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A GENERALIZATION OF THE EPSTEIN-PENNER

CONSTRUCTION TO PROJECTIVE MANIFOLDS

D. COOPER AND D. D. LONG

(Communicated by Daniel Ruberman)

Abstract. We extend the canonical cell decomposition due to Epstein and
Penner of a hyperbolic manifold with cusps to the strictly convex setting.

1. Introduction

One of the powerful constructions in theory of cusped hyperbolic n-manifolds is
a cellulation constructed by Epstein and Penner in [4], which in the particular case
that the manifold has one cusp, gives rise to a canonical cell decomposition. In this
note we extend their results to the case of strictly convex real projective manifolds.

The proof of [4] employs Minkowski space R
n,1 and shows that if p ∈ R

n,1 is a
point on the lightcone that corresponds to a parabolic fixed point P(p) ∈ RPn, then
p has a discrete orbit. The convex hull of this orbit is an infinite sided polytope in
Minkowski space that is preserved by the group. The boundary of the quotient of
this polytope by the group gives the cell decomposition. This approach uses in an
essential way the quadratic form β = x2

1 + · · · + x2
n − x2

n+1 that defines O(n, 1) to
identify Minkowski space with its dual. This gives a bijection between points on
the lightcone t · p with t > 0 in the direction of P(p) and horoballs B(t) centered
on P(p). For t sufficiently large this horoball covers an embedded cusp, so the orbit
consists of disjoint horoballs, which implies the orbit of p is discrete.

In this paper we use a Vinberg hypersurface to associate to p a horoball in the
universal cover of the dual projective manifold that covers the dual cusp.

In the hyperbolic case in dimension 2 one obtains a cell decomposition of moduli
space from the result of Epstein and Penner, [4]. For finite volume hyperbolic
structures, Mostow-Prasad rigidity implies that in dimension at least 3 the moduli
space is a point. No similar result holds in the strictly convex setting: there are
examples of one cusped 3-manifolds with families of finite volume strictly convex
projective structure. It can be shown that the results of this paper lead to a
decomposition of the moduli space of such structures, but we do not know if the
components of this decomposition are cells.

Background for theory of cusped projective manifolds can be found in [2]. We
summarize the most important points here.
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4562 D. COOPER AND D. D. LONG

A subset Ω ⊂ RPn is properly convex if it is the interior of a compact convex
set K that is disjoint from some codimension-1 projective hyperplane and strictly
convex if in addition K contains no line segment of positive length in its boundary.

A strictly convex real projective n-manifold is M = Ω/Γ where Ω ⊂ RPn is
strictly convex and Γ ∼= π1M is a discrete group of projective transformations that
preserves Ω and acts freely on it. Since Ω is properly convex, it has two connected
preimages in the universal covering of RPn and we may (and will) lift Γ to a
subgroup of SL(Ω) which is the group of matrices of determinant ±1 that preserve
one of these components. The Hilbert metric on Ω is invariant for the action of Γ
and defines a Finsler metric, and thus a notion of volume, on M . All projective
manifolds in this note will be assumed to have finite volume.

An element of SL(Ω) is parabolic if all its eigenvalues have modulus 1 and it is
not semisimple.

A maximal cusp in M = Ω/Γ is a connected submanifold, B, such that ∂B =

M \ B ∩ B is compact and

C1 Every component B̃ of the preimage of B in Ω has strictly convex interior.
C2 p = cl(B̃) ∩ ∂Ω is a single point called a parabolic fixed point.

C3 The stabilizer ΓB̃ ⊂ Γ of B̃ fixes p.

C4 There is a unique projective hyperplane H ⊂ RPn with p = H ∩ Ω.
C5 Every non-trivial element of ΓB̃ is parabolic and preserves H.
C6 ΓB̃ is conjugate into PO(n, 1) so contains Z

n−1 as a subgroup of finite
index.

