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This is a record of a series of seminars held at the Mathematical Sciences Re-
search Institute during the spring of 1989, as part of the program on Combinatorial
Group Theory and Geometry. This series followed on from, and interacted with,
the previous series of seminars on J.W. Cannon, D.B.A. Epstein, D.R. Holt, M.S.
Paterson and W.P. Thurston’s work on Automatic groups [CEHPT], under the
direction of M. Shapiro. In those seminars, M. Gromov’s hyperbolic groups were
frequently cited as examples (see [BGSS]). Also S. M. Gersten’s work on isoperimet-
ric inequalities in groups at M.S.R.I stimulated interest in Gromov’s work. These
notes were subsequently revised after the meeting in Trieste in March 1990 for
inclusion in the proceedings of that meeting.

The object of the seminars was to gain some understanding of the class of
groups studied by Gromov in his important (and difficult) paper ‘Hyperbolic
groups’published in the volume “Essays on Group Theory” [G]. The class of groups
studied is defined in geometric terms, usually making reference to the Cayley graph
of a finitely generated group. The aim of the theory is to generalise results obtained
for the fundamental groups of closed compact hyperbolic manifolds to some larger
class, where techniques similar to those used in studying Kleinian groups may be
useful. The class includes most of the small cancellation groups which have been
subject to much study by some group theorists, and many results from that theory
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where the seminars were held. H. Short wishes to thank the Ecole Normale Superieure Lyon for
their support while these notes were written up.
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hold for all hyperbolic groups. In this way many of the ideas follow on from Dehn’s
work around 1910 (see Dehn’s papers translated into English [De]).

The aim of these notes is to give an accessible introduction to the ideas of
hyperbolic groups, accentuating the group theoretic approach. Hopefully these
notes can be read by a final year undergraduate or beginning graduate student
without too much pain and work. We presuppose some basic knowledge of metric
spaces and of groups given by generators and relations, though this goes little
deeper than the triangle inequality and the definition of free groups and group
presentations.

There has been some discussion about the proper way to refer to this class of
groups. In the first preprint version of these notes, we referred to ‘negatively curved
groups’, following the suggestion of Epstein, Thurston, Cannon, Rips and Cooper.
However subsequent litterature seems to favour the term ‘word hyperbolic’or ‘hy-
perbolic’.

Of course it was possible to work through only a small portion of the 200 or so
pages of [G], and we have concentrated on establishing the basic definitions. At
many points of [G], details are ommitted or left to the reader; we have tried to
complete some of these.

We did not cover the important concepts of quasiisometry and geometric prop-
erties. We simply did not have time to cover this very basic idea, which is more
than adequately covered in [GH, Chapter 1] and [Gh].

While the seminar in MSRI was being held, we benefitted from access to early
versions of the notes being produced at the time by three other groups, usually in
hand written form. These were by:

W. Ballman, E. Ghys, A. Haefliger, P. de la Harpe, E. Salem, R. Strebel and
M. Troyanov [GH], notes of a series held at Berne, edited by E. Ghys and P. de la
Harpe and published as a book recently by Birkhauser;

B. Bowditch at Warwick [Bow], to appear elsewhere in this volume;

M. Coornaert, T. Delzant and A. Papadopoulos [CDP] at Strasbourg, to appear
shortly as a book (Springer—Verlag).

While we did indeed benefit from the use of the above notes (especially in Chapter
4), many of the proofs here are original. Partly this is because we did not have
the now complete versions of these notes, partly because we were interested in the
group—theoretic, rather than the metric space aspect. Some other articles known
to us at the moment on the subject are:

D. Cooper’s preprint [C] on automorphisms of hyperbolic groups;

F. Paulin’s work [P1], [P2];

J. Alonso’s article ‘Combings of groups’ [A] which grew out of his talk on the
Rips complex (section 4) (this contains another definition of a hyperbolic group
which is not discussed in these notes — we refer the interested reader to [A] for
this definition and the proof of its equivalence to those given here); in [A2] Alonso
shows that the type of isoperimetric inequality satisfied by a group is invariant
under quasiisometry.

J.W. Cannon’s notes from the Trieste 1989 meeting [Can2].

E. Ghys’ Bourbaki seminar on hyperbolic groups contains, as well as the excellent
main text, an extensive bibliography [Gh].

M. Bestvina and G. Mess’ paper on the boundary of hyperbolic groups [BM].

M. Bestvina and M. Feighn’s paper on obtaining hyperbolic groups from amal-
gamating two hyperbolic groups along a subgroup [BF].
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S.M. Gersten and H. Short’s article [GS] contains as an appendix the proof that
the linear isoperimetric inequality implies that a group is hyperbolic, (included here
as 2.4 — 2.7); this is also contained in I. G. Lysenok’s article [L], as is a proof of the
equivalence of the Dehn algorithm definition and some other interesting results.

G. Baumslag, S.M. Gersten, M. Shapiro and H.Short use properties of hyperbolic
groups to show that the free product of two hyperbolic groups amalgamated along
a cyclic subgroup is automatic.

The paper is divided up as follows:

The first chapter consists of a collection of alternative definitions, both of hyper-
bolic metric spaces and of hyperbolic groups including Gromov’s inner product, slim
and thin triangles, Cooper’s diverging geodesics, the linear isoperimetric inequality,
and Dehn’s algorithm. The next chapter consists of proofs of the equivalence of
these definitions of a hyperbolic metric space, and of a hyperbolic group. We also
show here that the Dehn’s algorithm definition gives immediately that there only a
finite number of conjugacy classes of torsion elements, and also provides a time ef-
ficient algorithm for solving the word problem (a result originally due to Domanski
and Anshel [DA]).

Some properties of quasigeodesics are developed in Chapter 3. These are used
to establish the fact that the centralizer of an element of a hyperbolic group is
cyclic—by—finite, and that thus there are no Z x Z subgroups in a hyperbolic group.
We define the boundary of a hyperbolic metric space in Chapter 4, though we do
not make much use of the construction to establish properties of hyperbolic groups,
as is done say in [GH|. We finally build the Rips complex to show that a hyperbolic
group is FP .. This gives another proof that there only a finite number of conjugacy
classes of torsion elements.

