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This study of properly or strictly convex real projective 
manifolds introduces notions of parabolic, horosphere and 
cusp. Results include a Margulis lemma and in the strictly 
convex case a thick–thin decomposition. Finite volume cusps 
are shown to be projectively equivalent to cusps of hyperbolic 
manifolds. This is proved using a characterization of ellipsoids 
in projective space.
Except in dimension 3, there are only finitely many topological 
types of strictly convex manifolds with bounded volume. In 
dimension 4 and higher, the diameter of a closed strictly 
convex manifold is at most 9 times the diameter of the thick 
part. There is an algebraic characterization of strict convexity 
in terms of relative hyperbolicity.
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Surfaces are ubiquitous throughout mathematics; in good measure because of the 
geometry of Riemann surfaces. Similarly, Thurston’s insights into the geometry of 
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3-manifolds have led to many developments in diverse areas. This paper develops the 
bridge between real projective geometry and low dimensional topology.

Real projective geometry is a rich subject with many connections. In recent years it 
has been combined with topology in the study of projective structures on manifolds. 
Classically it provides a unifying framework as it contains the three constant curvature 
geometries as subgeometries. In dimension 3 it contains the eight Thurston geometries 
(up to a subgroup of index 2 in the case of product geometries) and there are paths of 
projective structures that correspond to transitions between different Thurston geome-
tries on a fixed manifold. Moreover, there is a link between real projective deformations 
and complex hyperbolic deformations of a real hyperbolic orbifold (see [23]). Projective 
geometry therefore offers a general and versatile viewpoint for the study of 3-manifolds.

Another window to projective geometry: The symmetric space SL(n, R)/SO(n) is iso-
morphic to the group of projective automorphisms of the convex set in projective space 
obtained from the open cone of positive definite quadratic forms in n variables. This 
set is properly convex: its closure is a compact convex set, which is disjoint from some 
projective hyperplane. The boundary of the closure has a rich structure as it consists 
of semi-definite forms and, when n = 3, contains a dense set of flat 2-discs; each cor-
responding to a family of semi-definite forms of rank 2 which may be identified with a 
copy of the hyperbolic plane.

From a geometrical point of view there is a crucial distinction between strictly con-
vex domains, which contain no straight line segment in the boundary, and the more 
general class of properly convex domains. The former behave like manifolds of negative 
sectional curvature and the latter like arbitrary symmetric spaces. However, projective 
manifolds are more general: Kapovich [37] has shown that there are closed strictly convex 
4-manifolds which do not admit a hyperbolic structure.

The Hilbert metric is a complete Finsler metric on a properly convex set Ω. This is 
the hyperbolic metric in the Klein model when Ω is a round ball. A simplex with the 
Hilbert metric is isometric to a normed vector space, and appears in a natural geometry 
on the Lie algebra sln. A singular version of this metric arises in the study of certain 
limits of projective structures. The Hilbert metric has a Hausdorff measure and hence a 
notion of finite volume.

If a manifold of dimension greater than 2 admits a finite volume complete hyperbolic 
metric, then by Mostow–Prasad rigidity that metric is unique up to isometry. In dimen-
sion 2 there is a finite dimensional Teichmüller space of deformations, parameterized by 
an algebraic variety. In the context of strictly convex structures on closed manifolds the 
deformation space is a semi-algebraic variety. There are closed hyperbolic 3-manifolds 
for which this deformation space has arbitrarily large dimension. Part of the motivation 
for this work is to extend these ideas to the context of finite volume structures, which 
in turn is motivated by the study of these (and other still mysterious) examples which 
arise via deformations of some finite volume non-compact convex projective 3-orbifolds. 
(See [22] and [23].)
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In the Riemannian context, there is a Margulis constant μ > 0 with the following 
property: If Γ is a discrete group of isometries of a Hadamard space with curvature 
−1 ≤ K ≤ 0 generated by isometries all of which move a given point a distance at 
most μ, then Γ is virtually nilpotent, [2] (9.5) p. 107.

Theorem 0.1 (Properly convex Margulis). (See Section 7.) For each dimension n ≥ 2
there is a Margulis constant μn > 0 with the following property. If M is a properly convex 
projective n-manifold and x is a point in M , then the subgroup of π1(M, x) generated by 
loops based at x of length less than μn is virtually nilpotent.

In fact, there is a nilpotent subgroup of index bounded above by m = m(n). Further-
more, if M is strictly convex and finite volume, this nilpotent subgroup is abelian. If M
is strictly convex and closed, this nilpotent subgroup is trivial or infinite cyclic.

For complete Riemannian manifolds with pinched negative curvature −b2 ≤ K ≤
−a2 < 0 there is a thick–thin decomposition [2] §10. Each component of the thin part
(where the injectivity radius is less than μ/2) consists of Margulis tubes (tubular neigh-
borhoods of short geodesics) and cusps,

Theorem 0.2 (Strictly convex thick–thin). (See Section 8 and also Proposition 8.6.) 
Suppose that M is a strictly convex projective n-manifold. Then M = A ∪ B, where 
A and B are smooth submanifolds and A ∩ B = ∂A = ∂B, and B is nonempty, and A
is a possibly empty submanifold with the following properties:

1. If inj(x) ≤ ιn, then x ∈ A, where ιn = 3−(n+1)μn.
2. If x ∈ A, then inj(x) ≤ μn/2.
3. Each component of A is a Margulis tube or a cusp.

We refer to B as the thickish part and A as the thinnish part. The injectivity radius 
on ∂A is between ιn and μn/2. It follows from the description of the thinnish part that 
the thickish part is connected in dimension greater than 2. Strictly convex is necessary 
because when M is properly convex, there is a properly convex structure on M × S1, 
where the circle factor is arbitrarily short. In this case the whole manifold is thinnish.

The proof of Theorem 0.2 requires a study of isometries, done in Section 2, of the 
Hilbert metric on a properly convex set Ω. An isometry is elliptic if it fixes a point in Ω. 
Otherwise it is hyperbolic or parabolic according to whether or not the infimum of the 
distance that points are moved is positive. In Section 3 we show a point p ∈ ∂Ω together 
with a supporting hyperplane H to Ω at p determines a foliation by a kind of horosphere. 
In Section 4 we study groups with a common fixed point p, called elementary groups, and 
show an infinite discrete group with no hyperbolics preserves some p and H as above and 
is thus called doubly elementary. A full cusp, defined in Section 5, is a properly convex 
manifold or orbifold with holonomy Γ that is infinite and contains no hyperbolic. The 
group Γ is called a cusp group; it is doubly elementary and so preserves a foliation by 
horospheres Proposition 5.1. Moreover Γ is virtually nilpotent (Theorem 5.3). A cusp is 
a nice submanifold of a full cusp; see Definition 5.2.
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Theorem 0.3. (See Theorem 5.3.) Every cusp is diffeomorphic to the product of an affine 
orbifold with virtually nilpotent holonomy and a line.

A maximal rank cusp is a cusp with compact boundary. These are the only cusps which 
appear in the finite volume setting. In [24] there is a discussion of generalized cusps whose 
holonomy many contain hyperbolics. The projective orbifold SL(3, Z)\SL(3, R)/SO(3) is 
properly, but not strictly, convex and has finite volume. The end is not a (generalized) 
cusp. However an immediate consequence of Theorem 0.2 is:

Theorem 0.4. Each end of a strictly convex projective manifold or orbifold of finite volume 
has a neighborhood which is a maximal rank cusp.

It follows that a finite volume strictly convex manifold is diffeomorphic to the interior 
of a compact manifold. Two cusps are projectively equivalent if their holonomies are 
conjugate. Given the diversity of parabolics, the next result is very surprising:

Theorem 0.5. (See Section 9.) A maximal rank cusp in a properly convex real projective 
manifold is projectively equivalent to a hyperbolic cusp of the same dimension.

Thus the fundamental group of a maximal rank cusp is virtually abelian, in contrast 
to the fact (Proposition 5.9) that every finitely generated torsion-free nilpotent group is 
the fundamental group of some properly convex cusp. It follows that every parabolic and 
every elliptic in the holonomy of a strictly convex orbifold of finite volume is conjugate 
into PO(n, 1). This is not true in general for hyperbolic elements in strictly convex 
manifolds or for parabolics in infinite volume manifolds. A crucial ingredient for the 
study of maximal rank cusps is:

Theorem 0.6. (See Theorem 9.1.) Suppose that Ω is strictly convex. Then ∂Ω is an 
ellipsoid if and only if there is a point p ∈ ∂Ω and a nilpotent group W of projective 
transformations which acts simply-transitively on ∂Ω \ p.

A common fallacy is that since any two Euclidean structures on a torus are affinely 
equivalent it follows that all hyperbolic cusps with torus boundary are projectively 
equivalent. However the projective and hyperbolic classification of maximal rank cusps 
coincide:

Theorem 0.7. (See Proposition 9.8.) Two hyperbolic cusps of maximal rank are projec-
tively equivalent if and only if their holonomies are conjugate in PO(n, 1).

Benzecri’s compactness theorem implies the set of balls of fixed radius in properly 
convex domains with the Hilbert metric is compact (Corollary 6.4). Thus there is a 
lower bound on the volume of a component of the thinnish part, depending only on the 
dimension. Then Theorem 0.2 implies a result that is familiar in the setting of pinched 
negative curvature:
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Theorem 0.8. A strictly convex projective manifold has finite volume if and only if the 
thickish part is compact.

The Wang finiteness theorem [55] states that there are a finite number of conjugacy 
classes of lattices of bounded covolume in a semisimple Lie group without compact or 
three-dimensional factors. The Cheeger finiteness theorem [15] bounds the number of 
topological types of manifolds given curvature, injectivity radius, and diameter bounds. 
The finiteness theorems in the projective setting lie somewhere between these two.

Theorem 0.9 (Strictly convex finiteness). (See Section 10.) In every dimension there 
are at most finitely many homeomorphism types for the thickish parts of strictly convex 
projective manifolds with volume at most V . Moreover:

1. In dimension n �= 3 there are at most finitely many homeomorphism classes of strictly 
convex projective manifolds of dimension n and volume at most V .

2. Every strictly convex projective 3-manifold of volume at most V is obtained by Dehn-
filling one of finitely many 3-manifolds, which depend on V .

Though there are only finitely many homeomorphism classes, the earlier discussion of 
moduli means there are infinitely many projective equivalence classes in every dimension 
greater than 1. This finiteness result does not extend to properly convex manifolds be-
cause the product of any compact properly convex manifold and a circle has a properly 
convex structure of arbitrarily small volume; however:

Proposition 0.10 (Properly convex finiteness). (See Section 10.) Given d, ε > 0, there are 
only finitely many homeomorphism classes of closed properly convex n-manifolds with 
diameter less than d and containing a point with injectivity radius larger than ε.

A key ingredient for these finiteness theorems is a version for the Hilbert metric of a 
standard tool from Riemannian geometry with pinched curvature:

Proposition 0.11 (Decay of injectivity radius). (See Theorem 10.1.) If M is a prop-
erly convex projective n-manifold and p, q are two points in M , then inj(q) >

f(inj(p), dM (p, q)), where f depends only on the dimension.

The depth of a Margulis tube is the minimum distance of points on the boundary of 
the tube from the core geodesic. Two more consequences of Proposition 0.11 are:

Theorem 0.12 (Volume bounds diameter). (See Theorem 10.4.) If n ≥ 4 there is cn > 0
such that if Mn is a closed, strictly convex real projective manifold then diam(M) ≤
9 · diam(thick(M)) ≤ cn · Volume(M).
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Proposition 0.13 (Uniformly deep tubes). (See Theorem 10.3.) For each dimension n
there is a decreasing function d : (0, μn] −→ R+ with limx→0 d(x) = ∞ such that a 
Margulis tube in a properly convex manifold with core geodesic of length less than ε has 
depth greater than d(ε).

Another ingredient of Theorem 0.9 is related to Paulin’s [44] equivariant Gromov–
Hausdorff topology, with a key difference being that in [44] the group remains fixed.

Theorem 0.14. (See Section 10.) Given ε > 0 let H be the set of isometry classes of 
pointed metric spaces (M, x), where M is a properly convex projective n-manifold with 
the Hilbert metric and inj(x) ≥ ε.

Then H is compact in the pointed Gromov–Hausdorff topology.

The next result is due to Benoist [5] in the closed case. Choi has obtained a similar 
result with different hypotheses.

Theorem 0.15 (Relatively hyperbolic). (See Theorem 11.6.) Suppose M = Ω/Γ is a prop-
erly convex manifold of finite volume which is the interior of a compact manifold N and 
the holonomy of each component of ∂N is parabolic. Then the following are equivalent:

1. Ω is strictly convex,
2. ∂Ω is C1,
3. π1N is hyperbolic relative to the subgroups of the boundary components.

There has been a lot of work on compact manifolds of the form Ω/Γ, where Ω is the 
interior of a strictly convex compact set in Euclidean space and Γ is a discrete group of 
real-projective transformations that preserve Ω. We mention Goldman [33,32], Benoist 
[3,4,6,7], Choi [17,18] and Choi and Goldman [20].

The thick–thin decomposition was obtained in dimension 2 by Choi [16], where he 
asked if it could be extended to arbitrary dimensions. During the course of this work, Choi 
obtained some results similar to some of ours (see [19]), and we learned of Marquis [43,42,
41] who has studied finite area projective surfaces and constructed examples of cusped 
non-hyperbolic real projective manifolds in all dimensions. Recently he and Crampon 
proved a Margulis lemma [26]. In another recent paper, Crampon discusses parabolics 
and cusps in the C1 setting in [25]. This avoids many complications. Our proof of the 
Margulis lemma in the properly convex case occupies Section 7 and does not depend on 
the earlier sections. The enhanced result in the finite volume strictly convex case follows 
from Theorem 0.5.

The picture which seems to be emerging from the work herein is that finite-volume 
strictly convex manifolds behave like hyperbolic manifolds, sans Mostow rigidity. However 
they are more general. There are similarities between the notions properly convex and 
pinched non-negative curvature. This is related to Benzecri’s compactness (Theorem 6.1) 
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which provides a compact family of charts around each point. The proof that finite volume 
cusps are hyperbolic starts with the observation that far out in the cusp the holonomy 
is almost dense in a Lie group, which must be nilpotent by the Margulis lemma. Then 
one uses the theory of nilpotent Lie groups. The reader should be aware that despite 
the parallels, many familiar facts from hyperbolic geometry do not hold in the projective 
context.

1. Projective geometry and convex sets

If V is a finite dimensional real vector space, then P(V ) = V/R× is the projectivization 
and PGL(V ) is the group of projective transformations. A projective subspace is the 
image P(U) ⊆ P(V ) of a vector subspace U ⊆ V , and is called a (projective) line if 
dimU = 2. If dimV = n a projective basis of P(V ) is an (n + 1)-tuple of distinct points 
B = (p0, p1, · · · , pn) in P(V ) such that no subset of n distinct points lies in a projective 
hyperplane. The set of all projective bases is an open subset U ⊂ P(V )n+1.

Proposition 1.1. For B0 ∈ U the map PGL(V ) −→ U given by τ �→ τB0 is a homeomor-
phism.

To refer to eigenvalues it is convenient to work with the double cover of projective 
space S(V ) = V/R+ with automorphism group SL(V ), which in this paper is the group 
of matrices of determinant ±1. We write RPn = P(Rn+1) and Sn = S(Rn+1).

The set C ⊆ P(V ) is convex if the intersection of every line with C is connected. 
An affine patch is a subset of RPn obtained by deleting a codimension-1 projective 
hyperplane. A convex subset C ⊆ RPn is properly convex if its closure is contained in 
an affine patch. The point p ∈ ∂C is a strictly convex point if it is not contained in a 
line segment of positive length in ∂C. The set C is strictly convex if it is properly convex 
and strictly convex at every point in ∂C.

Let π : Sn −→ RPn denote the double cover. If Ω is a properly convex subset of RPn, 
then π−1Ω has two components, each with closure contained in an open hemisphere. We 
choose one as a lift and refer to it as Ω, and we will always assume that Ω is open.

We use the notation SL(Ω) for the subgroup of SL(n + 1, R) which preserves Ω. It 
is naturally isomorphic to the subgroup PGL(Ω) ⊂ PGL(n + 1, R) which preserves Ω. 
It is convenient to switch back and forth between talking about projective space and 
its double cover, and between talking about PGL(Ω) and SL(Ω). This allows a certain 
economy of expression and should not cause confusion.

A subset C ⊂ Rn+1 is a cone if λ · C = C for all λ > 0, and is sharp if it contains no 
affine line. A properly convex domain Ω ⊂ Sn determines a sharp convex cone C(Ω) =
R+ ·Ω ⊂ Rn+1. Then SL(C) = SL(Ω) is the subgroup of SL(n + 1, R) which preserves C.

The dual of the vector space V is denoted V ∗. A point [φ] ∈ P(V ∗) determines a 
codimension-1 subspace U = kerφ in V and thus a projective hyperplane H = P(U) in 
P(V ). This gives a natural bijection, called duality, between projective hyperplanes in 
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P(V ) and points in P(V ∗). If p = [v] ∈ P(U) then p ∈ H iff φ(v) = 0. There is a natural 
action of SL(V ) on V ∗. Using a basis of V and the dual basis of V ∗ if T ∈ SL(V ) has 
matrix A then the matrix for the action of T on V ∗ is A∗ = transpose(A−1).

If Ω ⊂ S(V ) is a properly convex set the dual domain, Ω∗ ⊂ S(V ∗), is the projec-
tivization of the dual cone

C∗(Ω) = { φ ∈ V ∗ : ∀v ∈ C(Ω) φ(v) > 0 }

Thus Ω∗ is the set of points that are the duals of projective hyperplanes disjoint from 
Ω and Ω∗∗ = Ω. The subset of P(V ∗) dual to supporting hyperplanes at p = [u] is the 
projectivization of the cone

C∗(Ω, p) = { φ ∈ C∗(Ω) : φ(u) = 0 },

from which one easily sees

Proposition 1.2. If Ω ⊂ S(V ) is properly convex the subset S(C∗(Ω, p)) ⊂ S(V ∗) dual to 
supporting hyperplanes to p ∈ ∂Ω is compact, non-empty and properly convex.

Suppose H is a supporting hyperplane to Ω at p. Then locally ∂Ω is the graph of a 
function defined on a neighborhood of p in H. By (2.7 of [36]) this function is C1 at p
iff H is the unique supporting hyperplane at p; and in this case p is called a C1-point.

The duality relation R ⊂ ∂Ω×∂Ω∗ consists of all pairs ([v], [φ]) with φ(v) = 0. The pro-
jections, π1, π2 of R onto the first and second factors are surjective. If (p, [φ]) ∈ R then p is 
a strictly convex point of ∂Ω iff |π−1

1 π2(p, [φ])| = 1 and a C1-point iff |π−1
2 π1(p, [φ])| = 1. 

From this one sees that p is a strictly convex point of ∂Ω iff [φ] is a C1-point of ∂Ω∗. 
Thus strict convexity is dual to C1.

A round point is a strictly convex C1-point. A domain is round if every point in the 
boundary is round. If Ω is round the duality relation is a homeomorphism ∂Ω −→ ∂Ω∗. 
Round points play an important role in the study of cusps.

A group, G, of homeomorphisms of a locally compact Hausdorff space X acts properly 
discontinuously if for every compact K ⊂ X the set K ∩ gK is nonempty for at most 
finitely many g ∈ G.

Proposition 1.3. Suppose Ω is properly convex and Γ ⊂ PGL(Ω). Then Γ is a discrete 
subgroup of PGL(n + 1, R) iff Γ acts properly discontinuously on Ω.

Proof. Suppose there is a sequence of distinct elements γi ∈ Γ converging to the identity 
in PGL(n + 1, R). Let K ⊂ Ω be a compact set containing [v] in its interior. Then 
γi[v] ∈ K for all sufficiently large i so Γ does not act properly discontinuously. Conversely, 
suppose K ⊂ Ω is compact and there is a sequence of distinct elements γi ∈ Γ with 
K ∩ γiK �= φ. Choose a projective basis B = (x0, · · · , xn) ⊂ Ω with x0 ∈ K. After 
taking a subsequence we may assume γiB converges to a subset of Ω. The sequence 
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δi = γ−1
i+1γi ∈ Γ has the property δiB → B because δi is an isometry. By 1.1, this implies 

δi converges to the identity. �
A properly convex projective orbifold is Q = Ω/Γ, where Ω is an open properly convex 

set and Γ ⊆ SL(Ω) is a discrete group. Similarly for strictly convex. This orbifold is a 
manifold iff Γ is torsion free. Since points in Ω∗ are the duals of hyperplanes disjoint 
from Ω it follows that under the dual action SL(Ω) preserves Ω∗. Thus given a properly 
convex projective orbifold Q, there is a dual orbifold Q∗ = Ω∗/Γ∗. Two orbifolds Ω/Γ
and Ω′/Γ′ are projectively equivalent if there is a homeomorphism between them which 
is covered by the restriction of a projective transformation mapping Ω to Ω′. In general 
Q is not projectively equivalent to Q∗, see [21].

Proposition 1.4 (Convex decomposition). If Ω is an open convex subset of RPn which 
contains no projective line, then it is a subset Ak ×C of some affine patch Ak ×An−k ⊂
RPn, where k ≥ 0 and C ⊂ An−k is a properly convex set. One factor might be a single 
point. The set C is unique up to projective isomorphism.

Proof. In [27] it is shown there is an affine patch An = RPn \ H which contains Ω. 
We sketch a proof. Clearly Ω is contractible, thus it lifts to Ω̃ ⊂ Sn. The open cone 
C(Ω̃) ⊂ Rn+1 is convex and 0 is in the frontier. Hence there is a supporting hyperplane 
to C(Ω̃) at 0. The projectivization of the complement of this hyperplane is the required 
affine patch. Choose an affine subspace Ak ⊆ Ω of maximum dimension k ≥ 0. Then 
k = 0 iff Ω contains no affine line. Since Ω is convex and open, it follows that Ω = Ak×C

for some open convex set C ⊂ Am with m = n − k. Since k is maximal it follows that C
contains no affine line.

It is easy to show the closure C ⊂ RPm contains no projective line. By [27] C is 
disjoint from some projective hyperplane H ′ ⊂ RPm. We sketch a proof. As before 
C lifts to C ⊂ Sm. Choose a great sphere B0 ∼= Sm−1 ⊂ Sm. By induction on m
there is A ∼= Sm−2 ⊂ B0 disjoint from C ∩ B0. Consider the pencil of great spheres 
Bt

∼= Sm−1 ⊂ Sm containing A. Then Bt \A has two components and, by convexity, C
meets at most one of them. A continuity argument shows for some C∩Bt = ∅ for some t. 
Then H ′ is the image of Bt. Thus C is a compact subset of the affine patch RPn−k \H ′, 
so C is properly convex. Uniqueness of C up to projective isomorphism follows from the 
fact that a projective transformation sends affine spaces to affine spaces. �

Suppose U ⊆ V is a 1-dimensional subspace. The set of lines in P(V ) containing the 
point p = [U ] is the projective space P(V/U) and is called the space of directions at p. 
Radial projection towards p is Dp : P(V ) \ {p} −→ P(V/U) given by Dp[v] = [v + U ]. 
The image of a subset Ω ⊆ P(V ) is denoted DpΩ and is called the space of directions of 
Ω at p.