It is proved in [2] that a strictly convex finite volume real projective manifold
has finitely many ends and each is a maximal cusp. Such cusps have the maximal
virtual cohomological dimension.

We can identify a properly convex domain Ω ⊂ RPn with a subset Ω of some
affine hyperplane in R

n+1. Then CΩ = (R>0) · Ω ⊂ R
n+1 is an open cone based

at 0 and P(CΩ) = Ω ⊂ RPn where P : Rn+1 \ 0 −→ RPn denotes projectivization.
The (positive) lightcone of Ω is the cone L = C(∂Ω). It is the subset of the frontier
of CΩ obtained by deleting 0 and P(L) = ∂Ω.

Theorem 1.1. Suppose M = Ω/Γ is a strictly convex real projective n-manifold
that contains a maximal cusp B, and that p ∈ L is a point in the lightcone of Ω
such that P(p) ∈ ∂Ω is the parabolic fixed point of π1B. Then the Γ-orbit of p is a
discrete subset of Rn+1.

This has as an immediate consequence the existence of ideal cell decompositions:

Corollary 1.2. Suppose M = Ω/Γ is a strictly convex real projective n-manifold
of finite volume with at least one (maximal) cusp and Q ⊂ ∂Ω is the set of fixed
points of parabolics in Γ.

Then there is a Γ-invariant tessellation of Ω ∪ Q by convex polytopes, each of
which is the convex hull of a finite subset V ⊂ Q. The interiors of the cells of
dimension greater than zero project to a cell decomposition of M .

To prove this, one chooses a Γ-invariant collection P ⊂ L of points in the light-
cone, one in the direction of each parabolic fixed point. If there are k cusps this
amounts to choosing k positive reals. By Theorem 1.1, P is a discrete set. The
closed convex hull of P is a Γ-invariant set C = C(Γ,P) in R

n+1. We show that
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EPSTEIN-PENNER CONSTRUCTION TO PROJECTIVE MANIFOLDS 4563

C has polyhedral boundary. The image under projectivization decomposes Ω ∪ Q
into convex cells.

Clearly this decomposition is unchanged by uniformly scaling P, and so the k
cusps result in a family of cell decompositions parameterized by a point in the
interior of a simplex in RP k−1. In the case that the manifold has one cusp, this
decomposition is canonical:

Corollary 1.3. Suppose M = Ω/Γ is a strictly convex real projective n-manifold
with finite volume and that contains a unique (maximal) cusp B.

Then the cell decomposition obtained from C(Γ,P) is independent of the choice
of P and thus canonical.

It follows immediately that the isometry group of a one-cusped strictly convex
real projective n-manifold with finite volume preserves this cell decomposition, and
is finite.

Remark. We refer the reader to [1] §1.7 for the (technical, but standard) details
concerning the continuous variation of geometric structures. One can think of
this as variations of the holonomy representation or of developing maps with an
appropriate topology. Then with appropriate hypotheses, one can show that C(Γ)
can be chosen to vary continuously with Γ. In particular, if all the cells are ideal
simplices, then the combinatorics of the cell decomposition is locally constant.

Let V be a real vector space of dimension (n+1) with dual V ∗ and P : V \0 −→
PV the projectivization map. In the following discussion Ω is a properly convex set
in PV ; we do not require the extra hypothesis of being strictly convex.

The relation between a vector space and its dual gives rise to projective duality.
Given a properly convex Ω ⊂ P(V ) the dual cone CΩ∗ ⊂ V ∗, is the interior set
of linear functionals which take strictly positive values on CΩ. The dual domain
Ω∗ = P(CΩ∗) ⊂ P(V ∗) is also properly convex. If Ω is strictly convex, then so is
Ω∗. The dual lightcone L∗ of Ω is the lightcone of Ω∗.