Where possible we have tried to give references to original statements in Gro-
mov’s paper and to treatment of the topics in in [CDP] and in [GH].

Main differences between this version and the earlier MSRI preprint version of
these notes:

Terminology : negatively curved has now become hyperbolic or é-hyperbolic.

thin triangle has now become slim triangle. This is because we decided to return
to Gromov’s use of the term thin triangle — A. Haefliger suggested the ‘slim’
terminology. Thus fine triangle has become thin triangle.

There is much more work to be done before Gromov’s work is properly under-
stood; we hope that these notes be of some help to others working in this area. The
various authors would like to also thank the other participants in the seminars for
their contributions to the development of these notes. We would also like to thank
T. Delzant for his talk in the series, though he wished to be absent from the list of
authors.

Misprints and remaining mistakes in this written report on the activities of the
seminar series are (mostly) due, of course, to

the editor, Hamish Short
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Chapter 0 Some definitions and notation

We assume that the reader knows what a free group is. If X is a finite set of
generators for the group G, then there is a natural surjection p : F(X) — G, where
F(X) is the free group on X.

We can construct a (geodesic) metric space called the Cayley graph I'x(G) of
G with respect to the generating set X (Dehn also called this the ‘Gruppenbild’).
This graph has a vertex for each element of GG, and an oriented edge labelled x
from ¢ to gx for each element g € G and each x € X. The group G acts on I'x(G)
by multiplication on the left: the element ¢ € G defines a map ¢,, which maps a
vertex h € I'x(G) to the vertex gh; the endpoints of an edge go to the endpoints
of an edge. Notice that in general multiplication on the right does not define an
automorphism of the graph, as the endpoints of an edge are not in general sent to
the endpoints of an edge. For more about Cayley graphs see for instance [MKS,
1.6].

A metric is defined by assigning unit length to each edge, and defining the
distance between to points to be the minimum length of paths joining them (the
space is clearly arc—connected).

With this metric, the left—action of G on I'x (G) is by isometries.

We define the length of an element g of G with respect to the generators X,
written |¢|x, to be the length of the shortest word in F(X) representing ¢: i.e.
lg|lx = min{l(w) | w € F(X), pu(w) = x}. The distance between two vertices
corresponding to elements h,h' € G is then d(h,h') = |h™1h/|x; this is called a
word metric on GG. The fact that the left action is by isometries can now be seen

by noticing that d(gh, gh) = |(gh) ' (gh')|x = |h71R'|x.

Examples
The Cayley graph of a free group with respect to a free basis is a tree.

The Cayley graph of Z x Z with respect to the standard pair of generators z,y
is the square grid of horizontal and vertical lines in the plane.

The Cayley graph of the fundamental group of a closed, orientable surface of
genus g greater than 1 can be embedded in the hyperbolic plane in an natural way.
Take a convex fundamental domain consisting of a regular polygon of 4¢ sides and
corner angle 7/2g. The group is generated by reflections in the sides of the polygon,
and repeatedly reflecting in the sides fills out the hyperbolic plane. The dual graph
to the tiling is the Cayley graph with respect to these generators.

The same phenomenon occurs in higher dimensional manifolds. For more about
this and quasiisometries see the first chapter of [GH], and other articles elsewhere
in this volume.
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Chapter 1. Some Notions of Hyperbolicity

We consider a path-connected metric space with distance function d. Always in
mind is the example of the Cayley graph of a finitely generated group. We wish
also to be able to talk about geodesic (i.e distance minimizing) paths between two
points of the space, and in particular to be able to affirm their existence. We list a
number of definitions which will later be shown to be equivalent. As usual different
definitions will be useful in different contexts.

We say that a metric space X is a geodesic metric space if for all points =,y in
X there is an isometric map from the interval [0,d(z,y)] to a path in X joining
x and y; that is, there is a path between the point x and y realising the distance
d(x,y). We denote an image of such an isometry by [zy], and we use d(w, [zy]) to
denote the distance of the point w from a geodesic arc [zy] (notice that such a path
is not necessarily unique — consider the Cayley graph of Z x Z). For any path
a : [0,n] = X such that a : [0,n] — a([0,n]) is an isometry, we call n the length
of a, denoted by ((«). Thus for instance (([zy]) = d(x,y) for geodesics [zy].

Examples
A locally finite connected graph where the metric is induced by giving each edge

unit length, is a geodesic metric space. The Euclidean plane with the usual metric,
but the origin omitted is not a geodesic metric space.

We shall be particularly interested in the case when X is a Cayley graph of a
finitely generated group (with respect to a finite generating set).

Definition 1.1 Inner product (Gromov [G, 1.1])
Given a base point w € X, we define an inner product on X by

(ra)e = 3(d(r.w) +diw.y) — d(r.v)
If there is a constant ¢ > 0 such that
Yo,y 2 € X, (2.y)w > min{(e.2)ws (29)0} — 6.
we say that the inner product is (8) hyperbolic .

Remark 1.2

(1) If X is a tree, we may take § = 0 (in fact this characterises an R-tree (see
for instance [GH, 1.6,7,8]).
(2) If w lies on a geodesic [xy], then (2.y), = 0.
(3) Let t € [xy] such that d(t,w) = d(w, [2zy]). Then
dw,t) + dt,2) > d(w,2) and d(w,t) + d(t,y) > d(w,y)
As d(xz,t) + d(t,y) = d(x,y), adding these inequalities gives

d(w,[xy]) = d(wvt) > (l‘.y)w.
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We shall show that this definition is independent of base point; i.e. if the inner
product is (¢) hyperbolic with respect to one base point, then it is (2§) hyperbolic
with respect to any base point.

In the standard hyperbolic plane H?, triangles do not have the same properties
as triangles in the Euclidean plane. For instance in the Euclidean plane, in a large
isosceles Euclidean triangle, the mid—point of the hypotenuse is far away from the
other two sides. This cannot happen in hyperbolic space. This property gives rise
to the following definition (the use of the word ‘slim’is suggested by A. Haefliger):

Definition 1.3 Slim Triangles (attributed to Rips)

Given any three points z,y,z in X, we say that a triangle zyz of geodesics
joining these points is d-slim if for any point w on [ry] we have that
min(d(w,[zz]),d(w,[yz])) < §. We say that triangles are slim in X if there is
a constant § such that all geodesic triangles in X are d-slim.

