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CONSTRUCTING NON-CONGRUENCE SUBGROUPS

OF FLEXIBLE HYPERBOLIC 3-MANIFOLD GROUPS

D. COOPER, D. D. LONG, AND M. THISTLETHWAITE

(Communicated by Daniel Ruberman)

Abstract. We give an explicit construction for non-congruence subgroups in
the fundamental group of a flexible hyperbolic 3-manifold.

1. Introduction

When M is a closed orientable hyperbolic 3-manifold, the hyperbolic structure
gives rise to a canonical discrete faithful representation of its fundamental group
ρ : π1(M) −→ SO(3, 1), unique up to conjugacy by Mostow rigidity. Denoting the
image group by Γ, one sees easily from rigidity and finite generation that in fact
Γ is conjugate to a subgroup of SO(3, 1; R), where R is obtained from the ring of
integers of a number field by inverting a certain finite number of elements.

This situation gives rise to a family of finite representations of the group Γ as
follows. The ring R is Dedekind, and standard results (see [12], §4.1) imply that for
any non-zero ideal I, the quotient R/I is finite. Thus the reduction homomorphisms

SO(3, 1; R) −→ SO(3, 1; R/I)

are all finite representations. We say that a subgroup of finite index in Γ is a
congruence subgroup if it contains the kernel of such a reduction homomorphism
and that Γ has the congruence subgroup property if every subgroup of finite index
is a congruence subgroup; equivalently, the topology on the group coming from the
profinite completion is homeomorphic to that coming from the completion using
the congruence subgroups.

In his celebrated paper [6], Lubotzky showed that arithmetic hyperbolic 3-
manifold groups do not have the congruence subgroup property, verifying a conjec-
ture that had originally been made by Serre. However, the method was non-explicit
and to the authors’ knowledge, no example of a cofinal family of non-congruence
subgroups in a closed hyperbolic 3-manifold group has ever been exhibited.

In [3], the authors showed that certain closed hyperbolic 3-manifolds have the
property that their hyperbolic structure can actually be non-trivially deformed
when considered as a real projective structure. We described such manifolds as
flexible. This paper shows that for flexible hyperbolic manifolds, one can explicitly
construct a cofinal family of non-congruence subgroups; moreover, since this does
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not rely on [6] in any way, it gives a new proof of the failure of the congruence sub-
group property in the flexible case. Furthermore, non-arithmetic flexible manifolds
are known [3], so our method applies in cases where Lubotzky’s does not. We give
a rather explicit construction which shows:

Theorem 1.1. Suppose that M is a closed hyperbolic 3-manifold which is flexible.
Then given any non-trivial element g ∈ π1(M), there are infinitely many rational
primes q and surjections πq : π1(M) −→ PSL(4, q), for which πq(g) is non-trivial.
Furthermore, kerπq is not a congruence subgroup.

The fact that the kernel of such a homomorphism is not congruence in the
sense defined above shows that we have also deduced the failure of the congruence
subgroup property for such manifolds.

A (very) special case of a flexible manifold is the situation of a hyperbolic 3-
manifold which contains an immersed totally geodesic closed surface; it is shown in
[3] that such a manifold has a finite cover which is flexible. It follows that:

Corollary 1.2. Suppose that Γ is a co-compact Kleinian group which contains a
co-compact Fuchsian group. Then the conclusions of Theorem 1.1 hold.

In this more classical form, it seems clear that the result was known to Weisfeiler
(see his remarks in the first few paragraphs of §11 of [11]). Such manifolds are known
which are non-arithmetic, so in this much more restricted setting, Theorem 1.1 was
known, at least implicitly.

Here is a sketch of the strategy. The canonical representation of a flexible hyper-
bolic manifold can be non-trivially deformed when it is regarded as the holonomy
of a real projective structure, and this gives rise to nearby convex real projective
structures which are faithful discrete representations inside SL(4, R). Deep theo-
rems of Benoist [2] show that the associated deformed holonomies are all Zariski
dense subgroups of SL(4, R). We now invoke the Strong Approximation theorem of
[11], which implies that the finite representations that one gets by reducing modulo
primes in the number field will surject for all but finitely many primes. By choosing
a prime which splits completely and which does not kill the image of the prescribed
element g, we obtain a finite homomorphism which surjects some group PSL(4, q).
However the reductions that one obtains by taking the canonical representation and
reducing modulo primes will yield image groups which are finite orthogonal groups,
and this can be used to show that our homomorphisms are non-congruence.