The dual action of an element γ ∈ PGL(V ) on V ∗ is given by γ∗(φ) = φ ◦ γ−1.
A choice of basis for V gives isomorphisms V ∼= R

n+1 ∼= V ∗ and PGL(V ) ∼=
PGL(n+1,R) ∼= PGL(V ∗). Using these identifications the dual action of PGL(V )
on V ∗ then corresponds to the Cartan involution θ(A) = (A−1)t on PGL(n+1,R).
If Γ ⊂ PGL(n + 1,R), the dual group is Γ∗ = θ(Γ).

In this way, (see [2]) we define the dual manifold of M = Ω/Γ to be M∗ = Ω∗/Γ∗.
If p ∈ ∂Ω is the parabolic fixed point of a maximal cusp B ⊂ M by (C4) there is a
unique supporting hyperplane H to Ω at p. The dual parabolic fixed point [φ] ∈ ∂Ω∗

is defined by P(kerφ) = H. The dual action of π1B fixes [φ] and there is a dual
cusp B∗, well defined up to the equivalence relation generated by inclusion. Thus
φ is a point on the dual lightcone. Below we show that level sets of φ determine a
type of horosphere in Ω centered at p.

The hyperboloid model of hyperbolic space is a certain level set of the quadratic
form β. In general the holonomy of a strictly convex manifold does not preserve
any non-degenerate quadratic form but it does preserve a certain convex function
which has levels sets called Vinberg hypersurfaces [6] that provide a generalization
of the hyperboloid. We briefly recall the construction here. Let dψ be a volume
form on V ∗. Then the characteristic function f : CΩ −→ R is defined by

f(x) =

∫
CΩ∗

e−ψ(x)dψ.
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4564 D. COOPER AND D. D. LONG

This is real analytic, convex, and satisfies f(tx) = t−nf(x) for t > 0. For each t > 0
the level set St = f−1(t) is called a Vinberg hypersurface and is convex. These sets
foliate CΩ and are permuted by homotheties fixing the origin. For example, the
hyperboloids z2 = x2 + y2 + t are Vinberg hypersurfaces in the cone z2 > x2 + y2.
The surfaces St are all preserved by SL(Ω), (we recall that this is the group of
matrices of determinant ±1 that preserve Ω) and in particular by Γ. Henceforth,
we fix some choice S := S1 which we refer to as the Vinberg surface for Ω. It is a
substitute for the hyperboloid model of hyperbolic space.

Let π : S −→ Ω be the restriction of the projectivization map. A point, φ ∈ L∗,
in the dual lightcone of Ω determines a horofunction

hφ = φ ◦ π−1 : Ω −→ R.

Since φ ∈ L∗ it follows that kerφ contains a ray (0,∞) · v ⊂ L in the lightcone.
We show below that the sublevel set B(φ, t) = h−1

φ (0, t] is convex. This is called
a horoball associated to φ. It is in general different from the algebraic horoballs
defined in [2]. The boundary

S(φ, t) = ∂B(φ, t) = h−1
φ (t)

of a horoball is called a horosphere, and is analytic.

Lemma 1.4. Suppose Ω ⊂ RPn is properly convex and φ is a point in the dual
lightcone. Then the horofunction hφ : Ω −→ (0,∞) is a smooth surjective submer-
sion. Hence for all t > 0 the horoball B(φ, t) is non-empty and convex.

Proof. Here is an overview of the proof: The implicit function theorem and smooth-
ness of f imply hφ is smooth. Referring to the figure, notice the subset of Rn+1

above S, which we denote by W = f−1(0, 1], is convex. It follows that Xt =
W ∩ φ−1(0, t] is convex, since it is the intersection of convex sets. Hence B(φ, t) =
π(Xt) ⊂ Ω is convex.

We claim that for t > 0 it is not empty. This follows from the fact that if v is a
point in the lightcone of Ω that is also in kerφ, then the vertical distance δ(t · v)
between S and t · v goes to zero as t → ∞. This is shown by direct computation
in the particular case that Ω is an open simplex, and the general result follows by
a comparison argument.