2

Figure 1.1

Now consider a slim triangle defined by the points z,y, z. Let
NT = {p¢€[zz] suchthat d(p,[zy]) < &}

and let
N~ = {q € [zz] such that d(q,|zy]) < &} .

These two closed sets cover [zz], so there is some point y’ € N* N N~. Then there
are points z' € [xy], 2’ € [yz] such that d(y',z") < § and d(y’,z’) < §. Thus the
set {2/, y', 2’} has diameter at most 24. This suggests the following definition:

Definition 1.4 Minsize (‘taille minimale’ [CDP, 1.3] , [GH, 2.18])
Let xyz be a geodesic triangle and let a',y’, 2 be points on zyz (2’ on the side
opposite vertex x etc.). Define the minsize of the triangle to be

minsize(zyz) = inf diam{z",y", 2"}

where the infimum is taken over all triples of points {z', v, z'}.
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Thus, if all geodesic triangles are d-slim, then all geodesic triangles have
minsize < 26. We shall establish the converse below.

Definition 1.5 Thin triangles ([G, 6.3], ‘fins’ [CDP, 1.3], [GH, 2.16])

Given a geodesic triangle A = zyz in X, let A’ = 2'y’2" be a Euclidean com-
parison triangle with sides of the same lengths (i.e. dg(2',y’) = dx(z,y) etc.,
where dp is the standard Euclidean metric). There is a natural identification map
f A — A’ The maximum inscribed circle in A’ meets the side [2'y'] (respectively
[2'2'], [y'#']) in a point ¢, (resp. ¢y, ¢;) such that

dz',c.)=d(a',¢y),dy ,cp) =d(y,c.),d(z',¢y) = d(2, cp) .

We call the points ¢, ¢y, ¢, the internal points of ryz (here we are identifying ¢,

with f~1(c,) ete.).

£

" ' J

Figure 1.2
Notice that
! 1 ! ! 1 ! ! !
d(a',e,) = §(d(:1; cex) + d(2l,ey)) = §(d(:1; v2) 4 d(a' y) — d(Zy)) .

There is a unique isometry ta of the triangle A’ onto a tripod Ta, a tree with one
vertex w of degree 3, and vertices ', y", 2’ each of degree one, such that d(w,z"") =
d(z,¢y) = d(z,¢;) etc.. Let fa be the composite map fa =taof: A — Ta.

We say that xyz is §-thin if the fibres of fao have diameter at most ¢ in X. In
other words, for all p,q in A,

falp) = falg) = dx(p.q) < 6.

We say that triangles are thin if there is a constant ¢ such that all geodesic triangles
in X are ¢-thin.

Definition 1.6 insize ([G, 6.5], ‘taille interne’ [CDP, 1.3], [GH, 2.18])
We define the insize of zyz to be

insize(xyz) = diam{cy,cy,c.}.

Remark
(1) It is immediately clear that minsize(azyz) < insize(xyz).
(2) If a triangle is d-thin then its insize is < 4.
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Another way of characterising hyperbolic geometry is by the way in which infinite
rays emmanating from a point diverge. In euclidean space, rays diverge linearly,
while in hyperbolic space, rays diverge exponentially. To make this precise requires
a rather complicated-looking definition. Consider two people walking along two
geodesic rays at unit speed, starting at the same point. The distance between them
at time ¢ is at most 2¢ in any metric space, by the triangle inequality. But what we
are interested in is the distance between them by following a path which is outside
of the ball of radius t around the start point. What characterises a hyperbolic space
is that once the distance between the two travellers crosses a certain threshold, the
length of the path outside the ball of radius ¢ grows exponentially in ¢. Here is the
detailed definition:

For p > 0 and = € X, let B,(x) denote the ball of radius p about the point

in X. Recall that we consider a path o in X of length /(o) as a local isometry
a:[0,0(a)] = X.

Definition 1.7 Geodesics Diverge

We say that e : N — R is a divergence function for X if for all points =z € X,
and all geodesics v = [zy], v = [2z], the function e satisfies the following condition.

Figure 1.3
For all R,r € N such that R+r < min({([zy]), ([xz])), if d(v(R),~'(R)) > €(0),
and a isa path in X — Bry, () from y(R+r) to 4’ (R+r), then we have ((a)) > e(r).
We say that geodesics diverge exponentially if there is an exponential divergence
function.

Notice that in the Euclidean plane, there is no divergence function.

D. Cooper has suggested a variation of this, where we say that geodesics diverge

supralinearly if there is a divergence function e(r) such that lim e(r)/r = co. We
r—>00

shall establish the rather surprising fact that supralinear divergence is equivalent
to exponential divergence, and we shall just say that geodesics diverge.
Brian Bowditch has an interesting variant on this definition ([Bow]).
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Some Definitions Relevant to Word Hyperbolic Groups

The case in which we are interested here is when the geodesic metric space
under consideration is the Cayley graph I'x (G) of a group G with respect to a
finite generating set X.

Definition 1.8 Word hyperbolic groups

We say that a group G is word hyperbolic (often abbreviated to hyperbolic) if it
has a finite set of generators X such that the corresponding Cayley graph I'x (G)
is a geodesic metric space with a d-hyperbolic inner product, for some 4.

It follows from the definition that hyperbolic groups are finitely presented: this
is shown in 2.18.

Yet another difference between hyperbolic and Euclidean geometries is the ratio
of area to circumference of a circle (or polygon); in the Euclidean plane the area
is a quadratic function of the circumference, whereas in the hyperbolic plane it is
a linear function. This gives a further characterisation of a hyperbolic group, once
we formulate a concept of area in a group.

Definition 1.9 Linear Isoperimetric Inequality ( see [G, 2.3], [CDP, chap. 6])

Let (X; R) be a finite presentation of the group G with X finite. If w is a freely
reduced word w in F(X) of length {(w), the free group on X, and w = 1 in G, then
there are words p; € F(X), relators r; € R, and € = +1 such that

N
w = H piriiprt in F(X).
=1

If there is a constant K such that for all such words w, N < K.l(w), we say that
G satisfies a linear isoperimetric inequality . (Compare [G].)