Finally, we should remark that while flexibility is still very poorly understood,
it is known that there are infinitely many commensurability classes of flexible man-
ifolds and one can conjecture that every closed hyperbolic manifold is virtually
flexible, so potentially the methods and constructions of this paper are rather gen-
eral.

2. Proof of Theorem 1.1

2.1. Flexible manifolds and Zariski denseness. As is well known, closed hy-
perbolic manifolds of dimension at least three are rigid, and this implies that the
discrete faithful representation ρ of the fundamental group into O(3, 1; R) is unique
up to conjugacy.

However, if one uses the Klein model for hyperbolic space, one can regard this
hyperbolic structure as a real projective structure, and as such, it turns out that
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for certain closed hyperbolic 3-manifolds, one can make non-trivial deformations
[3]. Such manifolds are called flexible.

Theorem 2.1. Let ρ be the discrete faithful representation associated to the hyper-
bolic structure of a closed hyperbolic flexible 3-manifold.

Then there are arbitrarily small deformations ρt of ρ which give rise to convex
real projective structures. The representations ρt are faithful and discrete, and the
image ρt(π1(M)) is Zariski dense in SL(4, R).

Proof. It is shown by Koszul [7] that the subset of faithful representations inside
Hom(π1(M), SL(4, R)) for which there is an associated convex real projective struc-
ture is open. Thus all the representations ρt : π1(M) −→ SL(4, R) which are close
to ρ are faithful and discrete and induce a convex real projective structure. If
ρt is not conjugate to ρ, then this structure is not projectively equivalent to the
hyperbolic structure.

The representation ρ is irreducible, and the property of being reducible is a
Zariski closed condition, so we may assume that the small deformations under
consideration are all irreducible.

We now appeal to Benoist [2], Theorem 1.1, which describes the various possibil-
ities for convex real projective structures in this setting. Since our representations
are irreducible, the convex set C associated to the real projective structure which
is left invariant by ρt(π1(M)) cannot split invariantly as a product of convex sets
C1 × C2.

The statement of Benoist’s Theorem 1.1 now becomes either that ρt(π1(M))
has Zariski closure SL(4, R) or that C is homogeneous; that is to say, Aut(C) acts
transitively on C. However we may rule out this second case by arguing as follows.

The action of Aut(C) is by isometries of the Hilbert metric on C. Now it is a
standard fact (one can base an argument on Theorem 2.17 of [1] for example) that
one can associate to any Finsler metric a Riemannian metric which is sufficiently
canonical that the action of Aut(C) is by isometries of this Riemannian metric; that
is to say, we have assigned to C a Riemannian metric making it into a homogeneous
space. This makes C/ρt(π1(M)) into a closed manifold with a homogeneous metric.
Such homogeneous metrics have been classified by Thurston, and the only possibil-
ity is that the homogeneous metric on C/ρt(π1(M)) is a multiple of the hyperbolic
metric.

However, we now claim that this contradicts the fact that the representation has
been flexed away from the canonical representation. We argue as follows: We have
identified Aut(C) as a subgroup of the isometry group of H3 and since the only
transitive non-soluble Lie subgroup of Isom(H3) is the whole group, this shows
that Aut(C) ∼= Isom(H3).

However all representations of Isom+(H3) ∼= SO(3, 1) into SL(4, R) preserve a
non-degenerate invariant bilinear form (see for example [5], p. 205, and Example 3,
p. 198). This form cannot be definite since Aut(C) contains an infinite discrete sub-
group, and cannot have signature (2, 2) since SO(3, 1) and SO(2, 2) are not locally
isomorphic. It follows that we must have signature (3, 1) and therefore up to con-
jugacy in SL(4, R) the representation is equivalent to the standard one. We deduce
that the flexed representation can be conjugated into SO(3, 1), a contradiction to
Mostow rigidity.

We deduce that C cannot be homogeneous and therefore ρt(π1(M)) is Zariski
dense in SL(4, R)), as required. !
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2.2. Strong approximation and flexibility. We include here a result that fol-
lows from the work of Weisfeiler [11]. (Also see Matthews, Vaserstein and Weisfeiler
[8] or Nori [9] concerning strong approximation for certain algebraic groups.)