Here are the details:
To begin with, consider the special case that CΩ is the positive orthant in R

n+1,
which is the cone on an n-simplex Ω = σ. In an appropriate basis, the group SL(σ)
contains positive diagonal matrices of determinant 1. The orbits are the Vinberg
hypersurfaces x0 · x1 · · ·xn = c for each c > 0. Each hypersurface is asymptotic to
the ray (0,∞) · v which proves the result in this special case.

In the general case there is a simplex σ with interior in Ω and v as a vertex. Then
C(σ) ⊂ CΩ, and it follows from the definition that fC(σ) ≥ fCΩ|C(σ), which implies
that the Vinberg surface for Ω lies below that for σ along the direction given by v.
The claim now follows from the special case.

It follows from this, and the convexity of S, that S is never tangent to a level
set of kerφ , hence hφ is a submersion. �

It is immediate from the definition of horoball that if γ ∈ SL(Ω) and φ is in the
dual lightcone, then

γ(B(φ, t)) = B(γ∗φ, t).
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Figure 1. Vinberg hypersurface inside the lightcone

Thus if γ∗φ = φ, then the horoball B(φ, t) is preserved by γ. If B is a maximal
cusp of M , then π1B preserves horoballs corresponding to the unique supporting
hyperplane at the parabolic fixed point. The next result is that a sufficiently small
such horoball projects to an (embedded) cusp in M called a horocusp. Recall that
a subset U ⊂ Ω is precisely invariant under a subgroup G ⊂ π1M if every element
of G preserves U and every element of π1M \ G sends U to a subset disjoint from
U .

Corollary 1.5. Suppose M = Ω/Γ is a properly convex manifold and B ⊂ M is a
maximal cusp with holonomy ΓB ⊂ Γ and with dual Γ∗

B that fixes the dual parabolic
fixed point [φ] ∈ ∂Ω∗.

Then there is t > 0 such that the horoball B(φ, t) is precisely invariant under
ΓB ⊂ Γ. For sufficiently small t > 0 the manifold B′ = B(φ, t)/ΓB projects injec-
tively onto a cusp B′ ⊂ B ⊂ M and B \B′ is bounded. The horofunction hφ covers
a proper smooth submersion h : B′ −→ (0, t]. The sublevel sets are convex and the
level sets, called horomanifolds, are compact and give a product foliation.

Proof. Let H be the supporting hyperplane to Ω at the parabolic fixed point for
ΓB. By (C3) H is preserved by ΓB. There is a codimension-1 subspace V ⊂ R

n+1

with P(V ) = H. Then V = kerφ iff φ is a point on the dual lightcone L∗ such that
[φ] ∈ ∂Ω∗ is the parabolic fixed point for Γ∗

B.
The dual of a parabolic matrix is also parabolic, thus φ ∈ V ∗ is an eigenvector

with eigenvalue 1 for every element of Γ∗
B. This means φ is a ΓB-invariant function

on V , thus hφ covers a well-defined function h : Ω/ΓB −→ (0,∞). This is a
submersion because hφ is, hence the level sets Ht = h−1(t) are a foliation of B′.

Clearly π1Ht
∼= π1B and, since π1B is a maximal cusp, by (C6) π1B has (virtual)

cohomological dimension (n−1), and it follows that each horomanifold is compact.
There is a transverse foliation by lines going out into the cusp, and these foliations
give a product structure on B′. Convexity of sublevel sets follows from convexity
of horoballs. �

Proof of Theorem 1.1. We will prove the theorem for the dual manifold M∗ =
Ω∗/Γ∗. By (0.15) and (6.7) of [2] M∗ is a strictly convex projective manifold with

Licensed to Univ of Calif, Santa Barbara. Prepared on Fri Jun 17 16:24:50 EDT 2016 for download from IP 128.111.64.145.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