A projective transformation τ ∈ PGL(V ) which fixes p induces a projective transfor-
mation τp of P(V/U). If A ∈ GL(V ) represents τ then A(U) = U and τp([v]) = [Av+U ].
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Passing to double covers of these projective spaces, S(V/U) is the set of oriented lines 
containing a lift of p and is also called the space of directions. Suppose that A ∈ SL(Ω) ⊆
SL(V ) fixes p ∈ ∂Ω. Then A preserves the orientations of lines through p and so induces 
Ap ∈ SL(V/U). We will make frequent use of:

Proposition 1.5. Suppose Ω ⊂ Sn is properly convex, p ∈ ∂Ω and A ∈ SL(Ω) fixes p. 
Choose a basis of Rn+1 with first vector e1 representing p; thus Ae1 = λ1e1 and λ1 > 0. 
Then Ap = n

√
1/λ1B where B is the n ×n submatrix obtained from the matrix A by omit-

ting the first row and column. In particular, if λ1 = 1 then the eigenvalues counted with 
multiplicity of Ap are the subset of the eigenvalues of A, where the algebraic multiplicity 
of λ1 is reduced by 1.

If Ω is a properly convex domain and p ∈ ∂Ω, then DpΩ is open and convex because 
Ω is, and it is contained in an affine patch given by the complement of the image of any 
supporting hyperplane of Ω at p. A subset U ⊂ RPn is starshaped at p if p ∈ U and the 
intersection with U of every line containing p is connected.

Corollary 1.6. Suppose Ωn is properly convex and p ∈ ∂Ω.

1. DpΩ is projectively equivalent to Ak × C where C is a properly convex open set and 
dimC = n − k − 1. One of the factors might be a single point.

2. p is a C1 point iff DpΩ = An−1.
3. p is a strictly convex point iff Dp|(∂Ω \ {p}) is injective.
4. p is a round point iff the restriction of Dp is a homeomorphism from ∂Ω \ {p} to 

An−1.

The Hilbert metric dΩ on a properly convex open set Ω is dΩ(a, b) = log | CR(x, a, b, y)|, 
where x, y ∈ ∂Ω are the endpoints of a line segment in Ω containing a and b such that 
a lies between x and b on the line segment and

CR(x, a, b, y) = ‖b− x‖ · ‖a− y‖
‖b− y‖ · ‖a− x‖

is the cross ratio. This is a complete Finsler metric with:

ds = log |CR(x, a, a + da, y)| =
(

1
|a− x| + 1

|a− y|

)
da.

This gives twice the hyperbolic metric when Ω is the interior of an ellipsoid. Every 
segment of a projective line in Ω is length minimizing, and in the strictly convex case 
these are the only geodesics. This metric defines a Hausdorff measure on Ω which is 
denoted μΩ and is absolutely continuous with respect to Lebesgue measure.
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Fig. 1. Comparing to a quadrilateral.

Since projective transformations preserve cross ratio, SL(Ω) is a group of isometries 
of the Hilbert metric. The inclusion SL(Ω) ≤ Isom(Ω, dΩ) may be strict. The Hilbert 
metric and associated measure descend to Q = Ω/Γ giving a volume μΩ(Q).

Lemma 1.7. If Ω is properly (resp. strictly) convex, then metric balls of the Hilbert metric 
are convex (resp. strictly convex).

Proof. Refer to Fig. 1. Suppose R = d(x, y) = d(x, z). We need to show that for every 
p ∈ [y, z], we have d(x, p) ≤ R. The extreme case is obtained by taking the quadrilateral 
Q ⊂ Ω which is the convex hull of the four points on ∂Ω, where the extensions of the 
segments [x, z] and [x, y] meet ∂Ω. Then dΩ ≤ dQ and the ball of radius R in Q center 
x is a convex quadrilateral. �

Example E(ii) below shows metric balls might not be strictly convex. In this case 
geodesics are not even locally unique. A function defined on a convex set is convex if the 
restriction to every line segment is convex. The statement that metric balls centered at 
the point p are convex is equivalent to the statement that the function on Ω defined by 
f(x) = dΩ(p, x) is convex. Socié-Méthou [47] showed that dΩ(x, y) is not a geodesically 
convex function, in contrast to the situation in hyperbolic and Euclidean space. However, 
the following lemma leads to a maximum principle for the distance function.

Lemma 1.8 (4 points). Suppose a, b, c, d are points in a properly convex set Ω and that 
R = dΩ(a, b) = dΩ(c, d). Then every point on [a, c] is within distance R of [b, d].

Proof. Refer to Fig. 2. Let A, B be the points in ∂Ω such that the line [A, B] contains 
[a, b]. Define [C, D] similarly. Let σ be the interior of the convex hull of A, B, C, D. Then 
σ ⊂ Ω, so dσ ≥ dΩ. The formula for the Hilbert metric on σ makes sense for pairs of 
points on the same edge in the 1-skeleton of σ. Then, by construction dσ(a, b) = dΩ(a, b)
and dσ(c, d) = dΩ(c, d). Thus it suffices to prove the result when Ω = σ.

We may therefore assume that Ω = σ is a possibly degenerate 3-simplex. The degen-
erate case follows from the non-degenerate case by a continuity argument.

The identity component H of SL(σ) fixes the vertices of σ and acts simply transitively 
on σ. If we choose coordinates so that the vertices of σ are represented by basis vectors, 
then H is the group of positive diagonal matrices with determinant 1. A point x in 
the interior of σ lies on a unique line segment, � = [a, c], in σ with one endpoint a ∈
(A, B) and the other c ∈ (C, D). It follows that the subgroup of H that preserves � is a 
one-parameter group which acts simply-transitively on �.
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Fig. 2. The simplex σ.

The point x also lies on a unique segment [X, Y ] with X ∈ (A, C) and Y ∈ (B, D). Let 
G = G1 ·G2 be the two parameter subgroup of H that is the product of the stabilizers, 
G1 of [a, c] and G2 of [X, Y ]. The G-orbit of x is a doubly ruled surface: a hyperbolic 
paraboloid. The G1-orbit of the line G2 · x = (X, Y ) gives one ruling. The G2-orbit of 
the line G1 · x = (a, c) gives the other ruling. This surface is the interior of a twisted 
square with corners A, B, C, D. Since G acts by isometries and dσ(a, b) = dσ(c, d), it 
follows that [a, c] is sent to [b, d] by an element of G. Thus [b, d] intersects [X, Y ] at a 
point y. The segment [x, y] can be moved by elements of G arbitrarily close to both [a, b]
and to [c, d]. Furthermore, dσ(g · x, g · y) is independent of G. It follows by continuity of 
cross-ratio that this constant is dσ(a, b). �

A point x in a set K in Euclidean space is an extreme point if it is not contained in 
the interior of a line segment in K. It is clear that the extreme points of a compact set 
K must lie on its frontier and that K is the convex hull of its extreme points, [38]. If Ω
is properly convex, a function f : Ω −→ R satisfies the maximum principle if for every 
compact subset K ⊂ Ω the restriction f |K attains its maximum at an extreme point 
of K.

Corollary 1.9 (Maximum principle). If C is a closed convex set in a properly convex 
domain Ω, then the distance of a point in Ω from C satisfies the maximum principle.

Proof. The function f(x) = dΩ(x, C) is 1-Lipschitz, therefore continuous. Let K ⊂ Ω
be a compact set then f |K attains its maximum at some point y. There is a finite 
minimal set, S, of extreme points of K such that y is in their convex hull. Choose y to 
minimize |S|. If S contains more than one point then y is in the interior of a segment 
[a, b] ⊂ K with a ∈ S and b in the convex hull of S′ = S \ y. Since C is closed and f is 
continuous there are c, d ∈ C with f(a) = dΩ(a, c) and f(b) = dΩ(b, d). Since C is convex 
[c, d] ⊂ C.

Assume for purposes of contradiction that f(y) > f(a) = dΩ(a, [c, d]) and f(y) >
f(b) = dΩ(b, [c, d]). Without loss assume f(b) ≤ f(a). Move b towards y until dΩ(a, c) =
dΩ(b, d). By the 4-points lemma dΩ(y, [c, d]) ≤ f(a). However, [c, d] ⊂ C and so f(y) ≤
dΩ(y, [c, d]), giving the contradiction f(y) ≤ f(a). �
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Fig. 3. Diverging lines.

Corollary 1.10 (Convexity of r-neighborhoods). If C is a closed convex set in a properly 
convex domain Ω and r > 0, then the r-neighborhood of C is convex.

In particular, an r-neighborhood of a line segment is convex.

Lemma 1.11 (Diverging lines). Suppose L and L′ are two distinct line segments in a 
strictly convex domain Ω which start at p ∈ ∂Ω. Let x(t) and x′(t) be parameterizations 
of L and L′ by arc length so that increasing the parameter moves away from p.

Then f(s) = dΩ(x(s), L′) is a monotonic increasing homeomorphism f : R −→ (α, ∞)
for some α ≥ 0. Furthermore α = 0 if p is a C1 point.

Proof. Refer to Fig. 3. We may reduce to two dimensions by intersecting with a plane 
containing the two lines. The function is 1-Lipschitz, thus continuous. Let x′(s′) be some 
point on L′ closest to x(s), and let Ωs be the subdomain of Ω which is the triangle 
with vertices p, q(s), r(s) shown dotted. The following facts are evident. The distance 
between x(s) and x′(s′) is the same in both Ω and Ωs. For t > 0 we have f(s − t) ≤
dΩs−t

(x(s − t), x′(s′ − t)). Finally dΩs
(x(s − t), x′(s′ − t)) is constant for t > 0. The 

obvious comparison applied to triangular domains Ωs and Ωs−t gives the monotonicity 
statement.

If now p is a C1 point, then there is a unique tangent line to ∂Ω at p and the triangular 
domains have the angle at p increasingly close to π. This implies that the distance tends 
to zero.

It only remains to show f is not bounded above. Let a(s) = |q(s) − x(s)| and b(s) =
|r(s) −x′(s′)|. If f(s) = dΩ(x(s), x′(s′)) is bounded above as s → ∞ then, using the cross 
ratio formula for distance and the fact |x(s) − x′(s′)| is bounded away from zero, a(s)
and b(s) are bounded away from 0. Using the fact that Ω is convex, the limit as s → ∞
of the segment with endpoints q(s) and r(s) is a line segment in ∂Ω. �
2. Projective isometries

Let Ω ⊆ Sn be an open properly convex domain. An element A ∈ SL(Ω) is called 
a projective isometry. If Ω is strictly convex then every isometry of the Hilbert metric 
is of this type. If A fixes a point in Ω it is called elliptic. If A acts freely on Ω it is 
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parabolic if every eigenvalue has modulus 1 and hyperbolic otherwise. The main results 
are summarized in Propositions 2.7, 2.11 and 2.13. The translation length of A is

t(A) = inf
x∈X

dΩ(x,Ax).

The subset of Ω for which this infimum is attained is called the minset of A. It might be 
empty. Later we derive the following algebraic formula for translation length which im-
plies hyperbolics have positive translation length and parabolics have translation length 
zero. The following result is proved at the end of this section for elliptic and hyperbolic 
isometries, and in Proposition 4.10 for parabolics.

Proposition 2.1. t(A) = log |λ/μ|, where λ and μ are eigenvalues of A of maximum and 
minimum modulus respectively.

For future reference, and to illustrate the diversity, we present some key examples of 
homogeneous domains, i.e. domains Ω on which SL(Ω) acts transitively. These have been 
classified by Vinberg [52] and include:

E(i) The projective model of hyperbolic space Hn is identified with the unit ball Dn ⊆
RPn and SL(Dn) ∼= PO(n, 1)

E(ii) The Hex plane Ω = Δ is the interior of an open 2-simplex and SL(Δ) consists 
of the semi-direct product of positive diagonal matrices of determinant 1 and 
permutations of the vertices. This is isometric to a normed vector space, where 
the unit ball is a regular hexagon [28]. Since the unit ball is not strictly convex 
geodesics are not even locally unique. The minset of a hyperbolic is Δ. Also SL(Δ)
has index 2 in Isom(Δ)

E(iii) Ω = D2 ∗ {p} ⊂ RP 3 is the open cone on a round disc D2. The restriction of the 
Hilbert metric to D2 × {x} ⊂ Ω is E(i). Restricted to the cone on a line in D2

gives E(ii). There is an isomorphism SL(D2 ∗ {p}) ∼= Isom+(H2 × R); the latter 
is isometries which preserve the R-orientation. A certain parabolic A fixes a line 
[p, x] in the boundary where x ∈ ∂D. The cone point p is fixed by the subgroup 
Isom(H2).

E(iv) Real Siegel upper half space Ω = Pos ⊂ Rn(n+1)/2 is the projectivization of the 
open convex cone in Mn(R) of positive definite symmetric matrices. Points in Pos
correspond to homothety classes of positive definite quadratic forms, and points 
on the boundary to positive semi-definite forms. The group SL(n, R) acts via 
B �→ At ·B ·A. Thus SL(Pos) contains the image of the irreducible representation 
σ2 : SL(n, R) −→ SL(n(n +1)/2, R). For n = 2 this gives the hyperbolic plane E(i). 
For n ≥ 3 this example shows there are many possibilities for the Jordan normal 
form of an element of SL(Ω) when Ω is properly but not strictly convex.
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If p ∈ Ω, then SL(Ω, p) ⊆ SL(Ω) is defined as the subgroup which fixes p. It is easy 
to see that if p ∈ Ω, then this group is compact, i.e.

Lemma 2.2 (Elliptics are standard). If Ω is a properly convex domain, then A ∈ SL(Ω)
is elliptic iff it is conjugate in SL(n + 1, R) into O(n + 1). Furthermore, if p ∈ Ω, then 
SL(Ω, p) is conjugate in SL(n + 1, R) into O(n + 1). �

Points in projective space fixed by A ∈ SL(n + 1, R) correspond to real eigenvectors 
of A. Thus the set of points in projective space fixed by A is a finite set of disjoint 
projective subspaces, each of which is the projectivization of a real eigenspace.

Lemma 2.3 (Invariant hyperplanes). If Ω is a properly convex domain and A ∈ SL(Ω)
fixes a point p ∈ ∂Ω, then there is a supporting hyperplane H to Ω at p which is preserved 
by A.

Proof. By Proposition 1.2 the set of hyperplanes which support Ω at p is dual to a 
compact properly convex set, C, in the dual projective space. By Brouwer, the dual 
action of A∗ fixes at least one point in C and this point is dual to H. �

An immediate consequence of Proposition 1.5 that will be used in the study of ele-
mentary groups is:

Lemma 2.4. Suppose Ω ⊂ Sn is properly convex and p ∈ ∂Ω. If A ∈ SL(Ω, p) is not 
hyperbolic, then the induced map Ap ∈ SL(DpΩ) on the space of directions is not hyper-
bolic.

The next step is to describe the fixed points in ∂Ω and the dynamics of a projective 
isometry. By the Brouwer fixed point theorem the subset Fix(A) ⊆ Ω of all points fixed 
by A ∈ SL(Ω) is not empty. If Ω ⊂ Sn is properly convex and A ∈ SL(Ω) fixes a 
point in Ω then the corresponding eigenvalue is positive. Let Vλ be the λ-eigenspace and 
Fix(A, λ) = Ω ∩ P(Vλ). This set is either empty or compact and properly convex. Then 
Fix(A) = �λ Fix(A, λ) where λ runs over the positive eigenvalues of A.

The ω-limit set ω(f, U) of the subset U ⊆ X under f : X −→ X is the union of the 
sets of accumulation points of the forward orbits {fn(u) : n > 0} of points u ∈ U . If 
A ∈ SL(Ω) is not elliptic, then it generates an infinite discrete group. It follows from 
Proposition 1.3 that A acts properly discontinuously on Ω, thus ω(A, Ω) ⊆ ∂Ω.

The ω-limit set of generic points in projective space under A ∈ SL(n + 1, R) is deter-
mined firstly by the eigenvalues of largest modulus and secondly by the Jordan blocks 
of largest size amongst these eigenvalues.

Consider the dynamics of T ∈ GL(V ) with a single Jordan block of size dimV = k+1. 
Then T = λ · (I + N) with Nk+1 = 0 and Nk �= 0. For p ≥ k
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T p = λp(I + N)p = λp

[
1 +

(
p

1

)
N +

(
p

2

)
N2 + · · · +

(
p

k

)
Nk

]

For p large the last term dominates. Let ek+1 ∈ V be a cyclic vector for the 
R[T ]-module V . This gives a basis {e1, · · · , ek+1} of V with ei = N(ei+1) for 1 ≤ i ≤ k

and N(e1) = 0. Observe that T has a one-dimensional eigenspace E = Re1. Define a poly-
nomial h(t) = (t − λ)k, then E = Im h(T ) is the eigenspace and K = kerNk = kerh(T )
is the unique proper invariant subspace of maximum dimension. Call a point x ∈ P(V )
generic if it is not in the hyperplane P(K). If x is generic, then T px → P(E) as p → ∞. 
Thus ω(T, P(V ) \ P(K)) = P(E) is a single point.

If instead T has Jordan form (I+reiθN) ⊕(I+re−iθN), similar reasoning shows there 
is a projective line P(E) on which T acts by rotation by 2θ and generic points converge 
to this line under iteration. In fact using the definitions of E and K above but with 
the polynomial h(t) = (t2 − 2tr cos θ + r2)k one obtains similar conclusions. As before, 
generic points are those not in the codimension-2 hyperplane P(K). Now for the general 
case.

To a k × k Jordan block λI + N with eigenvalue λ assign the ordered pair (|λ|, k), 
called the power of the block. Two Jordan blocks with the same power are called power 
equivalent. Lexicographic ordering of these pairs is an ordering on power equivalence 
classes of Jordan block matrices. Given a linear map T ∈ GL(V ) the power of T is the 
maximum of the powers of the Jordan blocks of T . If the power of T is larger than the 
power of S, we say T is more powerful than S. The spectral radius r(T ) is the maximum 
modulus of the eigenvalues of T .

The power of T ∈ GL(V ) is (r(T ), k), where k ≥ 1 is the size of the most powerful 
blocks. Let p(t) be the characteristic polynomial of T . Let E be the set of eigenvalues of 
Jordan blocks of maximum power in T and set q(t) =

∏
λ∈E(t −λ). Observe that the linear 

factors of q(t) are all distinct and that q(t) has real coefficients. Define hT (t) = h(t) =
p(t)/q(t) and two linear subspaces E = E(T ) = Im h(T ) and K = K(T ) = kerh(T ). 
The next proposition implies that points in P(V ) \ P(K) limit on P(E) under forward 
iteration of [T ].

Lemma 2.5 (Power attracts). Suppose T ∈ GL(V ) and W ⊆ P(V ) \ P(K) has nonempty 
interior. Then ω([T ], W ) is a subset of P(E) with nonempty interior. Moreover, the 
action of T on P(E) is conjugate into the orthogonal group.

Proof. [Sketch of the proof] Extend T to TC over VC = V ⊗R C. Take the Jordan de-
composition of TC =

⊕
Ti corresponding to an invariant decomposition VC =

⊕
Vi. 

Use the analysis above in each block. After projectivizing only the most powerful blocks 
contribute to the ω-limit. The subspace K ⊗ C contains those Vi for blocks that do not 
have maximum power. It also contains the maximal proper invariant subspace of those 
Vi for each Jordan block of maximum power. The subspace E ⊗ C is the space spanned 
by the eigenvectors from the most powerful blocks. The action of T on this subspace is 
diagonal with eigenvalues reiθ with r = r(T ) fixed but θ varying. �
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Proposition 2.6. If Ω is properly convex and T ∈ SL(Ω) is not elliptic then T has a most 
powerful Jordan block with real eigenvalue r = r(T ) and Fix(T, r) ⊆ ∂Ω is nonempty. 
Furthermore, if Ω is strictly convex, then T contains a unique Jordan block of maximum 
power.

Proof. Set K = K(T ) and E = E(T ). By Lemma 2.5 H+ = ω([T ], Ω \ P(K)) ⊆ P(E)
contains a nonempty open subset of P(E). The ω-limit set of Ω is in ∂Ω so H+ ⊆ ∂Ω
hence G = Ω ∩ P(E) ⊃ H+ is a nonempty, compact convex set preserved by T . By the 
Brouwer fixed point theorem T fixes some point in G. This corresponds to an eigenvector 
with positive eigenvalue that is maximal, and is therefore r. Hence Fix(T, r) is not empty. 
Since T is not elliptic F = Fix(T, r) ⊆ ∂Ω.

The number of Jordan blocks of maximum power is dimE. Since H+ contains an open 
set in P(E), if dimE > 1, then it contains a nondegenerate interval. But H+ ⊆ ∂Ω hence 
Ω is not strictly convex. �

If A is hyperbolic, then r(A) > 1 and the points in F+(A) = Fix(A, r(A)) are called 
attracting fixed points and are represented by eigenvectors with eigenvalue r(A). Simi-
larly, points in F−(A) = F+(A−1) are repelling fixed points. The union of the remaining 
sets Fix(A, λ) is denoted F0(A).

Proposition 2.7. Suppose Ω is a properly convex domain and A ∈ SL(Ω). Then each 
component of Fix(A) is compact and convex, and:

1. If A is parabolic or elliptic then Fix(A) = Fix(A, 1) is connected.
2. If A is hyperbolic then Fix(A) = F+(A) � F−(A) � F0(A) and F±(A) are both 

nonempty.

Example. Referring to E(iii) consider the hyperbolic A ∈ SL(D2 ∗ {p}) which is the 
composition of a rotation by θ in D2 together with a hyperbolic given by diag(2, 2, 2, 1/8)
which moves points towards D2 and away from p. The forward and backward ω-limits 
sets are H+ = D2 and H− = p. There is a unique fixed point F+(A) in D2: the center 
of the rotation.

A real matrix with unique eigenvalues of maximum and minimum modulus is positive 
proximal [8] if these eigenvalues are positive.

Proposition 2.8 (Strictly convex isometries). Suppose Ω is a strictly convex domain and 
A ∈ SL(Ω). If A is parabolic, it fixes precisely one point in ∂Ω. If A is hyperbolic, it is 
positive proximal and fixes precisely two points in ∂Ω. The line segment in Ω with these 
endpoints is called the axis and consists of all points moved distance t(A).

Proof. Each Fix(A, λ) is a single point because Ω is strictly convex. The result for 
parabolics now follows from Proposition 2.7. Otherwise for a hyperbolic F− = [v−]
and F+ = [v+] are single points.
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The eigenvectors v± have eigenvalues λ± of maximum and minimum modulus. By 
Lemma 2.3 there are invariant supporting hyperplanes H± to Ω at these points. Since Ω is 
strictly convex, these hyperplanes are distinct so that their intersection is a codimension-2 
hyperplane. Thus A preserves a codimension-2 linear subspace that contains neither v±. 
It follows that the corresponding Jordan blocks have size 1. By Proposition 2.6 the most 
powerful block is unique, so the eigenvalue λ+ has algebraic multiplicity one. The same 
remarks apply to λ− because A−1 is also hyperbolic. Thus A is positive proximal.

The line segment [v−, v+] ⊆ Ω meets ∂Ω only at its endpoints and A maps this segment 
to itself. The restriction of A to the two dimensional subspace spanned by v± is given by 
the diagonal matrix diag(λ+, λ−). The action of A on this segment is translation by a 
Hilbert distance of log(λ+/λ−). It follows from Proposition 2.11 that points not on this 
axis are moved a larger distance (the discussion up to and including Proposition 2.11
does not use this characterization of the axis). �
Example (A hyperbolic with no axis). The domain Ω = {(x, y) : xy > 1} is projectively 
equivalent to a properly convex subset of the Hex plane Δ. There is A ∈ SL(Ω) given by 
A(x, y) = (2x, y/2) with translation length log 4 which is not attained, so the minset is 
empty.

Examples of parabolics. Every 1-parameter subgroup of parabolics in SO(2, 1) is conju-
gate to ⎛⎜⎝ 1 t t2/2

0 1 t

0 0 1

⎞⎟⎠ .