We consider the following situation. Suppose that Γ is a finitely generated sub-
group of SL(4, R), which has all its entries lying in some number field k, so that
in fact Γ ≤ SL(4, k) ≤ SL(4, R). Since Γ is finitely generated, the entries lie
in a subring R = Rk[S] of k, where Rk is the ring of integers of k and a finite
number of elements S are inverted. Let ℘ be a prime ideal of R; then we have
a ring homomorphism onto a finite field π℘ : R −→ R/℘ which induces a group
homomorphism

π℘ : SL(4, R) −→ SL(4, R/℘).

It follows from [11] that for all but finitely many prime ideals ℘, this map is actually
a surjection.

Applying this in our situation yields:

Proposition 2.2. If M is a flexible closed hyperbolic 3-manifold, then for infinitely
many primes q in Z there is a surjection πq : π1M → PSL(4, q).

Proof. Since M is a flexible hyperbolic 3-manifold it follows from Theorem 2.1 that
there is a faithful algebraic specialisation in Hom(π1(M), SL(4, R)) close to the
complete structure for which the holonomy associated to the convex real projective
structure is Zariski dense in SL(4, R). By the above, for all but finitely many
primes, the reduction homomorphisms are surjective. There are infinitely many
rational primes which split completely in R, and for ideals ℘ lying over such primes,
we have that R/℘ is a field of prime order q. Now for any prescribed non-trivial
element 1 ̸= g ∈ π1(M), we may choose such a prime ideal ℘ in R which does not
divide some entry of ρt(g) − I and thus we obtain a surjective homomorphism

θ : SL(4, R) −→ PSL(4, q)

for which the image of g maps non-trivially. Then πq = θ ◦ ρt is the required
surjection. !

To complete the proof of Theorem 1.1 it only remains to show that kerπq is
non-congruence. This will be done in the next section.

2.3. Group theory. In this section, we prove the following, which completes the
proof of Theorem 1.1: Let Γ be the hyperbolic 3-manifold group and suppose that
we have a surjection

πq : Γ −→ PSL(4, q)

for some fixed prime q. We claim that ker(πq) cannot be a congruence subgroup.
The following very elementary lemma will be used for the case where G is a

direct product and H is one of its factors.

Lemma 2.3. Let Σ be a simple group occurring as a subquotient of a group G, and
let H be a normal subgroup of G. Then at least one of H , G/H has a subquotient
isomorphic to Σ .

Proof. By hypothesis we have subgroups L , M of G with M ▹ L and L/M = Σ.
Consider first the case where H ∩L ≤ M . Let π denote the natural map from G to
G/H. Then, since ker(π|L) = H ∩ L is contained in M , π induces an isomorphism
from L/M to π(L)/π(M), thus exhibiting Σ as a subquotient of G/H.
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Suppose on the other hand that H ∩ L is not a subgroup of M . Let ρ denote
the natural map from L to the simple group Σ = L/M . Then ρ(H ∩ L) is a
non-trivial normal subgroup of Σ , whence ρ(H ∩ L) is the whole of Σ . Since
ker(ρ|H∩L) = H ∩ M , we see that (H ∩ L)/(H ∩ M) ∼= Σ , exhibiting Σ as a
subquotient of H. !

Recall that Γ is a subgroup of SO(3, 1; R), where R = Rk[S], meaning Rk is the
ring of integers of k and there is a finite number of elements S of Rk which are
inverted. In particular, the ring R is Dedekind. Then if ker(πq) is congruence, it
contains the kernel of a reduction homomorphism

SO(3, 1; R) −→ SO(3, 1; R/I)

for some ideal I of R.
Since R is Dedekind, we can factorise the ideal I uniquely as a product of prime

ideals I = ℘k1
1 · · ·℘kr

r and by the Chinese remainder theorem (see [4], Theorem 4,
p. 44) we have

SO(3, 1; R/I) ∼=
∏

j

SO(3, 1; R/℘
kj

j ).

We denote the images of Γ and ker(πq) in
∏

j SO(3, 1; R/℘
kj

j ) by G and K respec-
tively.