4566 D. COOPER AND D. D. LONG

finite volume. The result follows using the canonical isomorphism between a finite
dimensional vector space and its double dual. As before we write V = R

n+1.
Recall that B is a maximal cusp, and let φ ∈ L∗ be a point on the dual lightcone

fixed by the dual action of π1B. Let γ∗
n ∈ Γ∗ be a sequence such that γ∗

nφ = φ◦γ−1
n

converges to some ψ ∈ V ∗. We must show this sequence is eventually constant. If
not, we may assume γ∗

nφ are all distinct. Clearly ψ ∈ L∗ ∪ 0.
By Corollary 1.5 there is t > 0 such that B contains the horocusp B′ =

B(φ, t)/π1B. Choose w ∈ CΩ with ψ(w) < t. Since γ∗
nφ → ψ, then for all n

sufficiently large γ∗
nφ(w) < t. Since ψ ∈ L∗ there is v ∈ L with ψ(v) = 0 thus

ψ(w+s ·v) = ψ(w). From the formula for the characteristic function f for Ω we see
that f(w+s ·v) → 0 as s → ∞ (also see Figure 1), so for s sufficiently large w+s ·v
is above the Vinberg hypersurface, which implies w+s ·v ∈ γnB(φ, t)∩γn+1B(φ, t).
Since B′ is precisely invariant for π1B ⊂ π1M it follows that γ−1

n+1γn ∈ π1B. But
φ is preserved by every element of this group thus γ∗

nφ = γ∗
n+1φ which is a contra-

diction. �
The next result is well known, but we include it for the convenience of the reader.

Lemma 1.6 (Orbits are dense). Suppose M = Ω/Γ is a strictly convex projective
manifold with finite volume. Then every Γ orbit is dense in ∂Ω.

Proof. Given a point b ∈ ∂Ω define Ω− to be the intersection with Ω of the closed
convex hull of Γb. Since Ω is strictly convex, Γb is dense in ∂Ω iff Ω = Ω−. The set
Ω− is convex and Γ invariant. The projection, N = Ω−/Γ, of Ω− is a submanifold
of M . Since M is finite volume and strictly convex, it is the union of a compact
set and finitely many cusps, [2]. We replace Ω− by a K-neighborhood with K so
large that the complement of N is now a subset of the cusps of M .

Suppose R is a component of Ω \ Ω−, with stabilizer ΓR ⊂ Γ. Then R/ΓR is

mapped injectively into a cusp B ⊂ M by the projection. Let B̃ be the component
of the preimage of B that contains R. Observe that R ∩ ∂Ω contains more than
one point, but cl(B̃) ∩ ∂Ω is one point by (C2), a contradiction. �

The hypothesis of strictly convex in the above cannot be weakened to properly
convex because there is a properly convex projective torus that is the quotient of
the interior of a triangle by a discrete group and each vertex of the triangle is an
orbit.

Lemma 1.7. Suppose M = Ω/Γ is strictly convex and has finite volume. If x ∈ L
is a point in the lightcone, then 0 is an accumulation point of Γx iff P(x) ∈ ∂Ω is
not a parabolic fixed point.

Proof. If P(x) is a parabolic fixed point the result follows from Theorem 1.1. We
follow the proof of (3.2) in [4] with some adaptations for our situation to show the
corresponding result for the projective dual M∗ = Ω∗/Γ∗. The result then follows
by duality. The proof is broken down into several steps.

Let H = P(V ) be the unique supporting hyperplane to Ω at P(x). Let φ ∈ L∗

be dual to H thus V = kerφ. This only defines φ up to scaling. By Theorem 0.2 of
[2], the manifold M is the union of a compact thick part K and finitely many cusp
neighborhoods.