The orbit of [0 : 0 : 1] is the affine curve in RP 2 given by [t2/2 : t : 1]. The completion of 
this curve is a projective quadric. One may regard this as the boundary of the parabolic 
model { (x, y) : x > y2/2 } ⊆ R2 of the hyperbolic plane (see later).

The index iA(λ) of an eigenvalue λ is the size of the largest Jordan block for λ. This 
equals the degree of the factor (t − λ) in the minimum polynomial of A. If λ is not an 
eigenvalue of A, then define iA(λ) = 0. The maximum index of A is iA = maxλ iA(λ). 
Every element A ∈ O(n, 1) is conjugate into O(n − 2) ⊕ O(2, 1). If A is parabolic, then 
iA = iA(1) = 3 and all other eigenvalues are semisimple.

For the Siegel upper half space, we have SL(Pos) ⊃ σ2 (SL(n,R)). The image of a 
matrix given by a single Jordan block of size n contains one Jordan block of each of the 
sizes 2n − 1, 2n − 5, · · · , 3 or 1. In particular, a unipotent matrix of this type gives a 
parabolic A with iA = iA(1) = 2n − 1.

As a final example let N denote a nilpotent 3 × 3 matrix with N2 �= 0 so that

B = (I + N) ⊕ eiθ(I + N) ⊕ e−iθ(I + N) ∈ GL(9,C)
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is the Jordan form of an element A ∈ SL(9, R) with iA = iA(1) = iA(e±iθ) = 3. Then 
E = E(A) is a 3-dimensional invariant subspace. The action of A on E is rotation by θ
around an axis corresponding to the real eigenvector for A. The image of the axis is the 
unique fixed point x ∈ RP 8 for the action of A. The set P(E) ⊆ RP 8 is the ω-limit set 
for A. The convex hull of the orbit of a suitable small open set near x disjoint from P(E)
is a properly convex set Ω preserved by A. Under iteration points in Ω converge to P(E)
so that Ω ∩ P(E) is a small 2-disc centered on x which is rotated by A. In particular, 
Ω is not strictly convex.

Proposition 2.9 (JNF for parabolics). Suppose Ω is a properly convex domain and T ∈
SL(Ω) is a parabolic. Then there is a Jordan block of maximum power with eigenvalue 
1 and the block size iT (1) ≥ 3 is odd. If Ω is strictly convex, this is the only block of 
maximum power.

Proof. Except for the statement concerning iT (1) this follows from Proposition 2.6. First 
consider the case that T = I + N consists of a single Jordan block of size n + 1. Then 
Nn �= 0 and Nn+1 = 0. Using a suitable basis [0 : 0 : · · · : 1] ∈ Ω, and the image of 

(0, 0, · · · , 1) under (I + N)p is (x0, x1, · · · , xn) = (1, 
(
p

1

)
, 

(
p

2

)
, · · · , 

(
p

n

)
) provided 

p ≥ n.
For p large xn dominates. If n is odd the sign of xn is the sign of p. Thus as p → ±∞

this implies (0, · · · , 0, ±1) ∈ ∂Ω. These are antipodal points in Sn and contradict that Ω
is strictly convex. Hence n is even so iT (1) is odd. If iT (1) = 1 then every eigenvalue of 
T has multiplicity 1 thus T is elliptic. Hence iT (1) ≥ 3. This simplified argument is due 
to Benoist.

For the general case choose [v] ∈ Ω and let V ⊆ Rn+1 be the cyclic R[T ]-module 
generated by v. Then T |V has a single Jordan block. By choosing v generically it follows 
that dimV is the size of a largest Jordan block of T . Furthermore Ω′ = Ω ∩ P(V ) is a 
nonempty, properly convex open set, that is preserved by T . The result follows from the 
special case. �
Corollary 2.10 (Low dimensions). Suppose A ∈ SL(n +1, R) is a parabolic for a properly 
convex domain. If n ≤ 3 then A is conjugate into O(n, 1).

Using this, with a bit of work one can show that in dimension 3 a rank-2 discrete free 
abelian group consisting of parabolics preserving a properly convex domain is conjugate 
into O(3, 1). However, in dimension 3 there is a rank-2 free abelian group Γ with the 
property that every non-trivial element of Γ is conjugate to a parabolic in PO(3, 1) but 
Γ does not preserve any properly convex domain.

If C is a codimension-2 projective subspace then the set of codimension-1 projective 
hyperplanes containing C is called a pencil of hyperplanes and C is the center of the 
pencil. The hyperplanes in the pencil are dual to a line C∗ in the dual projective space. 
The next result gives a good picture of the dynamics of a projective isometry (see Fig. 4).
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Fig. 4. Pencils of hyperplanes.

Proposition 2.11 (Isometry permutes pencil). Suppose that Ω is a properly convex domain 
and A ∈ SL(Ω) is a parabolic or hyperbolic.

Then there is a pencil of hyperplanes that is preserved by A. The intersection of this 
pencil with Ω is a foliation and no leaf is stabilized by A. Thus M = Ω/〈A〉 is a bundle 
over the circle with fibers convex subsets of hyperplanes.

Proof. The desired conclusion is equivalent to the existence of a projective line C∗ in 
the dual projective space with the properties

1. C∗ is preserved by the dual action of A, and this action on C∗ is non-trivial;
2. C∗ intersects the closure of the dual domain Ω∗.

The reason is that a hyperplane H meets Ω if and only if the dual point H∗ is disjoint 
from Ω∗. Thus the condition that C∗ meets Ω∗ ensures that the center, C, of the pencil 
does not intersect Ω, which in turn ensures the hyperplanes foliate Ω.

First consider the case that A is hyperbolic. Then there are distinct points H∗
± ∈ ∂Ω∗

which are respectively an attracting and a repelling fixed point for the dual action of A∗. 
In this case we may choose C∗ to be the line containing these points. The points H∗

± are 
dual to supporting hyperplanes H± to Ω at some attracting and repelling fixed points p±. 
If Ω is not strictly convex it is possible that � = p−p+ ⊂ C ∩ ∂Ω �= ∅.

The second case is that A is parabolic. In this case iA∗(1) = iA(1) ≥ 3. There is a 
2-dimensional invariant subspace V ∗ in the dual projective space coming from a Jordan 
block of size iA∗(1) with eigenvalue 1 for A∗ and the restriction of A∗ to this subspace 
is a non-trivial unipotent in SL(2, R). We may choose V ∗ so that the projective line 
C∗ = P(V ∗) contains a parabolic fixed point H∗ in ∂Ω∗. This is dual to a supporting 
hyperplane, H, to Ω at some parabolic fixed point p which is preserved by A. �

From this and Lemma 1.11 it easily follows that:

Corollary 2.12. If Ω is strictly convex and A ∈ SL(Ω) is not elliptic, then f(x) =
dΩ(x, Ax) is not bounded above.
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Proof of 2.1. If A is elliptic, then t(A) = 0 and the result follows from Lemma 2.2. 
The parabolic case follows from Lemma 4.10. The hyperbolic case follows from Propo-
sition 2.11. The pencil gives an A-equivariant projective map of Ω onto the interval 
[H∗

−, H
∗
+] ⊆ C∗. There is a Hilbert metric on this interval. The projection is distance 

non-increasing. The action of A on the interval is translation by log(λ+/λ−). The result 
follows.

We remark that in the case Ω is strictly convex, there is a natural identification of this 
interval with the axis, �, of A in Ω and the projection corresponds to projection along 
leaves of the pencil onto this axis. �
Proposition 2.13. Suppose Ω is a properly convex domain and A ∈ SL(Ω, p) is not elliptic. 
The following are equivalent:

1. A is parabolic.
2. Every eigenvalue has modulus 1.
3. Every eigenvalue has modulus 1 and the eigenvalue 1 has largest index, which is odd 

≥ 3.
4. The translation length t(A) = 0 (see Lemma 4.10).
5. The subset of ∂Ω fixed by A is non-empty and convex.

3. Horospheres

Given a ray γ in a path metric space X Busemann [14] defines a function βγ on X and 
a horosphere to be a level set of βγ . We consider this for the Hilbert metric on a properly 
convex domain Ω. If γ converges to a C1 point x ∈ ∂Ω, then these horospheres depend 
only on x and not on the choice of γ converging to x. This is the case for hyperbolic 
space Hn, but in general horospheres depend on the choice of γ converging to x. See 
Walsh [54] for an extensive discussion.

Algebraic horospheres are defined below. These coincide with Busemann’s horospheres 
at C1 points. We will subsequently refer to the latter as Busemann-horospheres and the 
term horosphere will henceforth mean algebraic horosphere. Of course the convention 
will be applied to horoballs and to all horo objects: they refer to the algebraic definitions 
below.

It turns out that every parabolic preserves certain horospheres and these are used to 
foliate cusps in Section 5. The construction depends on both x and a choice of supporting 
hyperplane H to Ω at x rather than a choice of ray γ.

Let H̃ be a codimension-1 vector subspace of Rn+1 and p̃ ∈ H̃ a non-zero vector. 
Let p ∈ H ⊂ Sn be their images under projection. Define SL(H, p) to be the subgroup 
SL(n + 1, R) which preserves both H and p. This is the subgroup of the affine group 
Aff(An) which preserves a direction. Given A ∈ SL(H, p) let λ+(A) be the eigenvalue for 
the eigenvector p̃. If ṽ ∈ Rn+1 \ H̃, then Aṽ+ H̃ = λ−ṽ + H̃ and λ− = λ−(A) is another 
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eigenvalue of A which does not depend on the choice of ṽ. There is a homomorphism 
τ : SL(H, p) −→ (R∗, ×) given by

τ(A) = λ+(A)/λ−(A).

Define the subgroup G = G(H, p) ⊂ SL(H, p) to be those elements A ∈ SL(H, p) which 
satisfy:

1. A acts as the identity on H̃, and
2. A(�) = � for every line � in RPn which contains p.

Notice that (1) and (2) imply:

3. A acts freely on � \ {p}.

It is clear that in fact G is a normal subgroup of SL(H, p). Moreover, all elements 
of G have the form Id + φ ⊗ p̃, where φ ∈ (Rn+1)∗ and φ(H̃) = 0. Suppose � is a 
line containing p that is not contained in H. Then G acts by parabolics on � fixing p. 
Denoting Par(�, p) the group of parabolic transformations of � fixing p, this gives an 
isomorphism G −→ Par(�, p). Since G ∼= Par(�, p) ∼= (R, +), it follows that there is a 
canonical identification Aut(G) ≡ (R∗, ×).

Proposition 3.1. The action by conjugacy of SL(H, p) on the normal subgroup G(H, p) is 
given by τ : SL(H, p) −→ Aut(G(H, p)) ≡ (R∗, ×).

In the sequel we assume Ω is a properly convex open set, p ∈ ∂Ω and H is a supporting 
hyperplane to Ω at p. Define S0 ⊂ ∂Ω to be the subset of ∂Ω obtained by deleting p and 
all line segments in ∂Ω with one endpoint at p. Then S0 satisfies the radial condition
that Dp|S0 is a homeomorphism onto DpΩ. If p is a strictly convex point of ∂Ω, then 
S0 = ∂Ω \ p. An algebraic horosphere centered on (H, p) is the image of S0 under an 
element G(H, p). An algebraic horosphere or just horosphere is contained in exactly one 
of Ω, ∂Ω, or RPn \ Ω. Property (3) implies Ω is foliated by horospheres. Similarly, 
a horoball centered on (H, p) is the image of B0 = Ω ∪ S0 under an element of G(H, p)
and an algebraic horoball or just horoball is a horoball contained in Ω.

Parabolics preserve certain horospheres: If A ∈ SL(Ω, p) is parabolic, then by 
Lemma 2.3 it preserves some supporting hyperplane H at p. Define SL(Ω, H, p) =
SL(Ω) ∩ SL(H, p). Then A ∈ SL(Ω, H, p). Observe that if p is a C1 point of ∂Ω then H
is unique and SL(Ω, H, p) = SL(Ω, p).

Since SL(Ω, H, p) preserves ∂Ω it also preserves the foliation of Ω by horospheres. For 
A ∈ G(H, p) define the horosphere SA = A(S0). The element B ∈ SL(Ω, H, p) acts on 
horospheres by

B(SA) = BA(S0) = BAB−1(BS0) = BAB−1(S0) = SBAB−1
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Fig. 5. Horospheres.

Choose an isomorphism from (R, +) to Par(�, p) given by t �→ At and define

St = At(S)

This isomorphism can be chosen so that St ⊂ Ω for all t > 0. Then the horoball 
Bt = ∪s≥tSs is a union of horospheres, and ∂Bt = St. Combining these remarks with 
Proposition 3.1:

Proposition 3.2. If B ∈ SL(Ω, H, p), then B(St) = Sτ(B)t.

The horosphere displacement function is the homomorphism

h : SL(Ω, H, p) −→ (R,+)

given by h(B) = log τ(B).

Proposition 3.3. Suppose B ∈ SL(Ω, H, p). If B is elliptic or parabolic, then h(B) = 0
and B preserves every generalized horosphere centered on (H, p). If B is hyperbolic and 
Ω is strictly convex, then h(B) = ±t(B) is the signed translation length with the + sign 
iff B translates towards p.

Proof. If every eigenvalue of B has modulus 1, then τ(B) = 1 and this gives the result for 
elliptics and parabolics. Suppose B ∈ SL(Ω, H, p) is hyperbolic and p̃ is an eigenvector 
with largest eigenvalue λ+ so that B translates towards p. The other endpoint q ∈ ∂Ω
of the axis of B corresponds to the eigenvalue of smallest modulus λ− and since q̃ /∈ H̃

from the definition of τ we see that τ(B) = λ+/λ−. The formula for translation length 
(Proposition 2.1) completes the proof. �

This is most easily understood using parabolic coordinates on a properly convex open 
set Ω described below. This is done for the Klein model of hyperbolic space in [50] 2.3.13. 
Choose another point r ∈ ∂Ω such that the interior of the segment [p, r] is in Ω. Let 
Hr ⊂ RPn be some supporting hyperplane at r, and for clarity let Hp ⊂ RPn denote H. 
Identify the affine patch RPn \Hp with Rn so that p corresponds to the direction given 
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by the xn axis and so that r is the origin and Hr is the hyperplane xn = 0. These are 
called parabolic coordinates centered on (H, p).

In these coordinates, rays in Ω converging to p are the vertical rays parallel to the xn

axis. Radial projection Dp from p corresponds to vertical projection onto Hr. An element 
A ∈ SL(Ω, H, p) acts affinely on this affine patch sending vertical lines to vertical lines. 
The horosphere S0 ⊂ ∂Ω is the subset of ∂Ω ∩ Rn obtained by deleting all vertical line 
segments in ∂Ω. There are no such segments if p is a strictly convex point of ∂Ω. The 
horosphere S0 is the graph of a continuous convex function h : U −→ R+ defined on an 
open convex subset U ⊂ Hr. Observe that DpU ∼= DpΩ and U = Hr iff p is a C1 point.

The positive xn-axis is contained in Ω. Rays contained in Ω starting at r correspond 
to points of Hp ∩ ∂Ω. If Ω is strictly convex at p, then the positive xn-axis is the unique 
ray in Ω starting at r. Let en denote a vector in the direction of the xn axis. There is 
an isomorphism (R, +) ∼= G(H, p) given by t �→ At so that the action of the group G on 
Rn is by vertical translation At(x) = x + ten. Then in parabolic coordinates horospheres 
are given by translating S0 vertically upwards:

St = S0 + ten.

Proposition 3.4. Suppose Ω is open and properly convex and H is a supporting hyper-
plane to Ω at p. In what follows horoballs and horospheres are always understood in the 
algebraic sense and centered on (H, p), and:

(H1) Radial projection Dp is a homeomorphism from a horosphere to the open ball DpΩ.
(H2) Every horoball is convex and homeomorphic to a closed ball with one point removed 

from the boundary.
(H3) The boundary of a horoball is a horosphere.
(H4) If Ω is strictly convex at p then each horoball limits on only one point in ∂Ω, the 

center of the horoball.
(H5) The horospheres centered on (H, p) foliate Ω.
(H6) The rays in Ω asymptotic to p give a transverse foliation F .
(H7) If p is a C1 point and x(t), x′(t) are two vertical rays parameterized so x(t), x′(t)

are both on St then dΩ(x(t), x′(t)) → 0 monotonically as t → ∞.
(H8) The distance between two horospheres is constant and equals the Hilbert length of 

every arc in a leaf of F connecting them.

Proof. These statements follow by considering parabolic coordinates. �
We compare this to the classical geometrical approach to Busemann-horospheres using 

Busemann functions. To this end, let γ : [0, ∞) → Ω be a projective line segment in Ω
parameterized by arc length and so that limt→∞ γ(t) = p. The Busemann function
βγ : Ω −→ R is

βγ(x) = lim
(
dΩ

(
x, γ(t)

)
− t

)

t→∞
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Fig. 6. Busemann function at a round point.

The limit exists because dΩ(x, γ(t)) − t is a non-increasing function of t that is bounded 
below. It is easy to see that

|βγ(x) − βγ(x′)| ≤ dΩ(x, x′) and lim
x→p

βγ(x) = −∞

Suppose that p ∈ ∂Ω is a C1 point. If two rays converge to p then approaching p the 
distance between them goes to zero. It follows that the Busemann functions they define 
differ only by a constant. In this case the level sets of βγ are algebraic horospheres:

Lemma 3.5. Suppose that p is a C1 point and γ is a ray in Ω asymptotic to p. Then 
in parabolic coordinates the level sets of βγ are (∂Ω ∩ Rn) + ten for t > 0. Further-
more |βγ(q) − βγ(r)| is the minimal Hilbert distance between points on the horospheres 
containing q and r.

Proof. There are parabolic coordinates so that γ(t) = eten. Suppose q ∈ Ω is not on the 
xn-axis. Let y be the point on ∂Ω vertically below q. The straight line � through γ(t)
and q has two intercepts on ∂Ω; denote the intercept on the q side by k(t) and the other 
by τ(t). See Fig. 6.

Denote the xn-coordinate of q by qn, of y by yn and of τ(t) by et+s. Projection onto 
the xn-coordinate axis preserves cross ratios, so

dΩ(γ(t), q) − t = log
∣∣CR

(
kn(t), qn, et, et+s

)∣∣− t

= log
∣∣∣∣et − kn(t)
et − et+s

· qn − et+s

qn − kn(t) · e−t

∣∣∣∣
= log

∣∣∣∣1 − e−tkn(t)
e−s − 1 · e

−(t+s)qn − 1
qn − kn(t)

∣∣∣∣ .
Observe that k(t) → y as t → ∞, so kn(t) → yn. Since p is a round point, as t tends to 
infinity, the point τ(t) moves arbitrarily far from the xn-axis and this implies s → ∞ as 
t → ∞. Taking the limit as t → ∞ gives
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βγ(q) = lim
t→∞

(
dΩ

(
γ(t), q

)
− t

)
= − log |qn − yn|

Since qn − yn = q − y it follows that the level sets of βγ are (∂Ω ∩ Rn) + ten given by 
q − y = e−t for fixed t > 0. �
Corollary 3.6. Suppose p ∈ ∂Ω is a C1 point and βp a Busemann function for a ray 
asymptotic to p. Then the horosphere displacement function h : SL(Ω, H, p) −→ R is 
given by h(A) = βp(x) − βp(Ax) for every x ∈ Ω.

Corollary 3.7 (Parabolic quotient). Suppose Ω is a properly convex domain and Γ ⊂
SL(Ω, H, p) is a group of parabolics. Then Ω/Γ is not compact.

Proof. Since Γ preserves (H, p) horospheres there is a continuous surjection Ω/Γ −→ R

given by collapsing each horosphere to a point. �
4. Elementary groups

If Ω is a properly convex set, then a subgroup G ≤ SL(Ω) is parabolic if every non-
trivial element in G is parabolic. Similar definitions apply for the terms nonparabolic, 
elliptic, nonelliptic, hyperbolic, nonhyperbolic. The subgroup is elementary if it fixes 
some point p ∈ Ω. It is doubly elementary if it fixes some p ∈ ∂Ω and if in addition it 
also preserves a supporting hyperplane H to Ω at p. The latter condition is equivalent 
to fixing the dual point H∗ in ∂Ω∗ and is important for the study of parabolic groups. 
The main results in this section are:

(4.1) Every nonhyperbolic group is elementary.
(4.7) An infinite, discrete, non-hyperbolic group is doubly elementary.
(4.9) In the strictly convex case, every elementary group is doubly elementary or elliptic.

(4.15) For discrete groups in the strictly convex case elementary coincides with virtually 
nilpotent.

Theorem 4.1. If Ω is properly convex, then every nonhyperbolic subgroup of SL(Ω) is 
elementary.

Some lemmas are needed for the proof of Theorem 4.1.

Lemma 4.2. Suppose that G is an irreducible subgroup of SL(n, C) and the trace function 
is bounded on G. Then G has compact closure.

Proof. Since G is an irreducible subgroup of SL(n, C), Burnside’s theorem ([39] p. 648 
Cor. 3.4) implies that we can choose n2 elements of G, {gi | 1 ≤ i ≤ n2} which are a 
basis for M(n, C).
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The trace function defines a nondegenerate bilinear form on M(n, C), so we can choose 
elements g∗i which are dual to the gi’s, i.e. tr(gi ·g∗j ) = δij . These dual elements also form 
a basis, so that given any g ∈ G we have

g =
∑
i

aig
∗
i .

This gives

tr(g.gj) = tr
(∑

i

aig
∗
i gj

)
=

∑
i

ai tr(g∗i gj) = aj .

By hypothesis traces are bounded on G, so G is a bounded subgroup of M(n, C), and 
therefore has compact closure in SL(n, C). �
Lemma 4.3. Suppose Ω is properly convex and G ≤ SL(Ω) is compact.

Then G fixes some point in Ω.

Proof. Consider the set S of compact convex G-invariant non-empty subsets of Ω. Since 
G is compact the convex hull of the G-orbit of a point x ∈ Ω is an element of S; so this 
set is nonempty.

There is a partial order given by A < B if A ⊃ B. Then every chain is bounded above 
by the intersection of the elements of the chain. By Zorn’s lemma there is a maximal 
element K of S. If K is not a single point and is convex, there is a point y in the relative 
interior of K. By considering the Hilbert metric on the interior of K one sees that the 
convex hull of the G-orbit of y is a proper subset of K contradicting maximality. �
Lemma 4.4. Suppose that ρ : G −→ GL(n, R) is irreducible and ρ ⊗ C is reducible.

Then ρ ⊗ C = σ ⊕ σ, where σ is an irreducible complex representation of G.

Proof. Suppose that σ is a complex irreducible subrepresentation of ρ ⊗ C with image 
U ⊆ Cn. Since ρ is real it follows that the complex-conjugate representation σ is also a 
subrepresentation of ρ ⊗ C with image U . Now U ∩ U is G-invariant and preserved by 
complex conjugation, so it is of the form V ⊗ C for some subspace V ⊆ Rn. Since ρ is 
R-irreducible, V = 0. Thus σ⊕ σ is a representation with image U ⊕U that is invariant 
under complex conjugacy. Arguing as before, the image must be all of Cn. �
Proof of 4.1. Given an open properly convex Ω ⊂ RPn and a nonhyperbolic subgroup 
G < SL(Ω) consider the representation ρ : G −→ SL(n + 1, R) given by the inclusion 
map. The hypothesis ρ is nonhyperbolic implies | tr ρ| ≤ n +1 thus ρ has bounded trace. 
If ρ is absolutely irreducible (i.e. irreducible over C) then we are done by Lemmas 4.2
and 4.3. If ρ is not absolutely irreducible, but is R-irreducible, then Lemma 4.4 shows 
that ρ ⊗ C = σ ⊕ σ with σ irreducible. Now σ has bounded trace so Lemma 4.2 implies 
σ and hence ρ have image with compact closure giving a fixed point as before.
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It remains to consider a nontrivial decomposition Rn+1 ∼= A ⊕ B, where A is 
G-invariant. Then P(A) is a projective subspace which is preserved by G. If Ω ∩ P(A)
is not empty then it is a properly convex G-invariant set of lower dimension and, by 
induction on dimension, there is a fixed point for G in Ω∩P(A). So we may assume P(A)
and Ω are disjoint.