The reason for the restriction to the finitely presented case is that otherwise one
could just throw in as relators of the presentation all words in F(X) which represent
the trivial element of G. This would give a very uninteresting linear isoperimetric
inequality for any group.

Isoperimetric inequalities are more fully discussed in 2.4 — 2.7, where it is shown
that a finitely presented group which satisfies a linear isoperimetric inequality is
word hyperbolic. S.M. Gersten has developped a more general study of isoperi-
metric inequalities in [Ge]. If some finite presentation of a group satisfies a linear
isopermetric inequality, then all finite presentations do, as can be seen by apply-
ing Tietze transformations (see [Ge]). (Care is required: notice that a free group
satisfies a zero isoperimetric inequality with respect to a free basis, but a linear
term is added when the basis is changed.) This shows that the definition is inde-
pendent of generating set. More generally, Alonso has shown [A2] that the type of
isoperimetric inequality satisfied by a group is invariant under quasiisometry.

It is clear that a free group has a linear isoperimetric inequality.

It is pointed out in [BGSS] that it follows from Newman’s spelling theorem (see
e.g. [LS]) that one relator groups with torsion are word hyperbolic.

One of the reasons Gromov gives for his study of hyperbolic groups is a desire to
generalize small cancellation theory ([G, 0.4]). This latter theory has its origins in
Dehn’s solution of the word problem for the fundamental groups of surfaces, which
was generalized by Greendlinger and Lyndon in the 1960s (see [LS, Chapter V] or
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R. Strebel’s appendix to [GH] for more details). We give the conditions used by
this theory here. Their main utility resides in the fact that they give easily checked
conditions on a presentation which ensure hyperbolicity. Unfortunately the class
of groups so defined is somewhat limited: a torsion—free C(7) small cancellation
group has cohomological dimesion 2. Gromov indicates in [G, 0.2] that the class of
hyperbolic groups is much larger than the class of C(7) small cancellation groups,
while at the same time stating that hyperbolic presentations are generic. It would
be interesting to formalise and understand some idea of the genericity of hyperbolic
groups sketched by Gromov in these statements.

Definition 1.10 Small Cancellation Conditions

Given a finite presentation P = (X; R), let R denote the cyclic closure of R,
i.e. the set of cyclic conjugates of elements of R and their inverses. A pieceis a
non-trivial word v € F(X) such that there are two different relators r1,ry € R such
that r; = vr] and ro = vrl.

We say that P satisfies the C(p) condition if no element of R is a product of
fewer than p pieces. We say that P satisfies the C'(1/p) if for each piece v occurring
in the relator r, pl(v) < ((r). Thus if the C’(1/p) condition holds, then so does the
C(p+ 1) condition.

Example The surface group of genus g > 1 has a presentation

i=g
(a1,...,a4,bg,... 04 | Haibiai_lbi_1>.
=1

A maximal piece consists of a single letter, and so this presentation satisfies the

condition C(4g), and also the condition C’(4gl_1 ).

The presentation satisfies the T(q) condition if for any sequence ry,73,...,rg of
elements of R with k < ¢, such that

N =1 - =1 _ -1
L =airy 0y T2 = GT50s ... Tk = QETR4]

where a; € X U X!, for some j < k, we have that r; = 7“]‘_-131 in F(X) (suffices
considered mod k). Notice that the T(3) condition is void.

Example The presentation (z,y | xyz~'y™1) of the group Z x Z satisfies the con-
ditions C'(4) — T'(4).

It is “well known” that a group which satisfies one of the C(7),C(5)-T(4),C(4)-
T(5),C(3)-T(7) small cancellation conditions satisfies a linear isoperimetric inequal-
ity (see for instance [GS]). In the metric case (i.e. when for instance C’(1/6),
C'(1/4)-T(4) or C'(1/4)-T(7) are satisfied), the main lemma of small cancellation
theory states that a word w € F(X) which represents the trivial element of the
group contains a subword which is more than half of some cyclic conjugate of a
relator.

It follows that fundmental groups of compact surfaces of genus greater than 1
are hyperbolic.

In a series of papers studying the word problem for surface groups at the begin-
ning of this century, Max Dehn studied the connection between hyperbolic geometry
and surface groups (see [De]). There he gave a solution to the word problem, which
we shall generalise here:
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Definition 1.11 Dehn’s Algorithm

A Dehn presentation for the group G is a finite presentation (X; R) such that
any non-trivial word in F(X) which represents the identity element of G contains
more than half of some word in R. That is, if w € F(X) is a reduced word, and
p(w) =1 in G, then there is a relation r = ryry € R with €(ry) > ((r2), such that
w = wiriwsa.

A group is said to have a Dehn’s algorithm if it has a Dehn presentation.

It is clear that a group with a Dehn’s algorithm satisfies a linear isoperimetric
inequality (with multiplicative constant 1).

We shall show (2.12) that a group is hyperbolic if and only if it has a Dehn’s
algorithm. This was also established by Lysenok [L] and Cannon (see [Can2]).
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Chapter 2. The Equivalence of the definitions

We now show the equivalence of several of the initial definitions concerning ¢-
hyperbolic metric spaces. We begin by showing the equivalence of some of the
properties of geodesic triangles. Most of the proofs here are elementary and based
on pictures of triangles. We have not tried to optimize the different values of §
involved.

Proposition 2.1.
The following are equivalent for a geodesic metric space X.

(1) Triangles are slim.

(2) Triangles are thin.

(3) There is a global bound on the insize of geodesic triangles.

(4) There is a global bound on the minsize of geodesic triangles.
)

(5) The inner product on X s hyperbolic with any choice of base point.

Definition We say that a geodesic metric space is hyperbolic if it satisfies one of the
above equivalent conditions.

Proof. 1t is clear that (2) implies (3) which in turn implies (4). (Also (2) immedi-
ately implies (1).)
(1) implies (3)

Suppose that all geodesic triangles in X are ¢-slim. Let zyz be a geodesic
triangle, and let ¢;, ¢y, c. be the internal points.

=

Figure 2.1

Consider the point ¢, on [zy]; there is a point ¢ on [xz]U[yz] such that d(c.,t) < 4.
Without loss of generality, suppose that ¢ lies on [2z]. Then

d(z,t) 4+ 6 > d(c.,z) =d(cy,x) and d(z,t) <d(z,c.)+ 0
and so d(t,¢,) <6, and d(c., ¢,) < 26.