Choose a compact set K̃ in the Vinberg hypersurface S for Ω so that the pro-
jection of K̃ contains K. Given t > 0 there is a horoball B = B(φ, t) ⊂ Ω. If the
Γ∗ orbit of φ does not accumulate on 0 we may choose t so small (⇒ B small) that
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EPSTEIN-PENNER CONSTRUCTION TO PROJECTIVE MANIFOLDS 4567

the Γ orbit of B is disjoint from K̃. This implies the orbit of B projects into a cusp
of M . It follows that φ is a parabolic fixed point of Γ∗. �

Proof of Corollary 1.2. We refer to the notation established in the paragraph after
Corollary 1.2. Regard R

n+1 as an affine patch in RPn+1 = R
n+1 � RPn

∞. The
image of Ω in RPn

∞ under radial projection from 0 ∈ R
n+1 is a set Ω∞ ⊂ RPn

∞
projectively equivalent to Ω. Define K ⊂ RPn+1 to be the cone that is the closure
in RPn+1 of CΩ; then

K = CΩ � L � Ω∞ � 0.

It is disjoint from a codimension-1 projective hyperplane H that is a small pertur-
bation of RPn

∞ and therefore K ⊂ A
n+1 = RPn+1 \ H is a properly convex set.

Recalling that P was some Γ-invariant choice of points, one in the direction of each
parabolic fixed point, observe that P ⊂ ∂K and, since K is convex, C ⊂ K where
C is the closure of C in RPn+1.

We claim that it follows from Lemma 1.6 that the set of accumulation points
of P is ∂Ω∞. The argument is the following: Every open set U ⊂ ∂Ω∞ contains
infinitely many parabolic fixed points. These correspond to an infinite subset of P.
By Theorem 1.1 this set is discrete in the lightcone so that all but finitely many of
these points are very high in the lightcone and, in particular, very close to U .

This in turn implies C contains ∂Ω∞ and therefore also contains Ω∞ thus

C = C � Ω∞.

It follows that C is the closed convex hull in A
n+1 of P.

The holonomy, Γ, of M lies in SL(n+1,R) and can be identified with a subgroup
Γ+ ⊂ PGL(n+2,R) that preserves K. In suitable coordinates Γ+ is block diagonal
with a trivial block of size 1 and the other block is Γ.

Closely following §3 of [4] we establish the following claims:
• The dimension of C is n + 1 because C contains the n-dimensional set Ω∞ ⊂

RPn
∞ and also contains the points P which are not in RPn

∞.
• w ∈ C ∩ L iff w = αz for some z ∈ P and α ≥ 1.
If w is not of this form, then the segment [0, w] is disjoint from P. Since P

is discrete there is a small neighborhood U ⊂ R
n+1 of this segment that contains

no point of P. Hence there is a hyperplane that intersects CΩ in a small, convex,
codimension-1 set in U and separates [0, w] from P, and hence from C. This means
w /∈ C.

For the converse, given z ∈ P the image w ∈ ∂Ω∞ of z is in C, hence [z, w] ⊂ C.
This contains all the points αz with α ≥ 1.

• Each ray λ ⊂ CΩ that starts at 0 meets ∂C exactly once.
Since P is discrete in R

n+1 it follows that 0 /∈ C so λ starts outside C and limits
on q ∈ Ω∞ ⊂ C. Thus λ contains points in the interior of C. Since C is convex λ
meets ∂C in a single point z. Since λ ⊂ CΩ it follows that z ∈ CΩ ∩ ∂C = ∂C.

