To prove the reverse containment, a rational point in β ∈ ∂B can be expressed as
β =[S]/|χ(S)| for some norm-minimising, transversely oriented embedded surface
(S,νS) no component of which is a sphere or a torus. By Proposition 1 S can be
isotoped into normal position. The ray through p = xν(S,νS) intersects C at a point
x . Since p is admissible, x is admissible. Lemma 3 gives |χ∗(p)|= |χ(S)|=‖[S]‖.
Since S is embedded and aspherical, Proposition 10 implies that p is algebraically
aspherical if T is 0-efficient. Otherwise, it follows from [Tollefson and Wang
1996, Lemma 2.1], that (S,νS) may be chosen to be least weight taut in which case
Proposition 12 implies that p is algebraically aspherical. Hence x is algebraically
aspherical by Lemma 9(3). We can express x as a convex linear combination of
some of the vertices of C. Then x =

∑
ti · xi , where each xi is a vertex of C

and 0 < ti ≤ 1. Parts (2) and (3) of Lemma 9 imply that each xi is algebraically
aspherical, and therefore by Lemma 9(1) χ∗(xi ) ≤ 0. Moreover, xi ≤ x ; therefore
xi is admissible. If χ∗(xi ) = 0, then the smallest integral multiple of xi is the
normal coordinate of a connected, immersed surface of zero Euler characteristic,
giving h(xi ) = 0 since M is atoroidal.

Let x̂ =
∑

ti · x̂i , where x̂i = xi if χ∗(xi ) < 0 and x̂i = 0 otherwise. Hence
h(x̂) = h(x), χ∗(x) = χ∗(x̂) and each nonzero x̂i is in cone(B). Since cone(B) is
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convex, x̂ ∈ cone(B). It follows that

x̂/|χ∗(x̂)| ∈ cone(B) ∩ (χ∗)−1(−1) = B.

Now [S] = h(p) and

h(x̂)/|χ∗(x̂)| = h(x)/|χ∗(x)| = h(p)/|χ∗(p)| = [S]/|χ(S)| = β ∈ ∂B.

Hence h(B) contains all the rational points in ∂B. The set of rational points in ∂B

is dense because the Thurston norm takes integral values on integral points. Thus
∂B ⊆ h(B). Since h is linear and B is convex, B ⊆ h(B).

Each vertex of C = 114t−1
∩ N Sν(T) lies in a unique minimal subsimplex of 1.

The subsimplices of 114t−1
= V ∩ [0,∞)14t correspond to coordinate subspaces

of R14t . Thus a vertex of ∂C is uniquely determined by which normal coordinates
are zero. There are 14t coordinates, so C has at most 214t vertices. Every vertex of
the unit ball of the Thurston norm ball, B, is the image of a point on a ray through
a vertex of C. This gives the claimed bound on the number of vertices of B. �

Proof of Algorithm 6. Only part 3.b needs to be explained. Let C≤ be the convex
hull of the finite set of all vertices v of C which are admissible and satisfy χ∗(v)≤0.
Define

Q = cone(C≤) ∩ {x : h(x) = α} ∩ {x : χ∗(x) = −‖α‖}.

The total weight of a point in Q is the sum of its coordinates. Given an integer
w > 0 let P(w) be the finite (possibly empty) set consisting of all admissible
integral points in Q of total weight at most w. The algorithm to construct S is to
increase w until one of the points in P(w) is found, by the following procedure,
to be the coordinate of an embedded transversely oriented normal surface without
sphere or torus components. Given xν

∈ P(w), construct the unique embedded
normal surface F with unoriented normal coordinate x = ϕ(xν). Discard xν if
some component of F is a torus, a sphere or 1-sided. Otherwise check whether the
components of F can be transversely oriented to yield an embedded transversely
oriented normal surface with coordinate x .

We now prove this algorithm terminates. Let F be a norm-minimising oriented
surface without sphere or torus components and with [F] = α ∈ H2(M), so ‖α‖ =

−χ(F). By Proposition 1 we may assume F is a transversely oriented normal
surface and set p = xν(F,νF ). Then p ∈ Q and p ∈ P(w) for w sufficiently large.
Hence the algorithm will construct F or a surface with the same properties of lower
weight. �

Remark 13. If M is a closed, oriented 3-manifold, let C≤ be the convex hull of
the finite set of all vertices v of C which are admissible and satisfy χ∗(v) ≤ 0, and
let B≤ = {x ∈ cone(C≤) : χ∗(x) = −1}. Then h(B≤) is the unit ball of the Thurston
norm — this is a noncompact polytope if M is not atoroidal.
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