A similar argument shows that ¢, is at distance not more than 20 from one of
c¢. and ¢,. It follows that diam{c,, ¢y, c.} <46, and (3) holds.
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(1) implies (2)
Let u be a point on [z¢,] and v a point on [zc.] such that d(u,z) = d(v,z). As
geodesic triangles are d-slim,

d(u, [ze:] U [eye:]) <6 .

If there is a point t € [xc,] such that d(u,t) <4, then d(t,v) <4, so that d(u,v) <
2. Thus if d(u,v) > 24, it follows that there are points t,,t, € [cyc.] such that
d(u,t,) < ¢ and d(v,t,) <, and d(u,v) < 66, and (2) holds.

Figure 2.2

(4) implies (1)
Let a',y', 2" be points on [yz], [xz], [zy] such that diam{z',y’, 2’} < §. This
reduces the problem to studying three geodesic triangles, each with base < 4.
Suppose that there is a point t € [2z'] such that d(¢, [xy']) > 2.

Figure 2.3

Let w be the point in [zt] nearest to ¢t such that d(u,u’) = 26 for some point
u" € [xy']. Now consider the geodesic triangle uu’z. The bound on the minsize of
triangles implies that there are points a,b, ¢ on the three sides of uu’x such that
diam{a,b,c} < §. The point a on [xu] does not lie in [tu] by supposition, and
d(u,a) <38, so d(t,u’") <36 or d(t,c) < 34.
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(2) implies (5)
Consider a geodesic triangle wzy, with internal points c;,cy, cy.
product with base point w is

(e = 5 (dw,2) + d(w,y) — dz,y))

and we must show that Vz € X, (z.y)y > min((2.2)w, (y.2)w) — 9.

Figure 2.4

Recall that d(w, ;) = (2.y)w, and notice that
(1) d(w,cy) < d(w,cp) +dlcg, cw) < (TY)w +9

(2) (z.y)w < d(w, [zy]).
Let z be another point in X. Then
(x.y)w + 20 > d(w,cy) + 6 > mun(d(w, [xz]), d(w,[yz]))
But d(w, [¢z]) > (2.2)w so that

(x.y)w + 26 > d(w,cw) + 0 > min((2.2)w, (Y.2)w)

and the inner product condition holds.

(5) implies (1)
We first show:

15

The inner

Claim: If the inner product with base point w is hyperbolic, then for any geodesic

triangle waxy,

(v.y)w < d(w,[ry]) < (v.y)w + 20

The left hand inequality follows immediately as in the remarks after definition 1.1.
Now let ¢y, ¢z, ¢y be the internal points of the triangle wazy on the side [zy]. Now
consider the internal points d,dy,dy (resp. ey, ey, e,) of geodesic triangles zwey,

(resp. ywey, ), where dy, € [wz] and e, € [wy].



16 ALONSO, BRADY, COOPER, FERLINI, LUSTIG, MIHALIK, SHAPIRO, SHORT

Figure 2.5

As dy lies in [zey], d(z,dy) = d(z,dy) < d(x,cy). It follows that d(w,d,) >
d(w, ¢, ). Thus

(x.y)w and (cw.Y)w = (2.Y)w -

Without loss of generality suppose that (cy.y)w < (2.¢w)w ; then by (5) (with ¢,
in place of z):

5> (cot)w— (@9)e = dlce,ez) = d(ew, cw).
But
d(w,c) = dw,e,) + dley,cw) = dw,ex) + d(cu, ew)
= d(w,cy) + 2d(cgp,ep) < 20 + (2.Y)w
and it follows that
d(w, [zy]) < d(w,cw) < (z.y)w + 20 .

This completes the proof of the claim.

Now suppose that the inner product is é-hyperbolic with respect to any base
point. Let zyz be a geodesic triangle, and let w be a point on the side [zy]. By the
above,

0=(x.y)w > min{(z.2)w, (2.y)w} — .

Without loss of generality suppose that (2.2), < (2.¥)w. Then
§ > (2.2)y > d(w,[zz]) — 26

and so

d(w,[xz]) <36

and the triangle xyz is 30-slim, as required.
This completes the proof of proposition 2.1. O
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We now give Gromov’s direct proof that for inner products, the property of being
hyperbolic is independant of base point.

Proposition 2.2. (|G, 1.1B])

If X s d-hyperbolic with inner product based at w and t € X then X 1is 20-
hyperbolic with inner product based at t.

This means that the reference to base point can be removed from the definition:
we say that X is hyperbolic if there is a positive constant § such that Vw, x,y,z € X,

(2. Y)w = mun((z.2)w, (2.Y)w) — 90 .

To prove the proposition we first show:

Lemma 2.3. ([G, 1.1A])

(xy)w + (2t = min((v.2)w + (Yt)w, E2)w + (y.2)w) — 26

Proof. We remove reference to the base point w.

ry + zt >min(atty) + 2t — ¢
xt 4+ zt, ty + zt) — 0
z.t 4+ min(z.y,yt), ty + min(z.z,xt)) — 26

rt 4+ zy, xdt + yt, ty + za) — 26

= man

> min

e —

= man

and this achieves a unique minimum value of x.t + y.t if and only if y.t < z.y
and x.t < z.z.

Similarly

vy + zt >min(z.z,zy) + 2t — 6
=min(x.z + zt, zy + z2t) — ¢

(
(
(
(

=min(x.z + zy, vz + yt, zy + xt) — 24

> min(x.z + min(zy,y.t), z.y + min(z.az,xt)) — 26

This achieve a unique minimum value of x.z + z.y if and only if z.y < y.t and
xr.z < z.t. Both of these cannot be true at the same time, so the result holds. O

Corollary 2.4.
If X 1is d-hyperbolic, then for all t,x,y,z € X,

d(x,y) +d(z,t) <max{d(x,z) +d(y,t),d(x,t) + d(y,z)} + 26
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Proof of Proposition 2.2. We wish to establish a lower bound for

min{(2.2)s, (2.y)e} — (z.y)

= min{d(x,t) + d(z,t) — d(z,2), d(z,t) + d(y,t) —d(z,y)}
+ d(z,y) — d(z,t) — d(y,t)

= min{—d(y,t) — d(z,z),—d(x,t) — d(z,y)} + d(z,y) + d(z,1) .

