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 PROCEEDINGS OF THE
 AMERICAN MATHEMATICAL SOCIETY
 Volume 99, Number 4, April 1987

 A WILD CANTOR SET AS THE LIMIT SET

 OF A CONFORMAL GROUP ACTION ON S3

 M. BESTVINA AND D. COOPER

 ABSTRACT. We construct a conformal action of a free group of finite rank on

 S3 whose set of discontinuity A is a wild Cantor set.

 1. Introduction. This paper is a result of independent efforts by the authors

 to answer a question asked by M. Freedman and R. Skora in their recent manuscript
 [FS].

 There they construct an exotic example of quasiconformal group action on S3
 whose limit set is a wild Cantor set. Some interesting features of that example
 are that each group element is topologically conjugate to a loxodromic conformal

 diffeomorphism of S3, but the entire group is not topologically conjugate to a
 conformal group.

 Below we construct a conformal group G (abstractly a free group of finite rank)
 whose limit set is a wild Cantor set. As opposed to the Freedman-Skora example,
 the group G will contain lots of parabolic conformal diffeomorphisms.

 Consequently, it has been conjectured that a wild Cantor set cannot be the limit
 set of a conformal free group action with no parabolics.

 For the sake of brevity, we abuse notation slightly by writing U C for Uc0 C,
 where C is a finite collection of subsets of R3 or S3. We define

 mesh C = max{diamC CcE C}

 where metrics on R3 and S3 are standard.

 2. The example. Our example is modeled on the standard Schottky action

 (cf. [Ch, Ma]), except that we allow defining spheres to touch.
 By a pair of eyeglasses we mean the compactum E consisting of two disjoint

 simple closed curves Sl, S2 joined by an arc A. Consider the embedding of E in
 R3 defined by Figure 1 (the Hopf link plus an arc joining the components).

 Now let C be a collection of small round balls placed along E c R3so that adja-
 cent balls touch (see Figure 2). Note that most elements of C will have two points
 of contact. There are two exceptional elements T1, T2 that contain nonmanifold
 points of E; they have three points of contact. Note that balls along the circular

 parts Sl, S2 of E do not separate between their contact points, while those along
 A separate between their contact points.

 Let o: C ) C be a fixed point-free involution ( - = Id) such that

 (i) p(T1) T2; and
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 (ii) along each circular part Sl, S2 of E there are at least two balls C', C" such
 that p(C'), p(C") lie along A.

 The collection C can be transferred via the inverse of the stereographic projection
 to S3. Suppressing the stereographic projection, we have E c S3, C = collection of
 round balls in S3. For each C C C choose a conformal diffeomorphism hc: S3 -+ S3
 so that

 (iii) hc (C) = S3 - int p(C);

 (iv) hc maps the points of contact of C to the points of contact of p(C); and

 (v) ha,(c) = h'-1
 Let G be the group of conformal diffeomorphisms of S3 generated by {hc IC c C}.

 If the collection C consisted of disjoint balls, G would be the classical Schottky
 action, whose limit set is a tame Cantor set. The same arguments apply to our
 case to show that

 (1) G is (abstractly) a free group of finite rank,
 (2) G acts freely and properly discontinously in the complement of its limit set

 A,

 (3) A = fnoo=o(U Cn), where Co = C and Cn+ = {hc(Cn)IC E C, Cn C
 Cn hc(Cn) is contained in an element of Cn}. Also, meshCn -+ as n -+ oo.
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 In Figure 3 we have drawn a part of the "core" of U C1. In the picture, we
 assumed that p(C,), p(C2), p(C4) lie along the arc A, while p(C3) lies along a
 circular part of E.

 The main result of this paper is

 THEOREM. A is a wild Cantor set.

 PROOF. We first show that A is totally disconnected, i.e. that it does not contain
 any nondegenerate continuum K. Assuming diam K > E > 0, choose n c N so
 that mesh Cn < E/2. Since K C A C U Cn, it follows that there is Cn E Cn such
 that K n Cn spans between two different contact points of Cn. Find (unique) g C G
 (which will be a word in hc's of length n) and Co C Co = C such that g(Co) = Cn.
 Then K' = g- 1(Kn Cn) is a compactum in co m A that spans between two different
 contact points of Co.

 Since K' C Co n (U C,), it follows that hco(K') C (S3 - int (Co)) n (U Co).
 If p(Co) lies along A, then the latter set does not span between contact points of
 P(Co), while hco (K') does, a contradiction. If p(CO) lies along a circular part Si
 of E, then hco (K') n C spans between contact points of C for every C c C along
 Si (this statement also holds for C = Ti with obvious interpretation).

 In particular, by property (ii), we find CO C C such that p(CO) lies along A, and
 hco (K') n co spans between contact points of C0O. Then we arrive at a contradiction
 just like in the previous paragraph.

 Since each Cn E Cn contains card(C) - 1 balls of Cn+l, it is clear that A has no
 isolated points. Therefore, A is a Cantor set.

 It remains to establish the wildness of A. We show that S3 - A is not simply-
 connected.

 D = S3-(UccJ int CUpoints of contact) is a fundamental domain for the action
 of G on S3 - A. Notice that the action of G can naturally be extended to an action
 on H4 U S3, the compactified 4-dimensional hyperbolic space, via isometries of H4.
 The extended action has the same limit set A.

 Consider the commutative diagram

 S3-A C H4uS3-A

 D 7rl 7r2

 w S3 - A/G n i3 p4 UeS3 - A/G

 where the vertical maps are natural projections.
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 626 M. BESTVINA AND D. COOPER

 Observe that D has the homotopy type of the wedge of two circles, and therefore

 7w2i2il i3p is not injective on the fundamental groups. On the other hand, if S3-A
 is simply-connected, i3 induces an isomorphism on the fundamental groups. To get

 a contradiction, we show that p is injective on the fundamental groups.

 S3 - A/G is a 3-manifold that can be obtained from D by gluing 09 C DC 0 D

 with 9_W(C) = (C) n D via hc for C E C, and p is the natural quotient map.
 Notice that 09C C D is injective on the fundamental groups for every C c C (a

 small linking circle around A c E c S3 represents the commutator [x,y] of the

 free generators x,y of 7rw(D)), and therefore each identification (LC 9_WO(C)
 corresponds to an HNN extension of the fundamental group. Since a group injects
 into an HNN extension of itself, the result follows.
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