First suppose dimB = 1, then dimA = n so P(A) is a hyperplane. Thus G preserves 
the affine space RPn \ P(A) and is therefore an affine group; and Ω is a compact convex 
set in this affine space preserved by the affine group G. Affine maps send center of mass 
to center of mass, so the center of mass, x, of Ω is fixed by G. Also x ∈ Ω by convexity.

For the case dimB > 1 it follows from Lemma 4.6 that the image of Ω under the 
projection

π : RPn − P(A) −→ P(B)

is a properly convex subset of P(B).
Consider the action, ρ′, of G on P(B), given by the action on B ∼= Rn/A. This 

corresponds to a block decomposition of the matrices in ρ so the eigenvalues of ρ′ are 
a subset of those for ρ. Thus ρ′ has no hyperbolics. By induction there is a fixed point 
p ∈ π(Ω) for ρ′. Then π−1(p) ∩ Ω is a nonempty properly convex G-invariant set of 
smaller dimension and the result follows by induction on dimension. �
Lemma 4.5 (Separating hyperplanes). Suppose C ⊂ RPn is closed and properly convex, 
and K ⊂ RPn is a projective subspace and C ∩ K = ∅. Then there is a projective 
hyperplane H ⊃ K and H ∩ C = ∅.

Proof. Since C is properly convex there is a projective hyperplane P ⊂ RPn disjoint 
from C. If K ⊂ P we are done. Otherwise An = RPn \P is an affine patch that contains 
C and an affine subspace A = K ∩ An. Since A and C are convex subset of An, the 
separating hyperplane theorem (4.4 of [36]) implies there is an affine hyperplane Q in 
An which separates C from A inside An. Since the affine subspaces A and Q are disjoint 
and Q is a hyperplane, A is parallel to a subspace of Q. Therefore we can affinely 
translate Q away from C to obtain a parallel affine hyperplane Q′ which contains A
and is disjoint from C. The projective hyperplane H ⊂ RPn which contains Q′ has the 
required properties. �
Lemma 4.6 (Project properly convex). Suppose U is a vector subspace of codimension 
at least 2 in a finite dimensional real vector space V and C ⊂ P(V ) is closed and 
properly convex, and C ∩ P(U) = ∅. Then π(C) ⊂ P(V/U) is properly convex where 
π : P(V ) − P(U) −→ P(V/U) is projection.

Proof. Clearly π(C) is convex. By Lemma 4.5 there is a projective hyperplane H that 
contains P(U) and is disjoint from C. Since P(U) � H it follows that π(H) is a projective 
hyperplane in P(V/U). We claim π(C) ⊂ P(V/U) − π(H), otherwise there is x ∈ C and 
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π(x) ∈ π(H). Then, by definition of the projection, there is a straight line containing x
with one endpoint y in P(U) and the other endpoint at π(x). Since π(x) ∈ π(H) ⊂ H

and y ∈ P(U) ⊂ H, the entire line is in H, thus x ∈ H, contradicting H ∩ C = ∅. Thus 
π(C) ⊂ P(V/U) − π(H) is properly convex. �
Corollary 4.7. Suppose Ω is properly convex and Γ ⊂ SL(Ω) is a nonhyperbolic group. 
Then Γ is either elliptic or doubly elementary. Moreover, if Γ is also infinite and discrete, 
then it is doubly elementary.

Proof. A nonhyperbolic group fixes a point p ∈ Ω by Theorem 4.1. Either p ∈ ∂Ω or 
the group is elliptic. In the first case the set of supporting hyperplanes to Ω at p is a 
compact, properly convex subset, K, of the dual projective space. The dual action of 
the group on K is by nonhyperbolics and so fixes a point in K by Theorem 4.1. If Γ is 
infinite and discrete then it is not elliptic. �

Proposition 4.8. If Ω is strictly convex and p ∈ ∂Ω is fixed by a hyperbolic, then p is a 
C1 point of ∂Ω.

Proof. Suppose A ∈ SL(Ω, p) is hyperbolic. Since Ω is strictly convex, Proposition 2.8
implies that A has unique eigenvalues λ± of the largest and smallest modulus and these 
are positive reals.

Now A acts on DpRP
n ∼= RPn−1 as some projective transformation B. It follows that 

the eigenvalues of B are those of A with the eigenvalue corresponding to p omitted. We 
may assume the eigenvalue for p is λ− so that λ+ is the unique eigenvalue of B of largest 
modulus.

By Lemma 2.3, there is a supporting hyperplane H to Ω at p that is preserved by A, 
so that A acts as an affine map on the affine space An = RPn \H and preserves the point 
±p at infinity. Thus B restricts to an affine map, also denoted B, on An−1 = DpA

n.
Let q ∈ ∂Ω be the other fixed point of A. The line � ⊆ RPn containing p and q gives a 

point [�] ∈ RPn−1. Because � intersects Ω in a segment, [�] ∈ DpΩ ⊆ An−1. It follows this 
is the unique fixed point for the action of B on An−1 and it is an attracting fixed point: 
every point in An−1 converges to it under iteration of B. The closure C of DpΩ ⊆ An−1

is invariant under B. Now [�] is in the interior of C and if ∂C �= ∅, there is a point on 
∂C closest to [�] and which converges to [�] under iteration. Since ∂C is preserved by B
it must therefore be empty, so DpΩ = An−1 and p is a C1 point. �
Remark. The cone point of example E(iii) is fixed by O(2, 1). This shows that Proposi-
tion 4.8 and the next result both fail for properly convex domains.

Corollary 4.9. If Ω is strictly convex, then every elementary subgroup of SL(Ω) is elliptic 
or doubly elementary.

Proof. If G contains a hyperbolic, then by Proposition 4.8, p is a C1 point. So there 
is a unique supporting hyperplane to Ω at p which therefore must be preserved by G. 
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Otherwise G is nonhyperbolic. If it is not elliptic, Corollary 4.7 implies that it is doubly 
elementary. �

We are now in a position to prove that parabolics have translation length 0.

Proposition 4.10. Suppose Ω is properly convex and G ≤ SL(Ω) is nonhyperbolic. If ε > 0
and S ⊆ G is finite, there is x ∈ Ω such that dΩ(x, Ax) < ε for all A ∈ S.

Proof. By Theorem 4.1 and Corollary 4.9 G is elementary elliptic or doubly elementary. 
If G is elementary elliptic, then there is a point x ∈ Ω fixed by G. This leaves the case 
G ⊆ SL(Ω, H, p).

First assume p is a C1 point. Given y ∈ Ω let � be the ray in Ω from y to p. The 
result holds for every point x on � close enough to p. The reason is that the finite set 
of lines S · � is asymptotic to p. The point x lies on some (H, p)-horosphere St. Since G
contains no hyperbolics, it preserves each horosphere, thus S · x = St ∩ (S · �). Moving x
vertically upwards corresponds to moving the horosphere St vertically upwards. Since p
is a C1 point Proposition 3.4(H7) implies the diameter of S · x goes to 0.

We proceed by induction on dimension n = dim Ω. When n = 1 the result is trivially 
true. The space of directions of Ω at p is a product DpΩ ∼= Ω′ × Ak with Ω′ properly 
convex. One of these factors might be a single point. Observe that dim Ω′ ≤ dim Ω − 1.

If Ω′ is a single point then Ω is C1 at p and the result follows from the above. 
Otherwise G induces an action on Ω′ which is nonhyperbolic. By Theorem 4.1 there 
is a fixed point w ∈ Ω′. The first case is that w ∈ Ω′. The preimage of w under the 
projection Dp : Ω → Ω′ is the intersection of Ω with a projective subspace. This is a 
properly convex Ω′′ ⊆ Ω which is preserved by G. By induction there is x ∈ Ω′′ with the 
required property.

The remaining case is that w ∈ ∂Ω′. By induction there is y′ ∈ Ω′ (close to w) which 
is moved at most ε/2 by every element of S. Choose y ∈ Ω which projects to y′. As in 
the C1 case let � be the ray in Ω from y to p. We show that every point x on � close 
enough to p is moved less than ε by every element of S. This will complete the inductive 
step.

Given s ∈ S the points y′, sy′ ∈ Ω′ lie on a line segment [a′, b′] ⊆ Ω′ with endpoints 
a′, b′ ∈ ∂Ω′. Choose A′, B′ in the interior of this segment with A′ close to a′ and B′ close 
to b′ so that the cross-ratios of (a′, y′, sy′, b′) and (A′, y′, sy′, B′) are very close, then 
dΩ′(y′, sy′) < ε. If x is a point on � close enough to p then the line segment [A, B] in Ω
with A, B ∈ ∂Ω containing x and sx has image which contains [A′, B′]. This projection is 
projective and thus preserves cross-ratios. It follows that dΩ(x, sx) < dΩ′(y′, sy′) < ε. �

For the parabolic A discussed in example E(iii) if y ∈ D2 then all the points on a line 
[p, y] are moved the same distance. To produce a point q near p moved a small distance 
q must approach p along an arc becoming tangential to [p, x] as it approaches p.

Proposition 4.11. If Ω is properly convex, then every discrete nonhyperbolic group is 
virtually nilpotent.
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Fig. 7. Conjugate of parabolic by a hyperbolic.

Proof. Suppose G is a nonhyperbolic group. By Proposition 4.10 if S is a finite subset 
of G there is x ∈ Ω so that the elements of S all move x less than μ. It follows from the 
Margulis Lemma 7.3 that the subgroup of G generated by S contains a nilpotent subgroup 
of index at most m. Then Lemma 4.12 below implies that G is virtually nilpotent. �
Lemma 4.12. If G is a linear group and every finitely generated subgroup of G contains 
a nilpotent subgroup of index at most m, then G contains a nilpotent subgroup of finite 
index.

Proof. Suppose S ⊆ G is finite and let S′ denote the set of k-th powers of elements 
in S where k = m!. The group H = 〈S′〉 ⊆ 〈S〉 generated by S′ is nilpotent. Since 
G ≤ GL(n, R) it follows that H is conjugate into the Borel subgroup of upper triangular 
matrices in GL(n, C). Hence there is a uniform bound, c, on the nilpotency class of every 
such H and every c-fold iterated commutator of k-th powers of finitely many elements 
in G is trivial.

This is an algebraic condition on the elements of G, therefore the Zariski closure, G, 
of G in GL(n, C) also has this property.

Let W denote the connected component of the identity in G. There is a neighbor-
hood, U , of the identity in W which is in the image of the exponential map. Every 
element in U is a k-th power. Hence every c-fold iterated commutator of elements in U
is trivial. Since U generates W it follows that W is nilpotent. The algebraic group G has 
finitely many connected components. Thus W has finite index in G. �
Proposition 4.13. If Ω is strictly convex, then every discrete elementary torsion-free group 
is virtually nilpotent and either hyperbolic or parabolic.

Proof. If G is hyperbolic, discreteness implies G is infinite cyclic hence virtually nilpo-
tent.

If G is nonhyperbolic the result follows from Proposition 4.11. We claim that these 
are the only possibilities for G.

Refer to Fig. 7. Suppose that α, β ∈ G and β is hyperbolic with axis � and α is 
parabolic. Let x be a point on �. The points x and αx lie on a horosphere St, and their 
images under βn lie on another horosphere Sr. The points x and βnx are both on � so 
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αx and αβnx are both on α�. Furthermore βnx → p as n → ∞. By Proposition 4.8 p is 
a C1 point and this implies dn = dΩ(βnx, αβnx) → 0 as n → ∞. Since βn is an isometry 
dΩ(x, β−nαβnx) = dn → 0. Then Proposition 3.4(H7) implies G does not act properly 
discontinuously on Ω and Proposition 1.3 implies G is not discrete. �

Proposition 4.14 (Virtually nilpotent ⇒ elementary). Suppose Γ is a virtually nilpotent 
torsion-free group of isometries of a strictly convex domain. Then Γ is elementary.

Proof. The given group Γ contains a finite-index infinite torsion-free nilpotent subgroup 
Γ0 ⊆ Isom(Ω). Hence Γ0 contains a nontrivial central element γ. By Proposition 2.8 γ

fixes exactly one or two points in ∂Ω. Since γ is central it follows that each element of 
Γ0 permutes these fixed points. Hence there is a subgroup, Γ1, of Γ0 of index at most 
two which fixes a fixed point, x, of γ and is thus elementary.

It follows that Γ itself is elementary. For suppose that γ is a nontrivial element of Γ. 
Then some power γn with n �= 0 is in Γ1, and this power must fix x. By hypothesis γ
is not elliptic so it is parabolic or hyperbolic. The subset of the boundary of a strictly 
convex domain fixed by a parabolic or hyperbolic is not changed by taking powers of the 
element. Hence γ also fixes x, and Γ is an elementary group as required. �

The next result is the basis of the thick–thin decomposition.

Corollary 4.15. Suppose that Ω is strictly convex and G ≤ SL(Ω) is torsion-free and 
discrete. Then

• G is elementary iff it is virtually nilpotent.
• The maximal elementary subgroups of G partition the nontrivial elements of G.

Proof. This follows from Proposition 4.13 and Proposition 4.14 together with the ob-
servation that if two elementary groups have nontrivial intersection then they are both 
hyperbolic or both parabolic. In either case they have the same fixed points and are 
therefore the same group. �
5. Cusps

A full cusp is a properly convex orbifold Ω/Γ such that Γ is a cusp group, which means 
it is discrete, infinite and contains no hyperbolic element. Combining Corollary 4.7, 
Proposition 3.3 and Proposition 3.4 gives the next result which explains why algebraic 
horospheres are used instead of Busemann’s horospheres.

Proposition 5.1. Suppose Ω/Γ is a full cusp. Then Γ is doubly elementary. Thus there 
is p ∈ ∂Ω and a supporting hyperplane H to Ω at p that are both preserved by Γ, hence 
Γ ⊆ SL(Ω, H, p).

Moreover Γ preserves each leaf of some foliation of Ω by algebraic horospheres and 
Ω/Γ is foliated by horomanifolds.



D. Cooper et al. / Advances in Mathematics 277 (2015) 181–251 213
Cusps of maximal rank play a key role, since these are the only cusps that arise in finite 
volume projective manifolds. The main results of this section are Theorem 5.3, which 
describes the structure of a cusp, and Proposition 5.7, which states that the parabolic 
fixed point corresponding to a maximal rank cusp is a round point of ∂Ω.

We define four variants: cusp, convex cusp, starshaped cusp and horocusp. They differ 
in respect of whether or not they have boundary or are convex. To simplify terminology in 
what follows, we only discuss the case where Γ is torsion free. The obvious generalizations 
are true for orbifolds. A convex cusp W is an open submanifold of a properly convex 
manifold N such that W is projectively isomorphic to a full cusp. This implies W is 
a convex submanifold of N so W̃ is a properly convex subdomain of Ñ . In general a 
component of the thin part of a manifold is not convex, even for hyperbolic manifolds. 
This motivates the following.

Suppose Ω′ ⊂ Ω are both properly convex and both preserved by a discrete group Γ. 
Let W = Ω′/Γ and N = Ω/Γ. If W ⊂ P ⊂ N and P is connected then W is a convex 
core of P and P is a thickening of W . We do not require P is W plus a collar, only that 
they have the same holonomy.

Suppose N = Ω/Γ′ is a properly convex manifold. A starshaped cusp in N is a con-
nected open submanifold M ⊂ N which is a thickening of a convex cusp W . In addition 
we require there is a parabolic fixed point p ∈ ∂Ω for Γ and a component M̃ ⊂ Ω of the 
preimage of M which is starshaped at p. The raison d’être for the next definition is to 
ensure non-compact components of the thinnish part are cusps.

Definition 5.2. A cusp in a properly convex manifold N is a submanifold P ⊂ N with 
nonempty boundary ∂P = P ∩ N \ P such that the interior of P is a starshaped cusp 
and so that every ray asymptotic to the parabolic fixed point p, and which contains a 
point in P , intersects ∂P transversely at one point.

It follows that a cusp is an (orbifold) product P ∼= [0, 1) × ∂P . A horocusp is a cusp 
covered by a horoball. The boundary of a horocusp is the quotient of a horosphere and 
is called a horoboundary. Usually we require ∂P is a smooth submanifold, however this 
may not be true for horocusps. Every maximal rank cusp contains a horocusp. Later we 
give an example of a rank-1 cusp in a hyperbolic 4-manifold that contains no horocusp.

Theorem 5.3 (Structure of starshaped cusps). Suppose M = M̃/Γ is a starshaped cusp 
in a properly convex manifold N = Ω/Γ′ with Γ ⊂ SL(Ω, H, p).

(C1) There is a diffeomorphism h = (h1, h2) : M −→ R ×X.
(C2) X is an affine (n − 1)-manifold called the cusp cross-section.
(C3) Fibers of h2 are the rays in M asymptotic to p and h1 → −∞ moving toward p.
(C4) M is an affine manifold.
(C5) If V ⊂ M is a starshaped cusp and h2(M \V ) = X then V ⊂ h−1

1 (−∞, 0] for some 
choice of h1.
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(C6) In this case P = h−1
1 (−∞, 0] is a cusp.

(C7) h2| : ∂P −→ X is a diffeomorphism.
(C8) π1M is virtually nilpotent.

Proof. With reference to Fig. 5, parabolic coordinates centered on (H, p) give an affine 
patch Rn−1 × R = Rn = RPn \ H on which Γ acts affinely preserving this product 
structure. The R-direction is called vertical and moving upwards is moving towards p. 
Since M̃ is a subset of this patch M = M̃/Γ is an affine manifold proving (C4). Now M
is starshaped at p, so if x ∈ M̃ and y is vertically above x, then y ∈ M̃ .

Radial projection from p corresponds to vertical projection of Rn−1 ×R onto the first 
factor. This gives a diffeomorphism from DpM̃ onto an open set U ⊂ Rn−1. Since Γ
preserves the product structure it acts affinely on Rn−1. Thus p covers a submersion 
h2 : M −→ X where X = U/Γ ∼= DpM̃/Γ is an affine manifold, proving (C2).

There is a 1-dimensional foliation, F , of M covered by vertical lines in Rn. This 
foliation is transverse to the codimension-1 foliation of M covered by horospheres. To 
prove (C1) and (C3) it suffices to show that there is a smooth map f : M −→ R whose 
restriction to each line in F is a diffeomorphism oriented correctly.

Choose a complete smooth Riemannian metric, ds, on M . Given a point q ∈ M

there is a smooth (n − 1)-disc Dq containing q and contained in the interior of another 
smooth (n − 1)-disc D+

q in M transverse to F and meeting each line in F at most once. 
Choose a smooth non-negative function, ψq, on D+

q which equals 1 on Dq and is zero in 
a neighborhood of ∂D+

q .
We use this to define a smooth non-negative function fq on int(M) supported inside 

the set of rays in F that meet D+
q . If � is such a ray which intersects D+

q at x and y is 
a point on � then

fq(y) = ψq(x) · d�(x, y),

where d�(x, y) is the signed ds-length of the segment of � between x and y. The sign is 
positive iff x lies between y and p.

The function fq is smooth. Each ray is either mapped to 0 or onto R. It is a diffeo-
morphism on each ray on which it is not constant, increasing as the point moves away 
from p.

Since N is paracompact there is a subset Q ⊂ M so that every ray in F meets at 
least one of the sets {Dq : q ∈ Q} and at most finitely many of the sets {D+

q : q ∈ Q}. 
The function h1 =

∑
q∈Q fq is smooth because near each point in M the sum is finite. 

It is strictly monotonic on each ray of F . To prove (C5), since h2(M \ V ) = X one 
can choose each D+

q ⊂ M \ V then fq(V ) ≤ 0 because V is starshaped from p. Thus 
h1(V ) ≤ 0 so V ⊂ P . Since V is a starshaped cusp it, and hence P , contains a convex 
cusp. The remaining conditions for P to be a cusp are readily checked, yielding (C6). 
Clearly (C1) + (C5) ⇒ (C7). (C8) follows from Proposition 4.11. �



D. Cooper et al. / Advances in Mathematics 277 (2015) 181–251 215
Proposition 5.4 (C1 starshaped cusps). Suppose M is a starshaped cusp with a C1

parabolic fixed point p ∈ ∂Ω and cusp cross-section X. Then

(P1) X is a complete affine manifold.
(P2) X is homeomorphic to a horoboundary.
(P3) M is diffeomorphic to a full cusp.
(P4) For every ε > 0 and finite subset S ⊂ π1M there is a point in M so that every 

element of S is represented by a loop based at x of length less than ε.

Proof. With reference to the proof of Theorem 5.3, the condition p is a C1 point is 
equivalent to U = Rn−1 and implies X is diffeomorphic to the complete affine manifold 
Rn−1/Γ proving (P1). (P2) and (P3) follows easily from considering parabolic coordi-
nates. (P4) follows from Proposition 4.10. �

The following implies that a cusp component of the thin part of a strictly convex 
manifold must have nonempty boundary.

Lemma 5.5. If M is a strictly convex complete cusp and � is a ray in M asymptotic to the 
parabolic fixed point p then moving along � away from p the injectivity radius increases 
to infinity.

Proof. Let M = Ω/Γ. Because Γ is discrete, it acts properly discontinuously on Ω. 
Therefore, at a point x on � given r > 0 there are at most finitely many elements 
γ1, · · · γn ∈ Γ which move x distance less than r. This gives finitely many lines �i = γi�. 
By Lemma 1.11 if y is sufficiently far away from x in the direction away from p then 
dΩ(y, �i) > r for each i. If γ ∈ Γ moves y less than r then by Proposition 3.4(H7) it 
also moves x less than r. But then γ = γi for some i which is a contradiction. Thus the 
injectivity radius at y is at least r. �

Two cusps are equivalent if they have conjugate holonomy. Because cusps are thicken-
ings of convex cusps, it is easy to show that cusps are equivalent iff they are thickenings 
of projectively isomorphic convex cusps. Corollary 2.10 implies all 2-dimensional cusps 
are equivalent.

A cusp has maximal rank if the boundary is compact. There are several equivalent 
formulations which will be useful. The Hirsch rank of a finitely generated nilpotent 
group G is the sum of the ranks of the abelian groups Gi/Gi+1 for any central series 
1 = Gn < Gn−1 < · · · < G1 = G. This equals the virtual cohomological dimension of G. 
The rank of a cusp, M , is the Hirsch rank of any nilpotent subgroup of finite index in 
π1M and is thus at most 1 less than the topological dimension of M . Following Bowditch 
[11] a point p ∈ ∂Ω is called a bounded parabolic point of a discrete group of parabolics 
Γ ⊂ SL(Ω, p) if (∂Ω \ p)/Γ is compact.
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Proposition 5.6 (Maximal cusps). Suppose M = M̃/Γ is a cusp in a properly convex 
manifold Ω/Γ′ with parabolic fixed point p and Γ is torsion-free. The following are equiv-
alent:

(M1) M has maximal rank.
(M2) ∂M is compact.
(M3) DpΩ/Γ is compact.
(M4) Γ has Hirsch rank dim(M) − 1.
(M5) p is a bounded parabolic point for Γ.