Adding d(z, w)+d(y, w)+d(z,w)+d(t, w) inside and subtracting from the outside

of the minimum gives

min{(y, ) + (©2)u . (@) + G0} = (200 — (©9)

it follows , by Lemma 2.3 that

min{(x.2); , (z.y)e} — (vy)s < 26

Linear isoperimetric inequality implies hyperbolic

We shall now show that a finitely presented group which satisfies a linear isoperi-
metric inequality is hyperbolic. The converse will be shown in 2.10, and again, using
different methods in 2.12. We need first to develop some of the language of disc
diagrams.

Singular Disc Diagrams

Let F(X) denotes the free group on X. When R is a finite set of cyclically
reduced words in F(X), P = (X; R) denotes a finite presentation of a group G;
we use R to denote the cyclic closure of R, consisting of all elements r in R, their
inverses, and all cyclic conjugates of r+.

We form a 2-complex K(P) = K whose fundamental group is G in the standard
way: K has one vertex, one labelled, directed edge for each generator, and one
2-cell for each relator. The 2-cell D; corresponding to the relator r; is glued to the

1-skeleton KM via a continuous map which identifies the boundary 8D; with a
loop representing the word r;.

A freely reduced word w in the generators is equal to the identity in G if an only
if there is a continuous map from a disc (D, dD) to (K, K")) taking the boundary
to a loop representing the word w. After a homotopy, the cell decomposition of
K induces a cell decomposition of a simply connected complex, which we also call
D, consisting of a set of discs joined by arcs or vertices. The vertices map to the
vertex of K, the interiors of the 1-cells of D, called edges, map homeomorphically
to the interiors of the 1-cells of K, and the interiors of the 2-cells, called regions,
map homeomorphically to the interiors of the discs D; of K. We can orient and
label the edges according to the generating loop in K" to which they map, in
such a way that reading the labels on the edges around the boundary of D gives
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the word w. The complex D we call a singular disc diagram (or Van Kampen or
Dehn diagram) for w = 1 in G (for more details see [LS], chapter V). Regarding
the singular disc diagram as a topological space, each component of the interior is
a topological disc.

A singular disc diagram is unreduced if there are two regions R; and Ry in
D whose boundaries have an edge e in common, such that the labels on their
boundaries, reading around from the edge e, clockwise on Ry and anti-clockwise on
R, are the same. It is not hard to see how to remove two such neighbouring regions
in an unreduced singular disc diagram without changing the boundary label, so that
we may concentrate our attention on reduced singular disc diagrams; from now on
all diagrams are assumed to be reduced.

Let P = (X; R) be a finite presentation of the group G. Suppose that f : N — R
is a function with the property that if w is a freely reduced word of length n in the
free group F(X) and w = 1 in the group G, then there is a singular disc diagram
for w with at most f(n) regions. Following S.M. Gersten [Ge], we say that f is a
Dehn function for P.

Notice that as w = 1 in G, there are words p; in F(X), and r; in R, such that

N
w = H pirSipit e = %1,
=1

The Dehn function tells us that there is such a product with N < f(n) relators. In
addition, as we have a bound on the total length of the 1-skeleton of the diagram,
we may take

Up;) <n+ f(n)M where M = I&aé{(g(r))'

Tietze transformations transform lengths by scalar multiples together with the ad-
dition of new trivial words, and so transform Dehn functions by scalar multiples
and the addition of linear terms [Ge]. Thus if a group G has a presentation with a
linear (quadratic, exponential) Dehn function, then we say that G satisfies a linear
(quadratic, exponential) isoperimetric inequality .

If X is a finite set of generators, and R is a recursive set of relations, then finding
a recursive Dehn function for P solves the word problem for P [Ge].

Theorem 2.5.

If G s a finitely presented group satisfying a linear isoperimetric tnequality,
then there is a constant 0 such that all geodesic triangles in the Cayley graph T' are
d-slim.

Proof. We argue by contradiction: suppose that there is no constant § such all
geodesic triangles are d-slim.

Let K be the constant associated to the linear Dehn function for the finite presen-
tation P = (X; R) for the group G, and let p be the maximum length of a relator
in R. We can suppose that p > 1, else G is free and so hyperbolic (with radius of
curvature 0). We can also assume that I > 1.

Then for each r > 0, there is a geodesic triangle zyz in I' and a point w € [xy] such
that

(%) min(d(w,[yz]), d(w,[xz])) > 2r.
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x!“

Figure 2.6

If xyz is degenerate (i.e. if [zy] N [yz] — {y} # 0 or y = z say) then xyz contains
a non-degenerate geodesic triangle (or bigon) where (x) holds. So it suffices to
consider non-degenerate geodesic triangles and bigons.

Let B, be the ball of radius r (in I') with centre w.

Let € be a constant, and suppose that r > 6e. We first cut off the corners of zyz
such that the remaining segments are all at distance at least 4e from each other,
and the cut-off arcs are of length exactly 4e. This will give one of three cases:

1) a non-degenerate hexagon H with three sides of length 4e.
g g g
2) a non-degenerate quadrilateral with two sides of length 4e.
g g
3) a degenerate hexagon.
g g

As r > 6¢, the length « of the side [2'y'] containing w is at least 2r. Without
loss of generality, we suppose that the cases are as shown below (figure 2.7).

Consider first case (1), with H = 2’2"'2'2"y"y" and let «, § and v be the number
of edges in the segments [2'y’], [¢"2'] and [y"z"].
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Figure 2.7
Let D be a minimal disc diagram for the word represented by the hexagon H.

We shall consider D both as a cell complex and as the underlying topological space,
and we identify 0D with H in I'. As H is a simple closed curve in I', the diagram D
is a topological disc, and each 1-cell which is not contained in @D is on the boundary
of two 2-cells in D. If T is a subcomplex of D, we define starp(T) to be the set of
all cells which intersect T'. If 8 is one of the geodesic arcs [z'y'], [#"2'], ["y"] we
use N(6) to denote the subcomplex of D obtained by iterating the star operation
[e/p] + 1 times ([¢/p] denotes integer part), starting from the arc 6 in D. Let (6)
denote the number of 1-cells in 6; thus (([z'y’']) = . We need the following 2

lemmas to complete the proof. Their proofs are deferred.