Note that any element of the kernel of the map

SO(3, 1; R/℘
kj

j ) −→ SO(3, 1; R/℘j)

has the form I + ℘jM , so has order a power of pj (where ℘j divides the rational
prime pj), and it follows that the kernel of the map

∏

j

SO(3, 1; R/℘
kj

j ) −→
∏

j

SO(3, 1; R/℘j)

is a product of p-groups and is therefore nilpotent. Denote this kernel by T .
Consider the projection map µ : G −→ G/K ∼= PSL(4, q); the group µ(G∩T ) is

a nilpotent normal subgroup of PSL(4, q), and so is trivial. Therefore G∩ T ≤ K,
so that K ∩ T = G ∩ T .

Let G∗ and K∗ be the images of G and K inside
∏

j SO(3, 1; R/℘j); let U
denote the kernel of the map G → G∗. Then, since U ≤ K, we have G∗ ∼= G/U
and K∗ ∼= K/U , whence G∗/K∗ ∼= G/K. We may therefore reduce to the case that
the primes all occur with multiplicity 1; that is to say, we have that the product∏

j SO(3, 1; R/℘j) contains a subgroup G with the property that G has quotient
PSL(4, q). By repeated applications of Lemma 2.3, we see that we have deduced:

Corollary 2.4. If ker(πq) is congruence, then for some prime ℘, the group
SO(3, 1; R/℘) contains a subgroup mapping onto PSL(4, q).

To conclude the argument we need some discussion of the results from the theory
of simple groups arising from orthogonal groups which are relevant for us.

We will consider the orthogonal (and special orthogonal) groups of an m-dimen-
sional quadratic form over the finite field F of cardinality pn; we shall mostly be
concerned with the case m = 4, and we assume throughout that p is odd. When m is
even there are two such orthogonal groups O±(m, F) (see [10], p. 377, Theorem 5.8).
Let SO±(m, F) denote the special orthogonal group in these cases.
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Let Ω±(m, F) = [O±(m, F), O±(m, F)], where [G, G] denotes the commutator
subgroup of a group G. When m is even, Ω±(m, F) has index 2 in SO±(m, F) and
has a centre of order 1 or 2. Let PΩ±(m, F) be the central quotient group.

We summarize the important facts for us in the following theorem (see [10],
pp. 383–384):

Theorem 2.5. When m = 4, PΩ+(4, F) ∼= PSL(2, F)×PSL(2, F) and PΩ−(4, F)
∼= PSL(2, F′), where F′ is the finite field of order p2n.

We can now conclude the argument that ker(πq) is non-congruence. Recall
that we have shown that if it is congruence, then for some prime ℘, the group
SO(3, 1; R/℘) contains a subgroup G which maps onto PSL(4, q). As noted above,
the commutator subgroup Ω±(4, R/℘) has index at most two, so by the simplicity of
PSL(4, q), G ∩ Ω±(4, R/℘) also surjects PSL(4, q). Similarly, we may projectivise
and reduce to the case that the domain group is PΩ±(4, R/℘).

Using Lemma 2.3 for the case PΩ+(4, R/℘) ∼= PSL(2, R/℘) × PSL(2, R/℘),
we see that Theorem 2.5 now shows that if ker(πq) is congruence, then for some
appropriate finite field F, PSL(2, F) contains a subgroup mapping onto PSL(4, q).
We appeal to [10], Theorem 6.25, page 412, which classifies subgroups of PSL(2, F)
and one sees easily that this is impossible.

2.4. An example. The first flexible manifold in the census turns out to be the
manifold usually referred to as vol3. We recall that vol3 (it is the manifold with
third-lowest volume in the census) is an arithmetic manifold with volume the same
as that of a regular ideal simplex, that is, around 1.01494160640965. The funda-
mental group has presentation

⟨ a , b | aabbABAbb , aBaBabaaab ⟩,
where A = a−1 and B = b−1. Using the representation of [3], one easily constructs a
representation with q = 17, which GAP computes has order 2851903720876769280;
i.e. it surjects SL(4, 17):

ρ(a) =

⎡

⎢⎢⎣

0 0 13 3
0 0 12 12
1 0 6 5
0 1 1 5

⎤

⎥⎥⎦ ,

ρ(b) =

⎡

⎢⎢⎣

10 0 16 8
0 12 1 0
0 0 15 6
0 0 9 15

⎤

⎥⎥⎦ .

Remark. The first non-arithmetic flexible hyperbolic 3-manifold is m34(−4, 1). One
understands the flexing quite explicitly, so using similar ideas one can find a non-
congruence representation. However, this computation has not yet been done.
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