Proof. M1 ⇔ M2 by definition. Let ∂M̃ ⊂ Ω be the pre-image of ∂M . Radial projection 
from p embeds Dp∂M̃ as an open subset of DpΩ. This identification is Γ-equivariant. 
So ∂M ⊂ DpΩ/Γ. The identification of DpΩ with a horosphere shows that the action 
of Γ on DpΩ is properly discontinuous. Therefore these are Hausdorff manifolds of the 
same dimension and the inclusion induces an isomorphism of fundamental groups. If ∂M
is compact then it is a closed manifold so DpΩ/Γ is a closed manifold hence compact, 
proving (M2) ⇒ (M3). Conversely, if DpΩ/Γ is compact, then it is a closed manifold 
and also a K(Γ, 1). Since M is a cusp it contains a convex core W and inclusion induces 
π1M ∼= π1W . Also radial projection Dp induces isomorphisms π1∂M ∼= π1M and π1W ∼=
π1∂W . Convexity implies ∂W is a K(Γ, 1) also. Hence ∂W is closed and Dp covers an 
inclusion ∂W ↪→ DpΩ/Γ which is a homotopy equivalence of closed manifolds. Thus they 
are equal, and equal to ∂M , proving (M3) ⇒ (M2).

M2 ⇔ M4 because ∂M is a K(Γ, 1) hence the virtual cohomological dimension of Γ
is dim(∂M) if and only if ∂M is a closed manifold.

For (M1) +(M3) ⇒ (M5) by Theorem 5.7 p is a round point. Then radial projection 
from p gives a Γ-equivariant identification of ∂Ω \ p with DpΩ.

For (M5) ⇒ (M3) let H be a Γ-invariant supporting hyperplane at p. If H ∩ ∂Ω = p

then radial projection from p identifies ∂Ω \ p with DpΩ implying (M3). Otherwise 
X = H ∩ ∂Ω is a properly convex set on which Γ acts by nonhyperbolics. But (X \ p)/Γ
is not compact since it contains a ray covered by a ray converging to p. However X is a 
closed subset of Ω \ p so X/Γ must be compact by (M5). This contradiction completes 
the proof. �

Using Proposition 5.6(M2) ⇒ (M3), if M is a maximal cusp with parabolic fixed 
point p the hypothesis of the next result is satisfied by the holonomy.

Theorem 5.7 (Max parabolic fixed point is round). Suppose Ω is a properly convex set 
and p ∈ ∂Ω and Γ ⊂ SL(Ω, p) is non-hyperbolic. If DpΩ/Γ is compact then p is a round 
point of ∂Ω.

Proof. By Corollary 1.6, DpΩ is projectively isomorphic to Ak ×C, where C is properly 
convex. Every subspace of Ak ×C projectively isomorphic to Ak is of the form Ak ×{c}
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for some c ∈ C. It follows that every projective transformation, [A] ∈ SL(n +1, R), which 
preserves Ak × C, induces a projective transformation on C. Thus we get an induced 
action of Γ on C. Then C/Γ is a quotient of DpΩ/Γ and is therefore compact.

Using a basis of Rk followed by a basis of Rn+1−k, we see that

A =
(
Mk Nk,n+1−k

0 Rn+1−k

)
.

The induced map on C is given by [R]. In particular, the eigenvalues of R are a subset 
of those of A. Since A is nonhyperbolic, all its eigenvalue have modulus 1. Hence R is 
nonhyperbolic. By Theorem 4.1 Γ fixes a point, q, in C.

If q ∈ C, then C/Γ is not compact, since the distance of a point in C from q is 
preserved by the action, and hence C/Γ maps onto [0, ∞). Whence q ∈ ∂C. But now 
Corollary 3.7 implies that the quotient C/Γ is not compact. This contradiction shows 
that DpΩ = An−1 so p is a C1 point.

Applying the same argument to the action on the dual domain Ω∗, it follows that p
is a strictly convex point. �

Suppose M = Ω/Γ is a non-compact convex projective manifold which contains a 
convex core M ′. The universal cover of M ′ is a π1M -invariant convex subset Ω′ ⊂ Ω. 
It may happen that one of these manifolds is strictly convex and the other is not. For 
example, if M = H2/Γ is a full 2-dimensional hyperbolic cusp and x is a point in M there 
is a geodesic segment γ in M starting and ending at x. Let M ′ denote the component of 
M \ γ which contains the cusp of M . The universal cover of M ′ is a convex set bounded 
by an infinite sided polygon, so it is properly but not strictly convex. This construction 
can sometimes be reversed:

Proposition 5.8. Suppose that M = Ω/Γ is a full cusp of dimension n with Γ ⊂
SL(Ω, H, p). Then there is a properly convex domain Ω′ ⊂ Ω with Ω′ ∩ H = Ω ∩ H

that is preserved by Γ. Thus M ′ = Ω′/Γ is a full cusp that is equivalent to M . Moreover, 
Ω′ is round everywhere, except possibly at Ω ∩H.

Proof. Refer to Fig. 8. Decompose RPn+1 = Rn+1 � RPn
∞ and regard Ω ⊂ RPn

∞. We 
identify the closure of the cone C(Ω) with the compact cone C(Ω) ⊂ RPn+1 with cone 
point q = 0 ∈ Rn+1 and base Ω ⊂ RPn

∞.
The sublevel sets of the characteristic function f of C(Ω) given by Theorem 6.5 are 

strictly convex and real-analytic. Let K ⊂ C(Ω) be the closure of a sublevel set of f . 
Then ∂K = Ω ∪ S where S is a level set of f . Let Ω∗ be the dual domain. The dual 
action of Γ∗ fixes the point α ∈ ∂Ω∗ which is dual to H.

There is a pencil of hyperplanes Ht ⊂ RPn+1 with center H and dual to some pro-
jective line L in the dual space. The group SL(C(Ω), H, p) acts projectively on L fixing 
the points dual to two hyperplanes, one that contains Ω, and the other that contains q. 
In particular every parabolic in this group acts trivially on L.
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Fig. 8. Hilbert hypersurface.

Choose a hyperplane Ht that contains a point in the interior of C(Ω). Then W = K∩Ht

is the intersection of two convex sets and so is convex. Moreover ∂W = ∂K ∩ Ht =
(Ω ∩ Ht) ∪ (S ∩ Ht). Observe that Ω ∩ Ht = Ω ∩ H. Let π : C(Ω) −→ Ω be radial 
projection centered at q. Then ∂(πW ) = π(∂W ) = H ∪π(S∩Ht). Now S is real-analytic 
and strictly convex, thus S∩Ht and its image under π. Define Ω′ to be the interior of W . 
Since Ht is preserved by Γ, so is W and hence Ω′. �
Example. It follows from Theorem 0.5 that every parabolic in a finite volume strictly 
convex orbifold is conjugate into O(n, 1). What follows is an example of a parabolic isom-
etry of a strictly convex domain not conjugate into O(n, 1). Consider the one-parameter 
parabolic subgroup Γ < SL(5, R)

exp(tN) =

⎛⎜⎜⎜⎜⎜⎝
1 t t2/2! t3/3! t4/4!
0 1 t t2/2! t3/3!
0 0 1 t t2/2!
0 0 0 1 t

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠ .

The orbit of [e5] is the affine curve in RP 4 given by [t4/4! : t3/3! : t2/2! : t : 1]. Let Ω
be the interior of the convex hull of this curve. Then Ω is properly (but not strictly) 
convex and is preserved by Γ. The boundary of Ω is the ruled 3-sphere consisting of the 
set of convex combinations of pairs of points on this curve. The supporting hyperplane 
H given by omitting e5 meets Ω at a single point. It follows from Proposition 5.8 there 
is another strictly convex domain Ω′ ⊂ Ω preserved by Γ and which is C1 except at p.

Proposition 5.9. Every finitely generated torsion-free nilpotent group G is the fundamen-
tal group of a cusp.

Proof. By a theorem of Malcev [40] G is isomorphic to a lattice Γ in an upper triangular 
group of unipotent matrices in GL(n, R). Then Γ acts projectively on the Real Siegel 
half space E(iv) by parabolics and is therefore a cusp group. �
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If G is a finitely generated nilpotent group then it is polycyclic. By a theorem of 
Auslander and Swan [49], every polycyclic group is a subgroup of GL(n, Z). With some 
work this can be used to drop the requirement G is torsion free, at the expense of 
producing an orbifold cusp.

In contrast a maximal cusp group is a Euclidean crystallographic group, and therefore 
virtually abelian: see Section 9.

6. Work of Benzécri and Vinberg

We shall make frequent use of results of Benzécri [9] and Vinberg [52]. Simplified 
proofs of these results are in Goldman [32] pages 49–63.

Let C be the set of all properly convex compact subsets in RPn with non-empty interior 
and equip this with the Hausdorff topology. Let C∗ be the space of all (C, p) ∈ C ×RPn

with p a point in the interior of C and equipped with the product topology.

Theorem 6.1 (Benzécri compactness). The quotient of C∗ by the natural action of 
PGL(n + 1, R) is compact.

Given a metric space X with metric d the closed ball in X center p radius r is

Br(p;X, d) = { x ∈ X : d(x, p) ≤ r }.

In what follows B(r) denotes the closed ball of Euclidean radius r centered on the origin 
in Euclidean space.

Corollary 6.2 (Benzécri charts). (See [32] page 61 C.24.) For every n ≥ 2 there is a 
constant RB = RB(n) > 1 with the following property:

If Ω ⊂ RPn is a properly convex open set and p ∈ Ω then there is a projective 
automorphism τ called a Benzécri chart such that B(1) ⊂ τ(Ω) ⊂ B(RB) ⊂ Rn and 
τ(p) = 0.

An open convex set Ω is called a Benzécri domain if B(1) ⊂ Ω ⊂ B(RB(n)). It is 
routine to show:

Proposition 6.3. Let B be the set of all Benzécri domains in Rn. Then B is compact with 
the Hausdorff metric induced by the Euclidean metric on Rn.

Corollary 6.4 (Hilbert balls are uniformly bilipschitz). For every dimension n ≥ 2 and 
r > 0:

1. There is K = K(n, r) > 0 such that for every properly convex domain Ω ⊂ RPn and 
p ∈ Ω there is a K-bilipschitz homeomorphism from Br(p; Ω, dΩ) to B(r).



220 D. Cooper et al. / Advances in Mathematics 277 (2015) 181–251
2. There is Kμ = Kμ(n, r) > 0 such that if Ω is a Benzécri domain and μΩ is the 
Hausdorff measure on Ω induced by the Hilbert metric and μL is Lebesgue measure 
on Rn then for every open set U ⊂ Br(0; Ω, dΩ)

K−1
μ · μL(U) ≤ μΩ(U) ≤ Kμ · μL(U).

Suppose C = C(Ω) ⊂ V is a sharp convex cone and C∗ ⊂ V ∗ is the dual cone. Let dψ
be a volume form on V ∗. The characteristic function f : C −→ R defined by

f(x) =
∫
C∗

e−ψ(x)dψ

is real analytic and f(tx) = t−1f(x) for t > 0. For each t > 0 the level set St = f−1(t) is 
called a Vinberg hypersurface. It is the boundary of the sublevel set Ct = f−1(0, t] ⊂ C. 
For example, the hyperboloids z2 = x2 + y2 + t are Vinberg hypersurfaces in the cone 
z2 > x2 + y2.

Theorem 6.5. (See Vinberg [52], see also [32] (C1), (C6) pages 51–52.) The Vinberg 
hypersurfaces are an analytic foliation of C.

1. The radial projection π : St −→ Ω is a diffeomorphism.
2. Ct has smooth strictly convex boundary.
3. St is preserved by SL(C).

At each point p on a Vinberg surface there is a unique supporting tangent hyperplane 
ker dfp. This gives a duality map ΦΩ : Ω −→ Ω∗. Another description of this map is that 
ΦΩ(x) is the centroid of the intersection of C∗ with the hyperplane { ψ ∈ V ∗ : ψ(x) =
n } ⊂ V ∗. Benzécri’s compactness theorem has the following consequences.

Theorem 6.6. ΦΩ is K-bilipschitz with respect to the Hilbert metrics where K = K(n)
only depends on n = dim Ω.

Corollary 6.7. The duality map descends to a K-bilipschitz map between a properly convex 
orbifold M and its dual M∗. In particular, M has finite volume if and only if M∗ has 
finite volume.

7. The Margulis lemma

Theorem 7.1 (Isometry bound). For every d > 0 there is a compact subset K ⊂ SL(n +
1, R) with the following property. Suppose that Ω is a Benzecri domain and A ∈ SL(Ω)
moves the origin a distance at most d in the Hilbert metric on Ω.

Then A ∈ K.
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There is a more invariant version which follows immediately from Theorem 7.1 and 
Theorem 6.2: For every d > 0 there is a compact subset K ⊂ SL(n + 1, R) so that if Ω
is any properly convex domain and p is a point in Ω and S = S(Ω, p, d) is the subset of 
SL(Ω) consisting of all maps that move p ∈ Ω a distance at most d in the Hilbert metric 
on Ω, then S is conjugate into K, i.e. there is B ∈ SL(n +1, R) such that B ·S ·B−1 ⊂ K.

Proof. Let p denote the origin. Suppose we have a sequence (Ωk, Ak) where each Ωk is 
a Benzecri domain and Ak ∈ SL(Ωk) moves p a Hilbert distance at most d. It suffices to 
show Ak has a convergent subsequence in SL(n + 1, R).

By Proposition 6.3 we can pass to a subsequence so that Ωk converges to a Benzecri 
domain Ω∞. Choose a projective basis B = (p0, p1, p2, · · · , pn+1) in B(1/10). This ensures 
that B ⊂ B1(p; Ω, dΩ) for every Benzecri domain Ω. We can choose a subsequence so that 
the projective bases Bk = Ak(B) converge to an (n +2)-tuple B∞ = (q0, · · · qn+1) ⊂ Ω∞. 
We need to show this set is a projective basis.

Since every Ak moves p a distance at most d, it follows that B∞ ⊂ Bd+1(p; Ω∞, dΩ∞). 
Let σi be the n-simplex with vertices B\{pi}. Since metric balls are convex (Lemma 1.7), 
it follows that σi ⊂ Bd+1(p; Ω∞, dΩ∞). Note that each Ai has determinant 1, so preserves 
Lebesgue measure.

Let V = (Kμ(n, d + 1))−1 mini μL(σi). It follows from Corollary 6.4 that μΩk
(σi) ≥ V . 

Let σ∞
i be the possibly degenerate n-simplex with vertices the (n + 2)-tuple B∞ with 

qi deleted. Then σ∞
i = limk Ak(σi). It is easy to see that μΩ∞(σ∞

i ) = limk μΩk
(Akσi) ≥

V > 0. In particular σ∞
i is not degenerate therefore B∞ is a projective basis. There 

is a unique element A∞ ∈ SL(n + 1, R) sending B to B∞. It is easy to check that 
A∞ = limAk. �

From (6.2.3) in Eberlein [30] we have:

Proposition 7.2 (Zassenhaus neighborhood). There is a neighborhood U of the identity 
in SL(n + 1, R) such that if Γ is a discrete subgroup of SL(n + 1, R) then the subgroup 
generated by Γ ∩ U is nilpotent.

The following statement and proof is essentially (4.1.16) in Thurston [50]. However 
the hypotheses are different.

Proposition 7.3 (Short motion almost nilpotent). For every dimension n ≥ 2 there is an 
integer m > 0 and a Margulis constant μ > 0 with the following property:

Suppose that Ω is a properly convex domain and p is a point in Ω and Γ ⊂ SL(Ω)
is a discrete subgroup generated by isometries that move p a distance less than μ in the 
Hilbert metric on Ω. Then

1. There is a normal nilpotent subgroup of index at most m in Γ.
2. Γ is contained in a closed subgroup of SL(n +1, R) with no more than m components 

and with a nilpotent identity component.
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Proof. By Theorem 6.2 we may assume Ω is a Benzecri domain and p is the origin. Let 
K ⊂ SL(n + 1, R) be a compact subset as provided by Theorem 7.1 when d = 1 (for 
example). Since K is compact, it is covered by some finite number, m, of left translates 
of the Zassenhaus neighborhood U given by Proposition 7.2. Define μ = d/m.

Let W ⊂ SL(Ω) be the subset of all A such that A moves p a distance less than μ. 
Then W = W−1 and Wm ⊂ K. By hypothesis the group Γ is generated by Γ ∩W . Define 
ΓU to be the nilpotent subgroup generated by Γ ∩U . We claim there are at most m left 
cosets of ΓU in Γ.

Otherwise there are m + 1 distinct left cosets of ΓU which have representatives each 
of which is the product of at most m elements of an arbitrary symmetric generating set 
of Γ (see [50], 4.1.15). Choose the symmetric generating set Γ ∩ W ⊂ W . Hence these 
representatives are in Wm ⊂ K. But K is covered by m left cosets of U . Thus there are 
two representatives g, g′ ∈ Γ ∩ Wm such that g, g′ are in the same left translate of U . 
Thus g−1g′ ∈ Γ ∩ U ⊂ ΓU , hence gΓU = g′ΓU which contradicts the existence of m + 1
distinct cosets of ΓU in Γ. It follows that ΓU has index at most m in Γ.

It remains to prove there is a normal subgroup of index at most m and the statement 
concerning the closed subgroup. We follow the last three paragraphs of Thurston’s proof 
(4.1.16) [50] verbatim, subject only to the change that he uses ε in place of our μ. During 
the course of that proof, m is replaced by another constant. �

The proof of the first part of the projective Margulis Lemma 0.1 follows from this. 
The remaining statements in Lemma 0.1 in the case of strictly convex and finite volume 
follow from Theorem 0.2 and Theorem 0.5.

8. Thick–thin decomposition

This section contains proofs of Theorem 0.2, the thick–thin decomposition for strictly 
convex manifolds, and, in the finite volume case, Theorem 8.6, a variant where the 
thinnish components are convex. The thinnish part is a certain submanifold constructed 
below such that everywhere on the boundary the injectivity radius lies between two 
constants related to the Margulis constant and depending only on dimensions. The reason 
for this approach is that the authors do not know if the set of points moved a distance 
at most R by a projective isometry is a convex set.

The proof in outline: When Ω is strictly convex the holonomy of each component of 
the thin part of Ω/Γ is an elementary group (Lemma 8.2). This follows from the fact 
(Corollary 4.15) that in the strictly convex case maximal elementary subgroups partition 
the non-trivial elements of Γ. In the properly convex case this partition breaks down. 
A component of the thin part has preimage in Ω which contains a union of subsets 
each consisting of the convex hull of the set of points moved a distance 3−nμn by some 
particular element of Γ. Points in this convex hull are moved at most μn, Lemma 8.4. 
The union of these sets is starshaped and this yields the topology of the components of 
the thinnish part.
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Suppose M is a strictly convex projective n-manifold. The injectivity radius inj(x) at 
a point x in M is the supremum of the radii of embedded metric balls in M centered at x. 
Since metric balls are convex, this equals half the length of the shortest non-contractible 
loop based at x.

The local fundamental group at x is the subgroup πloc
1 (M, x) of π1(M, x) generated by 

the homotopy classes of loops based at x with length less than the n-dimensional Margulis 
constant μ = μn. The local fundamental group at x is trivial if the injectivity radius at 
x is larger than μ/2. The Margulis Lemma 7.3 implies that the local fundamental group 
is always virtually nilpotent and by Corollary 4.15:

Lemma 8.1. Suppose that M is a strictly convex projective n-manifold. Then πloc
1 (M, x)

is elementary or trivial for all x.

Given ε > 0 the open ε-thin part of M is

thinε(M) = { x ∈ M : inj(x) < ε }.

Lemma 8.2 (Thin holonomy is elementary). Suppose that M = Ω/Γ is a strictly convex 
projective n-manifold and N is a component of thinμ/2(M). Then the holonomy, ΓN , of 
N is elementary and either hyperbolic or parabolic.

Proof. Let π : Ω −→ M be the natural projection and let Ñ ⊂ Ω be a component of 
π−1(N). For each x̃ ∈ Ñ let Γ(x̃) be the subgroup of Γ generated by isometries which 
move x̃ less than μ. This group may be identified with the local fundamental group 
at π(x̃). Since N ⊂ thinμ/2(M) this group is nontrivial. By Theorem 0.1 it is virtually 
nilpotent, and so by Proposition 4.14 it is elementary. By Corollary 4.15 there is a unique 
maximal elementary group, E(x̃), containing Γ(x̃).

If two points x̃1, ̃x2 in Ñ are sufficiently close then Γ(x̃1) and Γ(x̃2) have nontrivial 
intersection, so E(x̃1) = E(x̃2). It follows that Ñ is partitioned into clopen subsets with 
the property that on each subset, E(x̃) is constant. Since Ñ is connected it follows that 
E(x̃) is constant as x̃ varies over Ñ . Thus there is a unique maximal elementary group 
E(Ñ) = E(x̃) which contains Γ(x̃) for every x̃ ∈ Ñ .

Let G be the normal subgroup of ΓN generated by unbased loops in N of length 
less than μ. Then G is a nontrivial normal subgroup of ΓN and the argument of the 
preceding paragraph shows that G ⊂ E(Ñ) and in particular is elementary. Normality 
implies that ΓN preserves the set of fixed point of G, and by strict convexity there are 
at most two fixed points. Arguing as in Proposition 4.14 it follows that ΓN fixes each 
of these points and is therefore elementary. This group is hyperbolic or parabolic by 
Proposition 4.11. �

In a space of negative sectional curvature (or more generally, in a space satisfying 
Busemann’s definition of negative curvature, see [14] Chap. 5), the set of points moved 
a distance at most R by an isometry is convex. However we do not know if this is true 
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for Hilbert metrics which need not satisfy Busemann’s definition. The convex hull of this 
set is used to overcome this.

Lemma 8.3 (Carathéodory’s theorem). Suppose that S is a non-empty subset of a properly 
convex domain Ω.

Then the convex hull of S in Ω is the union of the projective simplices with vertices 
in S.

Proof. This follows from the fact that the projective convex hull is the Euclidean convex 
hull, and this statement is due to Carathéodory (see Berger [10] (11.1.8.6)) in the latter 
case. �
Lemma 8.4 (Convex hull bound). Suppose that τ is an isometry of a properly convex 
domain Ω and that N is the subset of Ω of all points moved a distance at most R by τ .

Then every point in the convex hull of N is moved a distance at most 3n · R, where 
n = dim(Ω).

Proof. By Lemma 8.3 it suffices to show that if the vertices of a k-simplex Δ are moved 
a distance at most R then every point in Δ is moved a distance at most 3kR for k ≤ n. 
We prove this by induction on k. For k = 1 a 1-simplex Δ = [a, b] is a segment. Then 
τ [a, b] = [c, d] is another segment. The image of x ∈ [a, b] is a point τ(x) ∈ [c, d]. By 
assumption dΩ(a, τa) ≤ R and dΩ(b, τb) ≤ R. The domain of the function f : [c, d] −→ R

given by f(z) = dΩ(z, [a, b]) is compact and convex. Since f(c), f(d) ≤ R it follows by 
the maximum principle (Corollary 1.9) every point of [c, d] is within R of some point 
on [a, b]. Thus for x ∈ [a, b] we see that τ(x) ∈ [c, d] is within distance R of some point 
y ∈ [a, b],

dΩ(τ(x), y) ≤ R.

Without loss of generality, assume y is between x and b. Then from the triangle inequality 
we get

dΩ(a, y) ≤ dΩ
(
a, τ(a)

)
+ dΩ

(
τ(a), τ(x)

)
+ dΩ

(
τ(x), y

)
.