Lemma 2.6. If € > p, then there s a constant C1 depending solely on €, such that
the number of 2-cells in N(8) is at least ((8)e/p* — Cy.

Let A(D) be the number of 2-cells in the diagram D.

Lemma 2.7. If € > p, there is a constant Cy depending solely on € such that

A(D) > (a+ 3 +7)e/p® =Cat2r/p

We now use this last result to complete the proof of the main theorem.
The linear isoperimetric inequality implies that

AD) < (a+ B+ v)K + 12Ke
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Combining this inequality, and the result of Lemma 2.7, we have
(oz—l—ﬁ—l—’y)e/,o2 —Cy+2r/p < (o + 4+ v)K + 12Ke.
Now set e = Kp? (as p > 1 and K > 1, it follows that ¢ > p). We thus obtain
2r/p — Cy < 12K%p?

which is clearly a contradiction for sufficiently large values of r.
This completes the proof in case (1).

It remains to prove the lemmas. First notice that the map 0D — H extends
naturally to a map h : DY) — T from the 1-skeleton of D to the Cayley graph. The
1-cells of D are the inverse images of the edges of I, so there may well be vertices
of degree 2 in the interior of D.

Proof of Lemma 2.6. Suppose that 8 = [2'y']; the other cases follow exactly analo-
gously. Let ~o denote the segment 6 in 0D, and let Ny = starp (o).

Then ~y contains « 1-cells, each of which lies in the boundary of a 2-cell. Each
2-cell has at most p 1l-cells in its boundary, so there are at least ((0)/p 2-cells in
Ni. Now Ny N DW N (int(D) — Ny) is a path 4 from the segment [2'2"] to [y'y"],
and maps to a path in ' lying in a p-neighbourhood of [2'y].

.

J

Figure 2.8

It follows that 41 contains at least (¢(6) — 2p) 1l-cells. Continue this process
[e/p] + 1 times; i.e. let

N; = star(N;—1) and let ~ = N; N DM N (int(D) — N;) .

The number of 2-cells in N; — N;_; is at least (£(6) — 2(: — 1)p)/p. Repeating
[e/p] + 1 times gives at least

ae/p? — ele+ p)/p”

2-cells in N([2'y']).
This concludes the proof of Lemma 2.6, setting C; = €e(e + p)/p*. O

Proof of Lemma 2.7. We first show that

N([z"y) NN (y"="]) = N([="y'D) 0 N([2"2)
= N([z"2) N (y"="]) = 0.
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In the construction of the proof of A.1, we have that ~; maps to a path in I’
which lies in a (ip)-neighbourhood of [z'y']. Tt follows that N ([z'y'])(") maps into
a (e + p) < 2e neighbourhood of [¢'y’]. By the construction of H, p € [2'y'] and
q € [2"Z'] implies that d(p,q) > 4e. Hence the 2¢ neighbourhoods of [¢'y’] and of
[2"2'] in T do not intersect, and so N([z'y'])N N ([z"'2']) = 0. The other cases follow
analogously.

Let ¢’ be the set of 1-cells in N([z'y']) N (ent(D) — N([2'y’])), and let ¢ be the
subset of ¢’ which maps into B, (via the map h). A point p € ¢, maps to a point at
distance at most r from w, and so lies at least r — 2e > 0 from N ([z"z'|UN([y"=z"]).
Also h(¢) contains an arc of length at least 2r — 4e, so that ¢ contains at least
(2r — 4e — 2) 1-cells. Each of these 1-cells lies in the boundary of a 2-cell which
does not lie in N([2'y']), so there are at least (2r — 4e — 2)/p 2-cells in D which do
not lie in N([z'y']) U N([y"2"]) U N([2"2]).

So using Lemma 2.6, there are at least

(@ + B 4+ v)e/p® = 3C1 — (de+2)/p + 2r/p

2-cells in D.
This concludes the proof of Lemma 2.7, setting Cy = 3Cy + (de+2)/p. O

The cases (2) and (3) of Theorem 2.5 remain to be considered

In case (2) Lemma 2.6 holds for the arcs [2'y'], [¢"2']. Lemma 2.7 now holds for
a minimal disc bounded by the quadrilateral @ = 2'2"2'y’, with v = 0 (and with
Cy = 2C1 + (4e 4+ 2)/p). The proof of the theorem is concluded by obtaining a
contradiction as before.

In (3), look at the simple closed curve P = 2'Zz"y"y’. Lemma 2.6 holds as before for
the arcs [2'y'], [y"2"], and Lemma 2.7 follows with 8 = 0 and Cy = 2C; 4 (4e+2)/p.
Note that the sum of the lengths of the segments [2'Z] and [2z"] lies between 4e and
8e. The side [y'y"'] has length 4e, and the side [y"2"] has length v > 2r — 12¢ > 0.

The proof is concluded by obtaining a contradiction as before.

We shall give now give two proofs that a group with a linear isoperimetric in-
equality has slim (or thin) triangles. The first follows Gromov [Gr, 1.7C](see also
[CDP, §5.3.1]). A second proof is given in theorems 2.15, 2.16.

A presentation of a group is said to be triangular if each relation has length
three.

Every finitely presented group has a triangular presentation, and to such a
presentation there is an associated simply—connected, locally finite 2 dimensional
simplicial complex X, where each cell is isometric to a chosen standard 2-cell in
R?. For a simplicial curve C in X, let L(C) denote the length of C, i.e. the number
of 1-cells in C, and let A(C) denote the area bounded by C, i.e. the minimal number
of 2-cells in a singular disc embedded in X bounded by C.
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Proposition 2.10.
If geodesic triangles in X are slim then X satisfies a linear isoperimetric inequal-
ity.
Proof. Let d = 106 and let
Ao = max{A(C); L(C) < 3d}.

Let N(C) denote int(L(C))/d) + 1. We shall show by induction on N that A(C) <
3N(C)Ao.

The result clearly holds for N = 1.

Now suppose that the result holds for all curves C’ such that N(C') < n.