• If W ⊂ R
n+1 is a supporting affine hyperplane for C at a point z ∈ ∂C ∩ CΩ,

then W ∩ C(Ω) is compact and convex.
The closure W of W in RPn+1 is a projective hyperplane that is a supporting

hyperplane for C in RPn+1. Clearly W is disjoint from Ω∞ and by the previous
claim 0 /∈ W . The ray from 0 through z limits on Ω∞ and crosses ∂C at z therefore
W separates 0 from Ω∞ in A

n+1.
Let V be the vector subspace parallel to W . Then V = kerφ for some linear

map φ. We claim that V is disjoint from CΩ = CΩ � L. Observe that V and W
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4568 D. COOPER AND D. D. LONG

have the same intersection with RPn
∞ and are disjoint from Ω∞. Since V contains

0 it follows that V is disjoint from CΩ. It remains to show V is disjoint from L.
Define an affine function ψ on R

n+1 by ψ(v) = φ(v−z). Then W = ψ−1(0), and
since W is a supporting hyperplane for C, this means that ψ has constant sign on
C. By replacing φ by −φ if needed we may assume ψ(v) ≥ 0 for all v ∈ C. Hence
φ(v) ≥ φ(z) for all v ∈ C. Since V is disjoint from CΩ it follows that φ has constant
sign on CΩ. Since ψ takes arbitrarily large positive values on CΩ it follows that
φ ≥ 0 on CΩ and hence K = φ(z) > 0. This implies φ(v) ≥ K for all v ∈ C. Since
Γ preserves C it follows that for every γ∗ ∈ Γ∗ that γ∗φ ≥ K everywhere on C.

We claim that L ∩ V = ∅. For, suppose not and that 0 �= x ∈ L ∩ V .
First, observe that P(x) cannot be a parabolic fixed point of Γ, otherwise points

high on this ray are in C, and so φ of these high points must be at least K > 0.
However, V and W are parallel hyperplanes, so that these high points, which are
all in V , must be disjoint from, and therefore below W , which is a contradiction.

However, consideration of stabilizers now implies that P(φ) ∈ ∂Ω∗ is not a (dual)
parabolic fixed point. Hence by Lemma 1.7, there is a sequence γ∗

k ∈ Γ∗ such that
γ∗
kφ → 0. Thus for large k we have γ∗

kφ(z) < K. This contradicts γ∗
kφ ≥ K

everywhere on C.
This proves the assertion that L ∩ V = ∅. Our main claim that W ∩ C(Ω) is

compact and convex now follows: It is clear that this set is convex. Note that
φ(W ) = φ(V + z) = φ(z) = K is constant. However, since L ∩ V = ∅, for any ray
(R>0) · v in CΩ, φ(v) > 0, so that very high points on that ray take values > K. It
follows that W meets CΩ in a compact set.

• Every point in ∂C ∩ CΩ is contained in a supporting hyperplane that contains
at least (n + 1) points in P.

Given a supporting hyperplane H, rotate it around H ∩C until it meets another
point of P. Since this set is discrete, there is a first rotation angle with this
property. This process stops when H ∩C contains an open subset of H. See [4] for
more details.

• The set of codimension-1 faces is locally finite inside CΩ.
Let K ⊂ CΩ be a compact set meeting faces F1, F2, . . . and suppose that these

faces are defined by affine hyperplanes A1, A2, . . . . Pick xi ∈ K∩Fi and subconverge
so that xi → x and Ai → A, an affine plane containing x. The Ai’s are all support
planes, whence so is A, thus it meets CΩ in a compact convex set. Move A upwards
a small distance to obtain A+. Then all but finitely many of Ai ∩ CΩ lie below
A+ ∩ CΩ. Hence P ∩ (∪Ai) is finite and it follows that there were only a finite
number of faces meeting K.

The locally finite cell structure on ∂C ∩ CΩ is Γ-equivariant and projects to a
locally finite cell structure on M = Ω/Γ. This completes the proof of Corollary 1.2.

�

Proof of Corollary 1.3. In the case that M has only one cusp, the convex hull C
is defined by the orbit of a single vector, which in turn is uniquely defined up to
scaling. It follows that C is defined up to homothety and this is invisible when one
projects into Ω/Γ. �

Remarks. This work originated with one approach to extending the result of Koszul
on the openness of the set of representations of strictly convex structures from the
compact to the finite volume case, although in the end we chose a different approach.
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