Using that τ is an isometry gives dΩ(τ(a), τ(x)) = dΩ(a, x). Also x is between a and y
so

0 ≤ dΩ(a, y) − dΩ(a, x) ≤ dΩ
(
a, τ(a)

)
+ dΩ

(
τ(x), y

)
≤ 2R.

Since x is on the segment [a, y] from this we get

dΩ(x, y) ≤ 2R.
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Now d(y, τ(x)) ≤ R so applying the triangle inequality again gives

dΩ
(
x, τ(x)

)
≤ dΩ(x, y) + dΩ

(
y, τ(x)

)
≤ 3R.

This proves the inductive statement for k = 1.
Suppose Δ′ is a (k− 1) simplex and Δ = a ∗Δ′. Consider a point x in Δ. Then x lies 

on a segment [a, b] with b ∈ Δ′. By induction dΩ(b, τ(b)) ≤ 3k−1R. Also dΩ(a, τ(a)) ≤
R ≤ 3k−1R. By induction applied to the 1-simplex [a, b] we get that every point on [a, b]
is moved a distance at most 3 ·

(
3k−1R

)
. This completes the proof. �

Definition 8.5. If M is a strictly convex projective n-manifold then a Margulis tube is a 
tubular neighborhood, N , of a simple geodesic γ in M such that at every point in ∂N
the injectivity radius is at least ιn = 3−n−1μn.

It follows that a Margulis tube is diffeomorphic to a disc bundle over the circle, which 
is a product bundle iff it is orientable. In the following the dimension n is fixed and we 
use ι = ιn and μ = μn.

Proof of Theorem 0.2. We adapt the discussion of the thick–thin decomposition of hy-
perbolic manifolds in Thurston [50] §4.5 to construct A.

Suppose M = Ω/Γ is strictly convex. For a nontrivial element γ ∈ Γ let T (γ) be the 
open subset of Ω which is the interior of the convex hull of all points moved by γ a distance 
less than 3ι. By Lemma 8.4 every point in T (γ) is moved a distance at most μ by γ. We 
note for later use that if γ is parabolic it is easy to see that T (γ) is starshaped at p.

If y is a point in the intersection of T (γ1) and T (γ2) then γ1 and γ2 both move y at 
most μ, so that by Lemma 8.1, γ1 and γ2 are contained in the same elementary subgroup 
S ≤ Γ. In fact we claim the converse also holds: If γ1 and γ2 are contained in the same 
elementary group E then T (γ1) and T (γ2) intersect, provided they are both nonempty.

First suppose that E is hyperbolic. Then it is cyclic generated by some element γ. 
Each γi is a power of this element γ and T (γi) contains the axis of γ. Hence T (γ1) ∩T (γ2)
contains this axis. The other case is that E is parabolic. By Proposition 4.10 there is a 
point x in Ω moved less than 3ι by both γ1 and γ2. Thus x ∈ T (γ1) ∩T (γ2) which proves 
the claim.

Write T (γ1) ∼ T (γ2) if their intersection is not empty, the argument of the previous 
paragraph shows that this defines an equivalence relation.

Let Ũ ⊂ Ω be the union of all the T (γ) for nontrivial γ. To each T (γ) we may assign 
a maximal elementary subgroup of Γ, by assigning to each point p in Ũ the maximal 
elementary subgroup which stabilizes the component of Ũ containing p. This map is 
constant on connected components and induces a bijection between those components 
and E , a certain subset of the maximal elementary subgroups of Γ. Let θ : Ũ −→ E be 
this function, so that connected components of Ũ correspond to elements of E .

Clearly Ũ is preserved by Γ. Also, if Ṽ is a component of Ũ then Ṽ is preserved by 
the elementary group E = θ(Ṽ ) and if for γ ∈ Γ, γṼ intersects Ṽ then it equals Ṽ . 
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The image of Ũ in M is an open submanifold, U , of the μn/2-thin part of M and each 
V = Ṽ /E is a component of U .

We will determine the topology of V and construct A by removing from V an open 
collar, to give a metrically complete submanifold with smooth boundary. By Lemma 8.2, 
E is elementary, and either hyperbolic or parabolic.

The first case is that E is parabolic and we claim that V is a starshaped cusp. There 
is a parabolic fixed point p. As noted above Ṽ is the union of sets which are starshaped 
at p and is therefore starshaped at p. It only remains to show that V is a thickening of 
a convex cusp. By Proposition 4.11 E contains a nilpotent subgroup E′ of finite index. 
Let γ be a non-trivial element in the center of E′. Then T (γ) is convex and preserved by 
E′. Let δ1, · · · , δk be a set of left coset representatives of E′ in E. Each group element 
γi = δiγδ

−1
i preserves a convex set Ti = T (γi) = δiT (γ). The action of E permutes 

these sets. By Proposition 4.10 there is x ∈ Ω moved a distance less than 3ι by each of 
γ1, · · · , γk. It follows that K = T1 ∩ · · · ∩ Tk is not empty. It is convex and preserved by 
E. Thus K/E is a convex core for V . This proves V is a starshaped cusp.

Otherwise E is hyperbolic and infinite cyclic with some generator γ that has axis �. 
Here is a sketch of the argument: We show that Ṽ is a union of open convex sets each 
of which contains �. This will imply that Ṽ is star-shaped with respect to points on �
and hence an Rn−1-bundle over �. The bundle structure is preserved by E. This in turn 
implies that Ṽ /E is diffeomorphic to an Rn−1-bundle over the circle which is the short 
geodesic �/E. Hence V in this case is a Margulis tube.

Here are the details: There is a projection along a pencil of hyperplanes π� : Ω −→ �

given by Proposition 2.11. The fibers of the restriction π�| : Ṽ −→ � are the intersection 
of hyperplanes with Ω, not copies of Rn−1, but only open and star-shaped. An open 
star-shaped set is diffeomorphic to Euclidean space. We must identify the fibers smoothly 
with Euclidean space as we move around in this bundle.

Choose a smooth complete Riemannian metric on V and lift it to an E-equivariant 
Riemannian metric ds on Ṽ . The pencil of hyperplanes from Proposition 2.11 intersects 
along a codimension-2 projective hyperplane, Q. Pass to the 2-fold cover Sn of the RPn

which contains Ω. The preimage of Q is a codimension-2 sphere Sn−2. Let πS : Ω \ � −→
Sn−2 be radial projection along the (cover of the) pencil. This map is smooth: it is the 
projectivization of a linear map.

Define h : V −→ R as follows. Given x ∈ V there is a unique segment [x, y] in Ω
contained in one of the hyperplanes in the pencil and with y ∈ �. Define h(x) to be 
the ds-length of this segment. Then h is smooth except along �. Regard Sn−2 as the 
unit sphere in Rn−1 centered on 0. The hyperbolic γ preserves Q and acts on it as a 
projective transformation. The map g : Ṽ −→ Rn−1 defined by g(x) = h(x) · πS(x)
restricted to a fiber of π� is a diffeomorphism and is E-equivariant. Hence the map 
k : Ṽ −→ � × Rn−1 given by k(x) = (π�(x), g(x)) is an E-equivariant diffeomorphism. 
Thus it covers a diffeomorphism V −→ (� ×Rn−1)/E. The target is the desired smooth 
vector bundle.
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Next we show that the thick part is not empty. It follows from Corollary 2.12 that 
M can’t consist of a single Margulis tube, and it follows from Lemma 5.5 that M can’t
consist of a single cusp contained in the thin part. Hence M �= U .

It remains to describe the manifold A, as a submanifold of U . If a component V of U
is diffeomorphic to an Rn−1 bundle, choose the smallest sub-bundle with fiber the closed 
ball of radius R centered at 0 subject to the condition it contains all points moved at 
most (2/3)3ι = 2ι. (Here one could replace 2/3 by any number 0 < λ < 1.) Thus on 
the boundary the injectivity radius is at least (1/2)(2ι) = ι. If V is a starshaped cusp 
it follows from Theorem 5.3(C6) that it contains a cusp satisfying the same condition. 
To apply (C6) one needs a slightly smaller starshaped cusp. To obtain this, perform the 
above construction, but using the convex hull of points moved a distance 2ι. �
Remark. With more work one can show that in the cusp case V is K with a collar 
attached. Then using Siebenmann’s open collar theorem [46] it follows that in dimensions 
greater than four V/E is K/E with an open collar attached. Thus in dimension �= 4 the 
interior of a cusp component of the thin part is diffeomorphic to a full cusp.

For some applications it is useful to have the components of the thin part be convex. 
This is possible if control of the injectivity radius on the boundary is loosened:

Proposition 8.6 (Convex and thin). Suppose that E is a component of the thin part of a 
strictly convex n-manifold M = Ω/Γ of finite volume.

Then the interior of E contains a closed subset C which is a convex submanifold such 
that the closure of E \ C is a collar of ∂E.

Furthermore, there is a constant, μ′ = μ′(n, d), depending only on dimension and 
d = diam(∂E) such that the injectivity radius at every point of ∂C is greater than μ′. 
Either C is a horocusp or a metric r-neighborhood of a geodesic.

Proof. Let π : Ω −→ M be the projection and Ẽ a component of π−1E. The first case is 
that E is a cusp. There is a unique parabolic fixed point p ∈ ∂Ω in the closure of Ẽ. Let 
Bt be the horoballs centered at p parameterized so that Bt ⊂ Ẽ ⇔ t ≤ 0. The horocusp 
C = π(B−1) is contained in the interior of E.

Let �q be a line with endpoints p �= q ∈ ∂Ω. This line meets both ∂Ẽ and ∂Bt in 
unique points. It follows that the region between ∂Ẽ and ∂B−1 is foliated by intervals 
each contained in such a line and thus the region between ∂E and C is a collar of ∂E.

Since diam(∂E) = d it follows that ∂E lies between B0 and Bd. Hence ∂Ẽ separates 
B−1 from Bd so every line �q meets ∂Ẽ between B−1 and Bd. It follows that every point in 
B−1 is within a distance d +1 of Ẽ. Projecting it follows that every point in ∂C is within 
a distance d + 1 of a point in ∂E. By the uniform bound on decay, the injectivity radius 
at each point of ∂C is bounded above and below in terms of μ and d. This completes 
the cusp case.

The other case is that E is a Margulis tube. Let γ be the core geodesic. Then Ẽ is 
a neighborhood of a line γ̃ covering γ. Let r be the smallest distance between a point 
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on ∂E and γ. Let Bt denote the set of points in Ω distance at most (r + t) from γ̃. 
By Corollary 1.10 this set is convex. Set δ = min(1, r/2) then B−δ not empty and is 
contained in the interior of Ẽ. Thus B−δ ⊂ Ẽ ⊂ Bd and we define C = π(B−δ). Let 
p : Ω −→ γ̃ be the nearest point projection. For q ∈ Ω \ γ̃ let �q be the line segment 
in Ω starting at p(x) containing x and limiting on ∂Ω. The argument for cusps is easily 
adapted to this setting to show that C has the required properties. �

In particular every cusp component of the thin part of a finite volume manifold con-
tains a horocusp. The thin part of M = H4/〈γ〉, where γ is a parabolic that induces a 
Euclidean screw-motion on a horosphere, contains no horocusp. The set of points moved 
a distance at most d by a Euclidean screw motion in E3 is a tubular neighborhood of 
a line. Thus the thin part of M intersects a horomanifold in a Euclidean solid torus. 
The radius of this solid torus increases moving towards the parabolic fixed point but is 
bounded above.

9. Maximal cusps are hyperbolic

This section proves Theorem 0.5: a maximal cusp in a properly convex projective 
orbifold is projectively equivalent to a cusp in a complete (possibly infinite volume) 
hyperbolic orbifold. It follows that a cusp cross-section is diffeomorphic to a compact 
Euclidean orbifold.

A parabolic in O(n, 1) is a pure translation if every eigenvalue is 1. The starting point 
is a characterization of ellipsoids in projective space (cf. [48]):

Theorem 9.1 (Ellipsoid characterization). Suppose that Ω is strictly convex of dimen-
sion n and that W ⊂ SL(Ω, p) is a nilpotent group which acts simply-transitively on 
∂Ω \ {p}.

Then ∂Ω is an ellipsoid and W is conjugate to the subgroup of pure translations in 
some parabolic subgroup of O(n, 1).

Here is a sketch of the proof of Theorem 0.5. Suppose Γ is the holonomy of a maximal 
cusp. Then Γ preserves some properly convex set Ω and fixes a point p ∈ ∂Ω. Following 
Fried and Goldman, a syndetic hull of a discrete subgroup Γ of a Lie group G is defined 
as a connected Lie subgroup H containing Γ with H/Γ compact. This is used to show in 
Proposition 9.3 that there is a subgroup, Γ0, of finite index in Γ with a nilpotent simply 
connected syndetic hull W ⊂ SL(n + 1, R). By Proposition 9.4 there is another domain 
Ω′ which is strictly convex and contains p in its boundary and W acts simply transitively 
on ∂Ω′ \ {p}. The characterization implies that ∂Ω′ is an ellipsoid and therefore Γ0 is 
conjugate into O(n, 1). An easy algebraic argument, given in Lemma 9.6, implies Γ is 
conjugate into O(n, 1) completing the proof.

Proof of Theorem 9.1. Lemma 9.2 implies that W is conjugate to a group of upper-
triangular unipotent matrices. In particular, every nontrivial element of W is parabolic 
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and p is a round point by Lemma 9.5. The proof is by induction on n = dimW = dim ∂Ω. 
Using the parabolic model of hyperbolic space, the inductive hypothesis is that there are 
parabolic coordinates for Ω ⊂ RPn+1 centered on p such that ∂Ω \ p is the graph of the 
convex function f : U −→ R given by f(u) = 1

2 ||u||2, where U designates Rn equipped 
with an inner product; and also that W is the group of affine maps with elements Su

corresponding to u ∈ U given by

Su(x) = x + u + <u, x>e0 + 1
2 ||u||

2e0

Here e0 is orthogonal to the hyperplane U in Rn+1. Observe that the W -orbit of x = 0 is 
the graph of f , and Su ◦ Sv = Su+v so W is abelian. In the case n = 1 the Lie group W
is one-dimensional. The classification of parabolics given in Corollary 2.10 implies that 
W is conjugate to a parabolic subgroup of O(2, 1) and ∂Ω is the orbit of a point under 
this subgroup. The conclusion now follows for n = 1.

Inductively assume the statement is true for n. Since p is a round point, radial pro-
jection Dp identifies ∂Ω \ p with DpΩ by Corollary 1.6(3). Consider a domain Ω with 
dim ∂Ω = n + 1, so Ω ⊂ RPn+2. There is a basis e0, · · · , en+2 of Rn+3 in which W is 
upper-triangular. In these coordinates p = [e0] and the projective hyperplane P , given 
by the subspace spanned by e0, · · · , en+1, is a supporting hyperplane to Ω at p. We can 
choose en+2 so that it represents any point q ∈ ∂Ω \ {p}. The affine patch Rn+2 given 
by dehomogenizing with xn+2 = 1 gives parabolic coordinates for Ω with P at infinity 
and q at the origin. Furthermore, the hyperplane, U ⊂ Rn+2 given by x0 = 0 is tangent 
to Ω at q and ∂Ω \ {p} is the graph of a non-negative convex function f : U −→ R · e0

defined on all of U because p is a C1 point; as in Section 3. We refer to U as horizontal
and the x0-axis as vertical.

Since p is round, P is unique, so that the group W acts on Rn+2 as a group of affine 
transformations. It sends vertical lines to vertical lines and therefore induces an action 
on U . It follows that this induced affine action on U is simply transitive. Regarding an 
element of W as a matrix in the chosen basis, by Proposition 1.5, the matrix for this 
affine induced action on U is given by deleting the first row and column which correspond 
to e0, the vector in the vertical direction.

There is a codimension-1 foliation of Rn+2 given by the vertical hyperplanes Pc defined 
by xn+1 = c. Since W is upper triangular, this foliation is preserved by W . Indeed, W
is unipotent and upper-triangular, so the (n + 2, n + 3)-entry gives a homomorphism 
φ : W −→ R. For example φ(α) = xn+1 for the matrix α in (1) below. It follows that 
w(Pc) = Pc+φw for w ∈ W .

Consider the horizontal subspace V = U ∩ P0 with basis (e1, · · · , en). Let Wφ = kerφ
and ΩV = Ω ∩P0 then ∂ΩV \ p is the graph of f |V . Observe that ΩV is a strictly convex 
set in RPn+1 and Wφ preserves ΩV . Since W preserves the foliation Pc it follows that 
Wφ acts simply transitively on ∂ΩV \ p. By induction, there is an inner product on V so 
that ∂ΩV \ p is the graph of f(v) = 1 ||v||2 for v ∈ V , and the action of the group Wφ
2
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restricted to P0 consists of affine maps Tv for v ∈ V given by

Tv(x) = x + v + <v, x>e0 + 1
2 ||v||

2e0.

In the basis e0 followed by an orthonormal basis of V followed by en+2, the matrix of 
Tv is ⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 v1 v2 . . . vn
1
2
∑n

i=1 v
2
i

0 1 0 0 0 v1
0 0 1 0 0 v2
. . . . . . . . . . . . . . . . . .

0 0 0 0 1 vn
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
so that the Lie algebra element for Tv is

tv =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 v1 v2 . . . vn 0
0 0 0 0 0 v1
0 0 0 0 0 v2
. . . . . . . . . . . . . . . . . .

0 0 0 0 0 vn
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
The matrix tv is obtained from the Lie algebra wφ of Wφ by deleting the penultimate 
row and column. Since they are strictly upper-triangular, the matrices in wφ are of the 
shape α shown in (1) below. Moreover xn+1 = 0 in wφ because Wφ preserves P0. Observe 
that this implies α3 = 0 so that exp[α] = I + α + α2/2.

We claim that in fact in wφ after a change of basis all the ti = 0. The reason is that, 
since p is a C1-point, An+2 is foliated by horospheres obtained by translating ∂Ω \ p

vertically. Thus the Wφ orbit of each point in An+2 is a convex hypersurface in some 
vertical hyperplane xn+1 = λ. The orbit of en+2 + λen+1 under Wφ is

exp[α](en+2 + λen+1) = en+2 + λen+1 +
[
t0 + 1

2

n+1∑
i=1

xi(xi + λti)
]
e0 +

n∑
i=1

(xi + λti)ei

which is convex iff

t0 + 1
2

n+1∑
i=1

xi(xi + λti)

is convex. Here the ti are linear functions of the xj and λ is arbitrary but constant. 
This is a linear function plus a quadratic form in the xi variables. Convexity implies 
the quadratic form is positive definite for all λ. It follows that ti = 0 for i ≥ 1. Finally 
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t0 =
∑n

i=1 μixi is an arbitrary linear function of the xi’s. In a new basis, obtained by 
replacing en+1 by en+1 −

∑n
i=1 μiei, the algebra wφ is as claimed.

Since Wφ is a normal subgroup of W it follows that [w, wφ] ⊆ wφ. From this it follows 
that the general element of w is an (n + 3) × (n + 3) matrix of the form

α =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 x1 x2 . . . xn t0 0
0 0 0 0 0 t1 x1
0 0 0 0 0 t2 x2
0 0 0 0 0 t3 x3
. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 tn xn

0 0 0 0 0 0 xn+1
0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1)

The ti are linear functions of the xj. These Lie algebra elements satisfy α4 = 0, so the 
general group element in W is a = exp(α) = I + α + α2/2 + α3/6. Because the induced 
action of W on U is simply transitive it follows that x1, · · · , xn+1 are coordinates for w
and the remaining entries in α are linear functions of these coordinates.

The orbit of the origin gives ∂Ω and is given by the last column of a, which is the 
transpose of

y = (f(x1, · · · , xn+1), x1, x2, · · · , xn+1, 0) + xn+1(0, t1, · · · tn, 0, 0),

where the first entry of y is the function f : Rn+1 → R so that ∂Ω is the graph of 
f(x1, · · · , xn+1). Notice that these computations show that this function is a polynomial 
of degree at most 3 in the coordinates x1, · · · , xn+1. Moreover, since f(x) > 0 for all 
non-zero x the linear and cubic parts are both zero, and it follows that f is a positive 
definite quadratic form.

Choose an inner product on Rn+2 so that f(x) = ||x||2/2. It now follows that ∂Ω is 
projectively equivalent to the round ball and W is conjugate into a parabolic subgroup 
of O(n + 1, 1). Since W is unipotent, this is the parabolic subgroup of pure translations, 
which completes the inductive step. �
Lemma 9.2. Suppose that Ω is strictly convex and W ⊂ SL(Ω, p) is nilpotent and acts 
simply-transitively on ∂Ω \ {p}.

Then W is unipotent and conjugate in SL(n +1, R) into the group of upper triangular 
matrices.

Proof. By Lemma 9.5 every non-trivial element of W is parabolic and p is a round point 
of ∂Ω. Thus every eigenvalue is on S1. The idea of the proof is to show that if W is not 
unipotent, then there is a proper projective subspace, Q, that is preserved by W , which 
contains p and another point in ∂Ω contradicting the transitivity assumption.
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Recall some standard facts about nilpotent Lie algebras and their representations. Let 
ρ : ℘ −→ End(V ) be a representation of a nilpotent Lie algebra in a finite dimensional 
vector space V . A linear function λ : ℘ −→ C is a weight of ℘, if there is some nonzero 
vector v ∈ ℘ and an integer m = m(v) > 0 so that (ρ(X) −λ(X)I)mv = 0 for all X ∈ ℘. 
The set of such vectors together with 0 forms a linear subspace of V , this is the weight 
space of ρ corresponding to the weight λ and is denoted Vρ,λ.

Then in [51], Theorem 3.5.8 it is shown that if ℘ is a nilpotent Lie algebra and 
ρ : ℘ −→ End(V ) is a representation in a finite dimensional vector space V over an 
algebraically closed field, then the weight spaces corresponding to distinct weights are 
linearly independent and there is a decomposition

Cn =
⊕
λ

Vρ,λ (∗)

exhibiting the algebra ρ(℘) as block matrices.
We apply these ideas to the Lie algebra w of W ; differentiating the inclusion W −→

GL(n, R) yields a representation of w −→ End(Rn). Moreover, W is diffeomorphic to 
∂Ω \ p so is simply connected. It follows that the exponential map exp : w −→ W is an 
analytic diffeomorphism (see [51] Theorem 3.6.2) and the decomposition of (∗) gives rise 
to a block decomposition of Cn as a direct sum of W -invariant subspaces; we suppress 
ρ and write Vρ,λ = Xλ. Each weight space gives rise to a homomorphism μ : W −→ C∗, 
since if g ∈ W is written g = exp(w), we may define μ(g) = exp(λ(w)), i.e. we associate 
to g the eigenvalue which appears in the block Xλ. In this way Xλ is defined as the 
intersection over all g in W of the kernel of (g−μ(g)I)n. The action of W on Xλ is given 
by μ(g) · U(g) where U(g) is unipotent.

Now recall that W ⊂ GL(n, R). For each weight μ there is a complex conjugate 
weight μ. This yields a direct sum decomposition over R

Rn =
⊕
{μ,μ}

Vμ,μ,

where Vμ,μ = (Xμ + Xμ) ∩ Rn and Xμ + Xμ = 0 if μ �= μ.
This follows from the following elementary fact. Suppose U is a complex vector sub-

space of Cn which is invariant under the involution v �→ v given by coordinate-wise 
complex conjugation, so that U = U . Then U = (U ∩Rn) ⊗R C. Observe that Xμ = Xμ

and apply this with U = Xμ ⊕Xμ.
Because every non-trivial element of W is parabolic, it has 1 as an eigenvalue with 

algebraic multiplicity at least 3. Suppose some element A of W has an eigenvalue other 
than 1. Every eigenvalue of every element of W has complex modulus 1. Since A is in a 
1-parameter subgroup there is some element, B, of W which has a non-real eigenvalue. 
By combining the Vμ,μ subspaces into two sets, one with μ(B) = ±1 and the other with 
μ(B) �= ±1 we get a G-invariant decomposition

Rn = U ⊕ V
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with V generated by the set with μ(B) �= ±1. If μ(B) is complex then Xμ and Xμ are 
both non-trivial, so that dim(V ) ≥ 2. On the other hand since B has eigenvalue 1 with 
algebraic multiplicity at least 3 it follows that codim(V ) ≥ 3. Furthermore, we observe 
that e1 ∈ U .

Let V ′ be the subspace spanned by V and e1. Then codim(V ′) ≥ 2 thus V ′ is a 
proper subspace. The projective subspaces obtained from U and V ′ intersect in one point, 
namely p = [e1] ∈ ∂Ω. Since p is a smooth point of ∂Ω, there is a unique supporting 
tangent hyperplane, P say, to Ω at p. If both P (U) and P (V ′) are contained in P then 
P contains the projectivization of U +V ′ = Rn contradicting that P has codimension 1.

It follows that at least one of U and V ′ contains a point in the interior of Ω. How-
ever, both subspaces are proper and we thus obtain a proper non-empty G invariant 
subset of ∂Ω \ {p}. This contradicts the transitivity assumption. This proves that W is 
unipotent. �

This completes the proof of the characterization of ellipsoids. It remains to apply this 
to show maximal cusps are hyperbolic, following the outline:

Proposition 9.3 (Discrete nilpotent virtually has simply connected syndetic hull). Suppose 
that Γ is a finitely generated, discrete nilpotent subgroup of GL(n, R).

Then Γ contains a subgroup of finite index Γ0, which has a syndetic hull W ≤ GL(n, R)
that is nilpotent, simply-connected and a subgroup of the Zariski closure of Γ0.

Proof. Since Γ is finitely generated and linear, by Mal’cev–Selberg’s lemma it has a 
torsion-free subgroup, Γ1, of finite index. By a theorem of Mal’cev ([53] p. 45, Thm. 2.6) 
there is a simply connected nilpotent Lie group W̃ which contains Γ1 as a cocompact 
lattice. By the super-rigidity theorem for lattices in nilpotent groups (the nilpotent case 
we need is due to [34], see also [56] Theorem 6.8′ as well as the paragraph above (1.3) 
and (1.4) therein) after possibly passing to a finite index subgroup Γ0 ⊂ Γ1, the inclusion 
map i : Γ0 → GL(n, R) extends to a homomorphism π : W̃ → GL(n, R). Furthermore, 
W = πW̃ is contained in the Zariski closure of Γ0.

The map π : W̃ → W is the universal cover and since these are both nilpotent 
groups the group of covering transformations is a discrete free abelian group. However, 
π restricted to Γ0 is an inclusion map, i.e. Γ0 ∩ ker(π) = {1}. But π−1(iΓ0) is a lattice 
in W̃ which contains Γ0; this is impossible unless ker(π) is trivial, so that π is injective. 
Thus we may identify W̃ with W .

Now W/Γ0 is a compact subset of GL(n, R)/Γ0 and thus closed. Hence W is a closed 
subgroup and thus a Lie group. �
Remarks. (i) In general π is not birational and W need not be an algebraic subgroup. 
For example, let Γ be the cyclic subgroup of GL(2, R) generated by the diagonal matrix 
diag(2, 3). The Zariski closure of Γ is the diagonal subgroup of rank 2, but W is a 
one-parameter subgroup.

(ii) If Γ ⊂ SL(n, R) then the Zariski closure of Γ (and hence W ) is in SL(n, R).
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By the above the hypothesis of the next result holds for a finite index subgroup of a 
cusp group of maximal rank.

Proposition 9.4. Suppose that Ω is properly convex and Γ1 ⊂ SL(Ω, H, p) is a torsion-free 
cusp group of maximal rank. Then there is a simply connected nilpotent Lie group W ⊂
SL(n + 1, R) that contains a lattice Γ which is a finite index subgroup of Γ1 and there is 
a strictly convex domain Ω′ with p ∈ ∂Ω′ and W acts simply transitively on ∂Ω′ \ {p}.

Proof. Let Γ < Γ1 be the finite index subgroup and W the Lie group provided by 
Proposition 9.3 applied to Γ1. The condition that Γ preserves p and H is algebraic, 
therefore the Zariski closure of Γ, and hence W , also preserves them. There is a natural 
action of W on DpRP

n ∼= RPn−1 by projective transformations. This action preserves 
the image of H and so gives an affine action on An−1 = Dp(RPn \H). Radial projection 
Dp identifies An−1 with an (H, p)-horosphere because p is a round point by Theorem 5.7. 
Hence the action of Γ on An−1 is properly discontinuous. Thus An−1/Γ is a Hausdorff 
manifold

The action of W on An−1 is transitive because W is a simply connected nilpotent Lie 
group, so it is contractible and Γ is a lattice, so that W/Γ is a compact manifold which 
is homotopy equivalent to the compact manifold An−1/Γ. Both manifolds are Hausdorff. 
Furthermore, there is a Γ-equivariant map θ̃ : W → An−1 given by sending w ∈ W to 
w · x0. This map covers a homotopy equivalence θ : W/Γ → An−1/Γ between compact 
manifolds. Therefore θ is surjective. It follows that the W -orbit of x is all of An−1.

The map θ̃ is injective because θ̃ is a local diffeomorphism at some point since it is a 
smooth surjection between manifolds of the same dimension. By transitivity it is a local 
diffeomorphism everywhere. Thus θ also has this property and is therefore a covering 
map. Thus θ̃ is also a covering map. But W and An−1 are simply connected so the 
covering is trivial. Thus θ̃ is injective as claimed. It follows that W acts freely on An−1.

Choose a point x ∈ An. Define Ω′ as the interior of the convex hull of W ·x. We claim 
this is a properly convex domain. Since p is a round point, An is foliated by horospheres 
St and the horoballs Bt fill An. Since Γ is a parabolic group it preserves every horosphere 
and horoball. There is a compact subset D ⊂ W such that W = Γ ·D. Then D · x is a 
compact set in An. Thus it is contained in some horoball Bt. Thus W · x = Γ · (D · x) is 
also contained in Bt. It follows that the convex hull of this set is contained in Bt and is 
therefore properly convex.

Clearly p ∈ ∂Ω′ and, since Ω′ is contained in a horoball, H is a supporting tangent 
hyperplane to Ω′ at p. Also Ω′ is W -invariant. It remains to prove that Ω′ is strictly 
convex.

We may regard Ω′ as the interior of a compact convex set K in a (different) affine 
patch. As noted earlier, K is the convex hull of its extreme points. Therefore there is an 
extreme point q ∈ ∂Ω′ other than p. The action of W on ∂Ω′ \{p} is transitive, since this 
set is identified with DpΩ. The orbit of q under W consists of extreme points, hence with 
the possible exception of p, every point of ∂Ω′ is an extreme point. However it follows 
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immediately from the definition that if every point but one of ∂Ω′ is extreme, then every 
point of ∂Ω′ is extreme. This proves that Ω′ is strictly convex.

Since W acts freely on An = DpΩ = DpΩ′, it acts freely on ∂Ω′ \ {p}. �
Lemma 9.5 (Simply-transitive implies parabolic). Suppose Ω is properly convex and p ∈
∂Ω and W ⊂ SL(Ω) acts simply transitively on ∂Ω \ p. Then every non-trivial element 
of W is parabolic and p is a round point.

Proof. Since W acts freely on ∂Ω \ {p} every nontrivial element in W fixes only p ∈ ∂Ω
and is therefore not hyperbolic. An elliptic element in W would fix a point in q ∈ Ω and 
hence fix every point on the line � containing p and q. But this line meets ∂Ω in a second 
point, giving the same contradiction. Thus W contains no elliptics. Since DpΩ/W is one 
point, it is compact, so p is a round point by Theorem 5.7. �
Lemma 9.6. Suppose that Γ ⊂ GL(n + 1, R) contains a parabolic subgroup of finite index 
Γ0 ⊂ O(n, 1) which preserves the ball Ω and fixes the point p ∈ ∂Ω. Also suppose that p
is a bounded parabolic fixed point for Γ. Then Γ ⊂ O(n, 1).

Proof. By passing to a subgroup of finite index we may assume that Γ0 is a normal 
subgroup of Γ. Let P be the supporting hyperplane to Ω at p. Then P is the unique 
codimension-1 hyperplane preserved by Γ0. Since Γ0 is normal in Γ it follows that P is 
also preserved by Γ. If x ∈ ∂Ω \ {p} then the compactness of (∂Ω \ {p})/Γ0 implies the 
orbit Γ0 · x is Zariski dense in ∂Ω.

Since Γ preserves P it follows that γx /∈ P for all γ ∈ Γ. Since Γ0 preserves ∂Ω the Γ0
orbit of any point x /∈ P contains a horosphere, Sx, for Ω centered at p. Using normality 
gives

Γ0 · (γx) = γ(Γ0 · x).

The Zariski closure of Γ0 · (γx) is Sγx and the Zariski closure of γ(Γ0 · x) is γSx. It 
follows that γ preserves the family of horospheres centered at p. For some n > 0 we have 
γn ∈ Γ0. We claim that it follows that γ preserves each Sx. For otherwise, after replacing 
γ by γ−1 if needed we may assume γ(Sx) is contained the interior of the horoball bounded 
by Sx. But then the same is true for γnSx. In particular γn does not preserve Sx. This 
contradicts that γn ∈ Γ0.

Thus every element of Γ preserves the ball Ω and it follows from classical results of 
Beltrami and Klein (see for example Theorem 6.1.2 of Ratcliffe [45]) that Γ ⊂ O(n, 1). �

It follows from Proposition 11.2 that:

Proposition 9.7 (Maximal cusps have finite volume). If C is a maximal cusp in a properly 
convex projective manifold then C has finite volume.
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An irreducible representation into GL(n + 1, R) is determined up to conjugacy by 
its character. It follows that non-elementary hyperbolic manifolds are isometric iff they 
are projectively equivalent. A hyperbolic cusp is a cusp of a hyperbolic manifold. The 
preceding argument fails for cusps since the character is the constant function with 
value (n + 1) for every cusp with cross-section a codimension one torus. The next result 
says that maximal hyperbolic cusps are equivalent in the projective sense iff they are 
equivalent in the hyperbolic sense.

Proposition 9.8 (Hyperbolic cusps). Suppose Γ1, Γ2 ⊂ PO(n, 1) are two groups of 
parabolic isometries so that the quotients Ci = Hn/Γi are maximal cusps.

Then Γ1 and Γ2 are conjugate subgroups of PO(n, 1) iff they are conjugate subgroups 
of PGL(n + 1, R). Thus C1 and C2 are isometric iff they are projectively equivalent.

Proof. The symmetric bilinear form 〈, 〉 of signature (n, 1) is preserved by O(n, 1). Let 
S be the projectivization of the set of non-zero lightlike vectors for this form. Then S is 
the boundary of the projective model of Hn. By means of conjugacy within PO(n, 1) we 
may assume the groups Γ1, Γ2 have the same parabolic fixed-point p = [a] ∈ S. Since C1
and C2 are projectively equivalent, Γ2 = γ.Γ1.γ

−1 for an element γ ∈ GL(n + 1, R).
The function f : RPn \ S −→ R given by f(x) = 〈a, x〉2/〈x, x〉 has level sets in Hn

that are the horospheres centered at p. Thus a horosphere is a quadric.
Choose some point x in Hn and consider the orbit Γ1 · x. Since C1 is a maximal cusp 

the Zariski closure of this orbit is the horosphere S1 centered at p that contains x and 
is the quadric hypersurface {y : f(y) = f(x)}.

We may assume γ(x) is in Hn and therefore we may define S2 to be the unique 
horosphere centered at p which contains the point γ(x). Since Γ2 acts by hyperbolic 
isometries, S2 contains the orbit Γ2 · γ(x). Note that S2 is the unique quadric which 
contains the orbit Γ2 · γ(x).

Now projective transformations send quadrics to quadrics, so that γS1 is the unique 
quadric which contains γ(Γ1 · x). Since Γ2 · γ(x) = γ(Γ1 · x), it follows that γS1 = S2.

Let Bi be the open horoball ball bounded by Si. The Hilbert metric on Bi is isometric 
to Hn. Furthermore Bi/Γi is isometric to Hn/Γi. Also γ is an isometry of B1 onto B2. 
Hence, using ∼= to denote isometry of Hilbert metrics, we get

C1 = Hn/Γ1 ∼= B1/Γ1 ∼= B2/Γ2 ∼= Hn/Γ2 = C2.

Thus C1 and C2 are isometric hyperbolic manifolds so Γ1 and Γ2 are conjugate in 
PO(n, 1). �
10. Topological finiteness

This section contains finiteness properties about families of properly or strictly convex 
manifolds, including a finite bound on the number of homeomorphism classes under 
various hypotheses.
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There is a fundamental difference between the strictly convex and properly convex 
cases. In the strictly convex case the thick part is non-empty and all that is required 
is an upper bound on volume. However in the properly convex case the entire manifold 
might be thin and one needs an upper bound on diameter and a lower bound on the 
injectivity radius at one point.

In dimension greater than 3 there are finitely many isometry classes of complete, 
hyperbolic manifolds with volume less than V . If a closed hyperbolic manifold contains 
a totally geodesic codimension-1 embedded submanifold then the hyperbolic structure 
can be deformed to give a one parameter family of strictly convex structures. Therefore 
there is no bound on the number of isometry (= projective equivalence) classes of strictly 
convex manifolds with bounded volume.

In dimension at least 4, for closed strictly convex manifolds, the diameter is bounded 
above by an explicit constant times the volume.

An important tool that is of independent interest is that for properly convex manifolds 
there is a uniform upper bound on how quickly injectivity radius at a point decreases 
as the point moves (Proposition 10.1). This result, which is well known for Riemannian 
manifolds with bounded curvature, was exploited by Cheeger for his finiteness theo-
rem [15].

Proposition 10.1 (Decay of injectivity radius). For each dimension n ≥ 2 there is a 
nowhere zero function f : R+ × R+ −→ R+ which is decreasing in the second variable 
with the following property:

If M is a properly convex projective n-manifold and p, q are two points in M then

inj(q) > f
(
inj(p), dM (p, q)

)
.

Proof. Here is a sketch of a standard argument. There is an upper bound, V , on the 
volume of the ball of radius R centered at a point where the injectivity radius is ε. There 
is a lower bound on the volume, v, of an embedded ball of radius δ. If v > V then a point 
p where the injectivity radius is less than ε can’t be within distance R − δ of a point q
with injectivity radius δ since otherwise Bδ(q) ⊂ BR(p) contradicting v > V . Thus for 
R and δ fixed ε cannot be too small. The details now follow:

The manifold is M = Ω/Γ. Suppose that the injectivity radius at q is ε/2. Then there 
is γ in Γ and q̃ ∈ Ω covering q such that γ moves q̃ a distance ε. By Proposition 2.11
there is a hyperplane H ⊂ Ω that contains q and which is disjoint from γH. The latter 
contains γq̃. See Fig. 9.

Let X be the subset of Ω between H and γH consisting of all points distance at most 
R from either q̃ or γq̃. The image of X in M is the metric ball of radius R around q. 
We claim that the Hilbert volume of X is bounded above by a function V (ε, R) which is 
independent of Ω, H and γ. Clearly this function is decreasing in ε and increasing in R. 
We claim that for each R we have limε→0 V (ε, R) = 0.
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Fig. 9. Decay of injectivity radius.

Assuming this, the proposition follows from Lemma 6.4 since if inj(p) > δ, then the 
volume of the ball of radius δ center p is bounded below by a function v(δ) depending 
only on δ. If the distance in M from p to q is R − δ then this ball is contained in X so 
V (ε, R) > v(δ). The claim implies that as ε → 0 then R → ∞, proving the proposition.

The proof of the claim follows from Benzecri’s compactness theorem. If the claim is 
false then there is R > 0 and V0 > 0 and for each n > 0 there is a domain Ωn containing 
a point q̃n and a pair of hyperplanes in Ωn, as described, with ε = 1/n and with the 
volume of X at least V0. We put (Ωn, q̃n) in Benzecri position and pass to a convergent 
subsequence. In the limit the two planes coincide. Just before that the Euclidean volume 
of X is arbitrarily small which contradicts Lemma 6.4. �
Remark. With a bit more work the function f in this result can be made explicit.

Proof of Proposition 0.13. Suppose p is a point on the boundary of a Margulis tube in 
a projective n-manifold M . Then the injectivity radius at p is at least ιn. Suppose the 
core of the Margulis tube is a geodesic γ of length ε.

Then the injectivity radius at points on γ is ε/2. By Proposition 10.1 it follows that 
the distance of p from γ increases to infinity as ε → 0. �
Proof of Theorem 0.14. Let H̃ denote the set of isometry classes of pointed metric spaces 
(Ω, x) with Ω an open properly convex set in RPn and equipped with the Hilbert metric. 
These metric spaces are obviously proper. There is an isometry taking Ω into Benzecri 
position and x to the origin. The set of Benzecri domains is compact in the Hausdorff 
topology and this implies these metric spaces are uniformly totally bounded: that is for 
every ε > 0 there is N > 0 such that every metric space in the family is covered by N
balls of radius ε.

The universal cover of a properly convex projective manifold is isometric to a properly 
convex domain with its Hilbert metric. These domains are proper metric spaces which 
are uniformly totally bounded. Hence the elements of H are uniformly totally bounded 
proper metric spaces. Gromov’s compactness theorem implies that H is precompact. We 
will show that every sequence (Mk, xk) in H has a subsequence which converges to a 
point in H, so H is compact.
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We may isometrically identify the universal cover of Mk with a properly convex do-
main Ωk in Benzecri position so that the origin p ∈ Ωk covers xk. This provides an 
identification of π1(Mk, xk) with a discrete subgroup Γk in PGL(n + 1, R). The set of 
Benzecri domains is compact in the Hausdorff topology therefore there is a neighborhood 
U of the identity in PGL(n + 1, R) such that every element in U−1U which preserves 
some Benzecri domain, Ω, moves p a distance less than ε in Ω. Every non-trivial ele-
ment of Γk moves p a distance at least ε, hence Γk ∩ U = {1}. It follows that for every 
δ ∈ PGL(n + 1, R) that |Γk ∩ δU | ≤ 1, for if α, β ∈ Γk ∩ δU then α−1β ∈ U−1U . This 
implies α−1β = 1.

Let Km be an increasing family of compact subsets with union PGL(n + 1, R). Each 
Km is the union of a finite number, cm say, of left translates of U . It follows that Km

contains at most cm elements of Γk. We may now subconverge so that the Ωk converge 
in the Hausdorff topology to a Benzecri domain Ω∞, and so that for each m the sets 
Km∩Γk converge to a finite set Sm. Then Γ∞ =

⋃
m Sm is a discrete group of projective 

transformation which preserves Ω∞. It is clear that Γ∞ is the limit in the Hausdorff 
topology on closed subsets of PGL(n + 1, R) of the sequence Γn. We obtain a properly 
convex n-manifold M∞ = Ω∞/Γ∞ with basepoint x∞ which is the projection of p. We 
show below that (Mk, xk) subconverges in the based Gromov–Hausdorff topology to 
(M∞, x∞).

Since Ωk converges in the Hausdorff topology to Ω∞, given a compact subset K ⊂ Ω∞
it follows that K ⊂ Ωk for all k sufficiently large. The restriction to K of the Hilbert 
metric on Ωk converges as k → ∞ to the restriction to K of the Hilbert metric on Ω∞. 
Let πk : Ωk −→ Mk and π∞ : Ω∞ −→ M∞ be the natural projections. Let Rk ⊂
πk(K) × π∞(K) be the relation induced by the identity on K. Thus πk(x)Rkπ∞(x)
for all x ∈ K. Since Γk converges in the Hausdorff topology to Γ∞ it follows for each 
y ∈ int(K) the partial orbits K ∩ (Γk · y) converges to K ∩ (Γ∞ · y). The Hilbert metrics 
restricted to K almost coincide, thus for ε > 0 and all k sufficiently large, Rk is an 
ε-relation. This gives Gromov–Hausdorff convergence. �

This gives another proof of the uniform decay of injectivity radius.

10.1. Topological finiteness: the closed case

Recall that if K is a simplicial complex and C ⊂ |K|, then the simplicial neighborhood
of C is the union of all simplices in K which are a face of a simplex that contains some 
point of C. The open simplicial neighborhood U is the interior of this set.

Proof of Proposition 0.10. We show that M has a triangulation with at most s = s(d, ε)
simplices and is therefore homeomorphic to one of a finite number of PL-manifolds.

By decay of injectivity radius, Proposition 10.1, there is δ = δ(ε, d) > 0 such that if 
M satisfies the hypotheses of the proposition, then at every point in M the injectivity 
radius is larger than 2δ.
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By Corollary 6.4 metric balls of radius δ in properly convex domains are uniformly 
bilipschitz to Euclidean balls, so there is r = r(δ) > 0 with r << δ such that every ball 
of radius at most r in a properly convex domain is contained in a projective simplex of 
diameter less than δ/10.

From Theorem 0.14 the manifolds satisfying the hypotheses are uniformly totally 
bounded. Since M has diameter at most d, it follows that there is N = N(r, d) > 0, such 
that M is covered by N balls of radius r and hence by N embedded projective simplices 
each of diameter less than δ/10.

List these simplices and inductively assume there is an embedded simplicial complex 
Km in M which contains subdivisions of the first m simplices in the list, and that the 
number of simplices in Km is bounded above by a function s(m).

For the inductive step, choose a point x in σ = σm+1 and ball neighborhood, B(x, δ). 
This is an embedded ball in M and lifts to an affine patch. The simplices in Km have 
diameter at most δ/10 so this ball contains the simplicial neighborhood of σ in Km. Apply 
Lemma 10.2 below in this affine patch to subdivide σ and Km to produce a simplicial 
complex Km+1 containing subdivisions of σ and Km and with at most s(m +1) simplices. 
Observe that simplices outside the ball are not subdivided, therefore this process is local 
and therefore can be done in M . It follows that M can be triangulated with at most 
s(N) simplices. �
Lemma 10.2. Suppose that K is a finite simplicial complex in Euclidean space, consisting 
of affine simplices. Suppose that σ is an affine simplex in Euclidean space. Let L be the 
simplicial neighborhood of σ in K.

Then there is simplicial complex P containing simplicial subdivisions of K and of σ
such that simplices in K \ L are not subdivided and so that the number of simplices in 
P is bounded in terms of the number of simplices in L. �

The diameter, diam(X) of a metric space X is the supremum of the distance between 
points.

Proposition 10.3 (Margulis tube geometry). Suppose T is a Margulis tube with depth r in 
a strictly convex projective n-manifold M = Ω/Γ.

If dimension n ≥ 4 then diam(∂T ) ≥ r and diam(T ) ≤ 4 · diam(∂T )

Proof. There is a unique closed geodesic γ in T and the depth of T is the minimum 
distance of points on ∂T from γ. By abuse of notation γ ∈ GL(n +1, R) is the generator 
of the fundamental group of T with fixed points a and b in ∂Ω; which correspond to a 
pair of eigenvectors in Rn+1 where the eigenvalues are positive and are of largest and 
smallest modulus.

Since n ≥ 4, the matrix of γ has (at least) one further invariant vector subspace W−, 
either of dimension one or two, so that by adjoining the eigenvectors corresponding to 
a and b, we obtain a γ-invariant subspace W+ of dimension three or four and hence an 
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invariant projective subspace W = P(W+) of dimension two or three which contains the 
axis of γ. Choose any projective hyperplane V of codimension one which contains W .

Since metric balls are strictly convex, there is a nearest point retraction π : Ω −→
V ∩ Ω. Then π−1(πz) is the line through z consisting of the set of points in Ω with the 
property that their closest point to V is πz. This map is distance non-increasing and 
surjective.

Observe that ∂T separates axis(γ) from ∂Ω. Pick some point z ∈ axis(γ) then π−1(z)
is a line which meets ∂T in two points. Let x be one of these points. There is a point 
y ∈ W ∩ ∂T .

Since W is γ-invariant γky ∈ W ≤ V , and it follows that d(x, γk(y)) ≥ r for ev-
ery k. The distance in T between images of x and y is mink d(x, γk(y)). This proves 
diam(∂T ) ≥ r.

The second inequality follows from the following observations. Since π is distance 
nonincreasing diam(γ) ≤ diam(∂T ). Every point in T lies on a vertical line segment � with 
one endpoint on γ and the other on ∂T such that π(�) is a single point. By the triangle 
inequality length(�) ≤ diam(∂T ) +r+diam(γ) ≤ 3 diam(∂T ). Given two points, x, y in T
let �x, �y be the vertical arcs containing them. Choose two shortest arcs α ⊂ γ and β ⊂ ∂T

each connecting �x and �y. Then δ = �x ·α·�y ·β is a loop containing x and y made of these 
four arcs. The length of δ is at most diam(∂T ) +diam(γ) +2(3 diam(∂T )) ≤ 8 diam(∂T ). 
Thus x and y are connected by an arc in this loop of length at most half this number. �

Theorem 10.4 (Volume bounds diameter). For each dimension n ≥ 4 there is a constant 
cn > 0 such that if Mn is either (i) a closed strictly convex real projective manifold or 
(ii) a Margulis tube, then diam(M) ≤ cn · Volume(M). Furthermore, in the closed case, 
diam(M) ≤ 9 diam(thick(M)).

Proof. We begin with the proof in the closed case. Let M = A ∪ B be a thick–thin 
decomposition of M as given by Theorem 0.2, where B = thick(M). Then every point 
in B has injectivity radius at least ιn and A is a disjoint union of Margulis tubes.

A point in a Margulis tube T of M is within a distance at most diam(T ) of a point in 
B. By Proposition 10.3 diam(T ) ≤ 4 ·diam(∂T ) ≤ 4 ·diam(B). Since B is connected any 
two points in M are connected by a path of length at most (4 + 1 + 4) diam(B). Thus 
diam(M) ≤ 9 · diam(B).

Set r = diam(M)/18, then diam(B) ≥ 2r and the injectivity radius at every point 
in B is at least ιn there are r/ιn disjoint embedded balls each of radius ιn centered at 
points in B. It follows from the Benzecri compactness theorem that the volume of a ball 
of radius R in an n-dimensional properly convex set is bounded below by v = v(n, R). 
Set v = v(n, ιn). The volume of M is at least the sum of the volumes of these balls 
and this is bounded below by (r/ιn) · v. Then cn = v−1ιn satisfies the conclusion of the 
theorem.
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In the second case when M = T is a Margulis tube, the balls we exhibit are centered 
on points of ∂T and therefore not fully contained in T . To remedy this, use a slightly 
smaller Margulis tube T ′ ⊂ T . We leave the details to the reader. �

Combining Theorem 10.4 and Proposition 0.10 gives:

Theorem 10.5. For fixed n ≥ 4 and K, there are only finitely many homeomorphism 
types of closed, strictly convex real projective n-manifolds of volume < K.

Corollary 10.6. For fixed n ≥ 5 and K, there are only finitely many diffeomorphism types 
of closed, strictly convex real projective n-manifolds of volume < K.

Proof. For n ≥ 5, it is classical that a given closed topological n-manifold has only 
finitely many smooth structures. For example, by Kirby–Siebenmann there are only 
finitely many PL-manifolds in each homeomorphism class and by Milnor–Kervaire–
Hirsch–Cairns, each such structure gives rise to a finite number of smooth structures 
(see [1] Chapter 7). �
10.2. Topological finiteness: the general case

Here is an outline of the proof of topological finiteness of manifold with volume at 
most V in the general case of a strictly convex manifold with cusps.

Cusps are products, so it suffices to show there are finitely many topological types 
for the compact manifold obtained by removing the cusps. To accomplish this we take 
a triangulation using a bounded number of simplices of a submanifold that contains
the thickish part. The main issue is that the boundary of the thinnish part is defined 
geometrically and might behave badly in a given triangulation.

Using Proposition 8.6 we can replace the thinnish part by finitely many disjoint convex 
submanifolds, namely horocusps and tubes which are equidistance neighborhoods of 
closed geodesics. The injectivity radius on the boundary of these convex manifolds is 
bounded below in terms V . This is because the injectivity radius on the boundary of 
the thin part is at least ιn and combined with the upper bound on volume this bounds 
above the diameter of each component of the boundary of the thin part. In what follows 
we use these convex thin manifolds and refer to their complement as the thick part.

The volume bound now provides an upper bound on the diameter of the thick part 
in all dimensions. As in the closed case it follows that there is a simplicial complex K
with a number of simplices bounded by some function of the volume, so that |K| is a 
submanifold which contains the thick part. Now we observe the following: Using only the 
fact that the thin part is convex it follows from Lemma 10.8 that there is a subcomplex of 
the second derived subdivision K ′′ of K which is homeomorphic to the compact manifold 
obtained by removing the interior of thin part. This gives finitely many topological types 
for the thick part in all dimensions.
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In dimension at least 4, a volume bound gives an upper bound on the diameter of 
Margulis tubes, and thus a lower bound on their injectivity radius. We can then modify 
the above argument so that K contains the Margulis tubes as well, omitting only the 
cusps. This establishes there are only finitely many topological types of finite volume 
strictly convex manifold in dimensions other than 3.

The reason that dimension 3 is different is that the group of self homeomorphisms 
mod homotopy of S1 × Sn is finite unless n = 1, see Gluck [31] for n = 2 and Browder 
[12] for n ≥ 5. Thus, except in this dimension, there are only finitely many ways to 
attach a Margulis tube to the thick part. Of course in dimension 3 there are known to 
be infinitely many closed hyperbolic 3 manifolds with volume less than 3 and these are 
strictly convex. This completes the outline.

Remark. Some caution is required when there are cusps in view of the following: Sup-
pose M is a manifold with a boundary component T . One might have a non-trivial 
h-cobordism N ⊂ M with ∂N = T ∪ T ′ and with T ′ homeomorphic to T . Thus it is 
not enough to prove there are only finitely many possibilities for M \N unless one also 
knows there are only finitely many possibilities for N and for the attaching map.

We begin with some definitions. Suppose σ1 is a face of a simplex σ. The complemen-
tary face σ2 to σ1 is the simplex spanned by the vertices of σ not in σ1. Thus σ = σ1 ∗σ2

is the join of σ1 and σ2. This gives a line-bundle structure on |σ| \ (|σ1| ∪ |σ2|) which we 
refer to as the simplex line-bundle for (σ, σ1).

A fiber is the interior of a straight line segment connecting x1 ∈ σ1 to x2 ∈ σ2. We 
orient these lines so they point towards σ1. This structure is completely determined by 
the choice of σ1 and σ. Observe that if τ is a face of σ and which intersects σ1 but is not 
contained in σ1 then the simplex line bundle for (τ ∩ σ, τ ∩ σ1) is the restriction of the 
simplex line bundle for (σ, σ1).

A subcomplex L of a simplicial complex K is called full if for every k > 0, L contains 
every k-simplex σ in L having the property that ∂σ ⊂ L.

Lemma 10.7. Suppose that L is a full subcomplex of a simplicial complex K. Let U be 
the open simplicial neighborhood of L in K.

Then U \ |L| is a line bundle whose restriction to each simplex in U is a simplex line 
bundle. This bundle is a product.

Proof. Suppose that σ is a simplex in K which intersects U \ |L|. Since U is in the open 
simplicial neighborhood σ contains a point of L. The condition that L is a full subcomplex 
implies that σ1 = σ ∩ L is a simplex. Since by hypothesis σ is not a simplex of L, it 
follows that σ1 �= σ. This determines a simplex line bundle for (σ, σ1). As remarked 
above, these bundles are compatible on intersections, therefore this gives a global line 
bundle. The lines are oriented pointing towards L and so the bundle is a product. �
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In what follows we interpret the interior of a 0-simplex to be itself. A derived subdi-
vision, K ′, of a simplicial complex K is determined by a choice, for each simplex σ of 
K, of a point σ̂, called the barycenter, in the interior of σ. Suppose that C is a subset of 
|K|. A derived subdivision of K is said to be adapted to C if it satisfies the condition: for 
every simplex σ of K if C contains a point in the interior of σ then the barycenter σ̂ is 
in the interior of C. Such a subdivision exists iff whenever the interior of a simplex of K
contains a point of C then it also contains a point in the interior of C. If K ′′ is a derived 
subdivision of K ′ (as above) adapted to C we say K ′′ is a second derived subdivision of 
K adapted to C.

A subset C ⊂ |K| of the underlying space of a simplicial complex K is called locally 
convex if C ∩σ is empty or convex for every simplex σ in K. It is strongly locally convex
if, in addition, whenever C ∩σ is not empty, then C ∩ σ contains an open subset of σ. It 
follows that there is a derived subdivision, K, adapted to C and, moreover, C is strongly 
locally convex relative to K ′.

Observe that if C1 and C2 are both strongly locally convex and no simplex of K
contains points in both C1 and C2 then C1 ∪ C2 is strongly locally convex.

Lemma 10.8. Suppose that M is a compact n-manifold triangulated by a simplicial com-
plex K and that C is a compact, strongly locally convex submanifold of M which is a 
neighborhood of ∂M . Let K ′ and K ′′ be a derived and second-derived subdivision of K
adapted to C. Let L be the subcomplex of K ′′ consisting of those simplices contained 
entirely in C.

Then there is a homeomorphism of M to itself taking C to |L|.

Proof. Let ∂′C = ∂C \ ∂M . We will show that the closure of C \ |L| is homeomorphic 
to a collar I × ∂′C in C of ∂′C. Since ∂′C is bicollared in M this implies the result.

Let W be the subcomplex of K ′ consisting of all simplices which are entirely contained 
in C. Since C is locally convex, W is a full subcomplex. Furthermore, W is contained in 
the interior of C because each vertex of W is the barycenter of a simplex in K and these 
barycenters are in the interior of C. A simplex of W is the convex hull of its vertices and 
therefore contained in the interior of C.

Let U be the open simplicial neighborhood of W in K ′. Then U contains C. This is 
because if x is a point in C then there is a simplex σ in K whose interior contains x. 
Since K ′ is adapted to C it follows that the barycenter σ̂ is in C and therefore in W . 
The interior of σ is the open star of σ̂ in K ′ which is in U . Thus x is in U .

By Lemma 10.7 U \ |W | is a line bundle. Now U contains C and W is contained in 
the interior of C hence ∂′C ⊂ U \ |W |.

Each of the lines, �, in the line bundle is the interior of a straight line with one 
endpoint, x, in W and the other, y, in the boundary of the closure of U . Thus x ∈ int(C)
and y /∈ C and it follows that � contains a point of ∂′C. A line segment in a convex 
set is either contained in the boundary of the convex set, or else contains at most one 
boundary point. Thus � contains a unique point of ∂′C. Since K ′′ is a derived subdivision 
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of K ′ adapted to C it follows that L is the simplicial neighborhood of W in K ′′. Hence 
� also meets ∂|L|. By considering the second derived subdivison of a simplex one sees 
that � also meets ∂|L| in a single point. It follows that the closure of C \ |L| is a product 
I × ∂′C as claimed. �

The proof of the remaining topological finiteness results as outlined above requires 
only one more ingredient: To apply Lemma 10.8 we must ensure that the intersection 
of the thin part of M with |K| is strongly locally convex. To do this we replace C by a 
convex simplicial complex and then move K into general position with respect to C:

We claim that there is a homeomorphism arbitrarily close to the identity of M to 
itself which takes the thin part of M to the underlying space of a simplicial complex, L, 
such that each component of C = |L| is convex. We then move K into general position 
with respect to L. This implies C is strongly locally convex relative to K.

Let A ⊂ M be the convex-thin part given by Proposition 8.6. We replace each com-
ponent of A by a slightly larger convex simplicial neighborhood to obtain C, possibly 
triangulated with an extremely large number of simplices. Since A and C are both convex 
there is a homeomorphism of M to itself which is the identity outside a small neighbor-
hood of C and takes C onto A.

We can assume the simplices of K are small enough that no simplex intersects two 
components of C. Now use general position to move K so that each component of C is 
strongly locally convex with respect to K.

11. Relative hyperbolicity

A geodesic in a metric space is a rectifiable path such that the length of every suffi-
ciently short subpath equals the distance between its endpoints. A metric space X is a 
geodesic metric space if every pair of points is connected by a geodesic. A triangle in a 
metric space consists of three geodesics arranged in the usual way.

A triangle is δ-thin if every point on each side of the triangle is within a distance δ
of the union of the other two sides. A triangle is called δ-fat if it is not δ-thin. If X is a 
locally compact, complete geodesic metric space and every triangle in X is δ-thin then 
X is called δ-hyperbolic. This property is preserved by quasi-isometries.

These ideas can be applied to a properly convex domain with the Hilbert metric. Some 
care is required with terminology in view of the fact that if Ω is strictly convex then 
geodesics are precisely projective line segments, otherwise if Ω is only properly convex, 
there may be geodesics which are not segments of projective lines, and triangles with 
geodesic sides which are not planar. A straight triangle in projective space is a disc in a 
projective plane bounded by three sides that are segments of projective lines. A straight 
triangle is δ-thin if its boundary is δ-thin. In view of this the following is re-assuring:

Lemma 11.1 (Straight-thin implies thin). If every straight triangle in a properly convex 
domain Ω is δ-thin, then Ω is strictly convex.
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Fig. 10. Comparing Ω to Bt and Bs.

Proof. Suppose that there is a line segment � in the boundary of Ω. Choose a sequence 
xn ∈ Ω which converges to a point in the interior of �. It is easy to see that (a sub-triangle 
in Ω of) the straight triangle Tn that is the convex hull of xn and � becomes arbitrarily 
fat as n → ∞, which contradicts the hypothesis that Ω is δ-thin. �
Proposition 11.2 (Maximal cusps bilipschitz hyperbolic). Suppose that C is a maximal 
rank cusp in a strictly convex manifold of finite volume.

Then C is bilipschitz homeomorphic to a cusp of a hyperbolic manifold. In particular 
the universal cover of C is δ-hyperbolic.

Proof. By Theorem 0.5, maximal rank cusps are hyperbolic, so that the cusp C can be 
viewed as a submanifold of Ω/Γ with Γ < PO(n, 1)p < PO(n, 1), where PO(n, 1)p is the 
group of parabolics that fixes a point p ∈ ∂Ω. Let C̃ denote the preimage of C in Ω. By 
Theorem 5.7 p is a round point of Ω so there is a unique supporting hyperplane H to Ω
at p.

Parabolic coordinates centered on (H, p) give an affine patch An. Since Γ ≤ SL(H, p), 
the round (open) ball, Hn, which is preserved by PO(n, 1) is contained in this affine 
patch. Moreover, this patch is the union of horoballs Bt for PO(n, 1)p. It is first shown 
that there are two of these horoballs such that Bs ⊂ C̃ ⊂ Ω ⊂ Bt.

Refer to Fig. 10 (which is drawn in a different affine patch). Because the cusp has 
maximal rank, ∂Ω\p contains a compact fundamental domain K for the action of Γ and 
K is contained in Bt for some t. It follows that Bt contains the Γ orbit of K and thus 
contains Ω. Similarly there is a compact fundamental domain K ′ for the action of Γ on 
∂C̃. Then for some s the horoball Bs is disjoint from K ′ and hence from ∂C̃. This proves 
the inclusions.

The Hilbert metric on Bt is isometric to hyperbolic space Hn. Using the above 
parabolic coordinates it is easy to see that the Hilbert metrics on Ω and Bt restricted to 
Bs are bilipschitz. Since p is a bounded parabolic fixed point, there are a constant k and 
a maximal rank cusp C ′ ⊂ C such that C̃ ′ ⊂ Bs ⊂ C̃ and dΩ(x, C ′) ≤ k for all x ∈ C. 
Thus C is bilipschitz homeomorphic to Bs/Γ for both Hilbert metrics. Since Hn is δ-thin 
and this property is preserved by quasi-isometry, the result follows. �
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Remark. The metric on C is asymptotically hyperbolic in the sense that if Bs is suffi-
ciently small the two metrics on Bs are (1 + ε)-bilipschitz.

There are several equivalent definitions of the term relatively hyperbolic. We will use 
Gromov’s original definition [35,13] in the context of a properly convex projective man-
ifold, M , of finite volume which is the interior of a compact manifold whose ends are 
cusps.

Recall that each end of M is a horocusp which is covered by a family of disjoint 
horoballs in the universal cover. Part of Gromov’s definition requires the ends of M have 
this structure. Then, following Gromov, one says that π1M is relatively hyperbolic relative 
to the collection of subgroups {π1A} (where A ranges over the boundary components of 
M) if the following conditions are satisfied:

• M̃ is δ-hyperbolic
• M is quasi-isometric to the union of finitely many copies of [0, ∞) joined at 0.

By Proposition 11.2, each cusp in M is bilipschitz to a maximal hyperbolic cusp. The 
latter is foliated by compact horomanifolds (intrinsically Euclidean) whose diameter 
decreases as one goes into the cusp. In particular such a cusp is quasi-isometric to [0, ∞). 
Now M with the cusps deleted is compact and connected thus quasi-isometric to a point. 
It follows that this second condition is always satisfied in our context, so that for such 
manifolds:

(�) M̃ is δ-hyperbolic implies π1M is relatively hyperbolic.

Following Benoist, a properly embedded triangle or PET in a convex set Ω is a straight 
triangle Δ with interior in Ω and boundary in ∂Ω. A hex plane is any metric space 
isometric to the metric in example E(ii) of Section 2.

If C is a circle of maximum radius in a straight triangle, a center of C is called an 
incenter and the radius of C is the inradius. The following is an easy exercise:

Lemma 11.3. A straight triangle T in a properly convex domain Ω has a unique incenter. 
If T is δ-fat the inradius is at least δ/2.

Lemma 11.4 (Fat triangle limit is PET). Suppose that Ω is properly convex and Tn is 
a sequence of straight triangles in Ω. Suppose that xn ∈ Tn and d(xn, ∂Tn) → ∞ and 
xn → x ∈ Ω.

Then there is a subsequence of the triangles which converges (in the Hausdorff topology 
on closed subsets of RPn) to a PET in Ω containing x.
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Proof. The sequence of straight triangles has a subsequence converging to a (possibly 
degenerate) straight triangle T containing x. Since d(xn, ∂Tn) → ∞ the distance of x
from ∂T is infinite. Hence ∂T ⊂ ∂Ω. �

Combining this with Benzecri’s compactness theorem gives:

Lemma 11.5. Given a sequence Tn ⊂ Ωn of straight triangles in properly convex domains 
for which xn ∈ Tn and d(xn, ∂Tn) → ∞.

Then after taking a subsequence and applying suitable projective transformations:

• (Ωn, Tn, xn) → (Ω, T, x) in the Hausdorff topology on subsets of RPn,
• Ω is properly convex,
• T is a PET in Ω.

This implies that inside a large circle centered at a point in the interior of any straight 
triangle far from the boundary, the metric is very close to the hex metric; for if this was 
not the case, we could find a sequence of triangles and domains (Ωn, Tn, xn) with the 
property that d(xn, ∂Tn) → ∞, but the metric on large balls about xn does not become 
close to the hex metric. We then apply the lemma and obtain a contradiction.

Notice that such a large circle contains a very fat straight triangle.

Theorem 11.6. Suppose that M = Ω/Γ is a properly convex complete projective manifold 
of finite volume which is the interior of a compact manifold N and the holonomy of each 
component of ∂N is parabolic. Then the following are equivalent:

(1) (Ω, dΩ) is δ-hyperbolic,
(2) Ω is strictly convex,
(3) Ω does not contain a PET,
(4) Ω does not contain a PET which projects into a compact submanifold B of M ,
(5) π1M is hyperbolic relative to ∪π1A as A ranges over components of π1N ,
(6) ∂Ω is C1.

Proof. Let A be a component of ∂N and Γ the holonomy of π1A. Then Ω/Γ is a full cusp. 
It has maximal rank because A is compact. Hence each end of M is a maximal rank cusp. 
Moreover π1A is a maximal parabolic subgroup of π1M . Parabolicity is preserved under 
taking the dual representation. Since M is of finite volume, so is M∗ by Corollary 6.7. 
It follows that M satisfies the hypotheses iff M∗ does. Moreover condition (5) holds for 
M iff it holds for the dual manifold M∗.

That (1) =⇒ (2) follows from Lemma 11.1. It is clear (2) =⇒ (3) =⇒ (4).
For (4) =⇒ (1), assume (1) is false. Then by Lemma 11.1 for each n > 0 there is an 

n-fat straight triangle Δn in Ω. Let Dn denote the disc in Δn of radius n/2 center at 
the incenter xn. Let π : Ω −→ M be the projection. By hypothesis M is the union of 
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a compact submanifold, B, and finitely many cusps. Furthermore, every cusp is covered 
by a horoball which is δ-thin.

We claim that B may be chosen so that π(Dn) ⊂ B for all n. For otherwise there is a 
subdisc D′

n ⊂ Dn with radius rn → ∞ and π(D′
n) eventually leaves every compact set. 

After taking a subsequence π(D′
n) are all contained in the same cusp C of M . There is 

an r′n-fat triangle Δ′
n ⊂ D′

n and r′n → ∞. Choose a horoball C̃ which is a component 
of π−1C. A translate of Δ′

n by some element of Γ is contained in C̃. Since r′n → ∞ this 
contradicts that C̃ is δ-thin by Proposition 11.2, proving the claim.

Since B is compact we may choose γn ∈ Γ so that γn(xn) converges to a point x∞ ∈ Ω
and γn(Dn) converges in the Hausdorff topology on closed subsets of RPn to a planar 
disc D∞ with interior in Ω. But D∞ is also the Hausdorff limit of the sequence of straight 
triangles γn(Δ′

n) so D∞ is a PET and this implies (4) is false. This completes the proof 
that the first 4 conditions are equivalent.

Condition (�) above shows (1) =⇒ (5).
For (5) =⇒ (4) assume (4) is false, so that Ω contains a PET Δ, which projects into 

B. It follows from Druţu [29] Theorem 1.4 and condition (β3) of Theorem 1.6 that if (5) 
were true then every quasi-isometric embedding of a Euclidean plane into B̃ lies within 
a bounded neighborhood of one boundary component of B̃. This would imply Δ lies 
within a bounded distance of a horoball covering a cusp. By Proposition 11.2 a horoball 
covering a cusp is δ-thin. A K-neighborhood of such a horoball is quasi-isometric to the 
horoball and therefore δ′-thin. Therefore Δ cannot be in this neighborhood, so (5) is 
false.

By duality (6) ⇔ (Ω∗ is strictly convex). Whence (6) ⇒ (Ω∗ is strictly convex) ⇒
π1(M∗) is relatively word hyperbolic using (2) ⇒ (5) for M∗. Since π1(M∗) ∼= π1(M)
this shows (6) ⇒ (5). For the converse, (5) ⇒ π1(M∗) is relatively word hyperbolic hence 
Ω∗ is strictly convex by (5) ⇒ (2) hence Ω is C1 by duality. Thus (5) ⇒ (6). �
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