Let C be curve such that N(C) = n + 1 and choose a base point x on C. Choose
Yo on the curve C farthest from x, and choose points y1,y2 on C at distance d from

Y.

Figure 2.9

If d(y1,y2) < d then the result holds, by applying the induction hypothesis to the
curve obtained from C by omitting the segment between y; and y, which contains
Yo, and replacing it by a geodesic [y1y2]. This curve has length at most L(C) — d,
and the induction hypothesis applies. The curve C then bounds a disc obtained
from this one by adding on a disc bounded by the curve y;yoy, which has length
at most 3d and the induction argument is complete in this case.

We are thus left with the case that d(y1,y2) > d; it follows that d(x,yo) > 5.

Without loss of generality, suppose that d(z,y1) > d(x,y2); it follows that
d(l‘, yl) > 59.

Let y' be a point on the geodesic arc [zy;] at distance 46 from y, and let y3 be
a point on C at distance d from y; , in the segment from x to y; not containing yg.

To complete the argument, we use the following:

Lemma 2.11.
Fori1=0,1,2,3, we have d(y',y;) < d.

Given this, we see that the argument is complete, as then we have a disc bounded
by C, made up of a disc bounded by a curve which is shorter than C by at least d,
and three other discs, each bounded by curves of length at most 3d.
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Proof of Lemma 2.11. We apply Corollary 2.4 three times; firstly to the points
LyY0, Y1, Y2:

d(x,y0) + d(y1,y2) < max{d(z,y1) + d(yo, y2), d(,y2) + d(yo,y1)} + 26.

But d(yo,y:) < d for « = 1,2, and d(y1,y2) > d by assumption, and d(z,ys) <
d(x,y1), so we get

(%) d(x,yo) < d(x,y1) +26.
Now consider the points z, 1.y, y; where i = 0,1, 3:
d(z,y1) +d(y',yi) < maz{d(z,y") +dy1,y:), d(@,y:) + dy1,y")} + 26.
But by (), and the definition of y/, we get
d(z,y1) + d(y',y;) < max{d(z,y1) —46+d, d(z,y;) + 46} + 26.
But d(z,y;) < d(e,y0) < d(a,y1) + 25, so we get
d(y',y:) <88, for i=0,1,3

and the lemma holds for these three points. It remains to show that d(y’, y2) < 106.
Consider the points x,yo,y’, y2. We have

d(xvyO) + d(ylvyZ) < max{d(y/,x) —I_d(yovy?)? d(l’,yz) —I—d(y’,yo)} + 24.
But d(y',x) < d(yo,x) — 46, and d(y', yo) < 89, so
d(ylvyZ) S 106 .

This completes the proof of the Lemma. O

We now give an alternative proof of the fact that if triangles are thin in the
Cayley graph of a group G, then G satisfies a the linear isoperimetric inequality.
The proof will also show that G is finitely presented. Our plan follows the basic
outline of Cannon’s paper [Can] on co-compact hyperbolic groups; we subsequently
discovered that a similar proof is given by Cannon in [Can2]. We first define local
geodesics, and show that these follow near their corresponding geodesics and are
comparable to them in length. From this, we are able to show the existence of a
Dehn’s algorithm (see definition 1.11), that is, a finite collection of relators such that
any word which represents the trivial element contains more than half of one of the
relators, and so may be shortened by use of one relator from this list. This was also
procedby Lysenok [L]. The linear isoperimetric inequality then follows immediately.

Let G be a group with finite generating set X. As usual, we regard a word u as
a path [0,0(u)] = I'x(G).

We shall now show that:
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Theorem 2.12.

Let G be hyperbolic, in the sense that geodesic triangles in the Cayley graph
I'x(G) are é-thin. Let

R={w e F(X) | l(w) <85 and p(w) = 1}.

Then (X | R) is a Dehn presentation for G.

Corollary.
Hyperbolic groups are finitely presented.

When § = 0, G is a free group and X is a set of free generators, the theorem
follows immediately. In what follows we assume ¢ > 1, and that ¢ is an integer, so
that the points in the Cayley graph which are considered are all vertices.
Definition 2.13

We will say that a path p is a k-local geodesic if each sub-path u of p of length
at most k is geodesic.

Thus paths which are not k—local geodesics can be shortened locally.

Lemma 2.14.

Let k =46, and let u be a k-local geodesic, let v be a geodesic with p(u) = pu(v).
Assume that each of these has length at least 26. Let r and s be the points in I'x (G)
on u and v at distance 20 from p(u) and p(v). Then d(r,s) < 6.

Proof. Assume inductively that this is true when ((u) < N. We now take u, v such
that N < /(u) < N + k. Let p be the vertex at distance k from p(u) along u (recall
E is integral). Let w be a geodesic from 1 to p(w) = p. Let ¢, ¢, and s be the points
on u and w at distance 26 from p as shown.

>
4 v

*
o ald= piv)
Figure 2.10

The segment of u from ¢ to s has length k£ and thus is a geodesic, so that
d(q,s) = k = 44. By the induction hypothesis, d(q,t) < . Hence, d(¢,s) > 34. But
w, v, and the final length k segment of u form a geodesic triangle, and hence ¢ lies
close to v, and, in fact, is within ¢ of the point of v distance 26 from p(v). O
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Theorem 2.15.
If w is a Ek-local geodesic, and v a geodesic with p(u) = p(v), then u lies in a

3d-nesghbourhood of v.

Proof. Let z be a point on u at least distance 26 from the ends of u. (Otherwise
there is nothing to prove.) Let « and y be geodesics from 1 to z and from z to p(u).
Let a, b be the points at distance 2 from z along u, and let r and s be the points
at distance 20 from z along = and y, all as shown.

Al

Figure 2.11

Since u is a k-local geodesic, d(a,b) = 44, while by the lemma, d(a,r) < ¢ and
d(b,s) < 4. Consequently, d(r,s) > 25. But z, y, and v form a geodesic triangle,
so that d(r,v) < 4. Hence d(z,v) <34. O

Proof of Theorem 2.12. We must show that if w € F(X) and pu(w) = 1 then w
may be shortened by using a single relator from R, that is, that w contains a
subword rq, and R contains a relator riry with €(r1) > £(r2). Thus w = wiriws
and p(w) = pu(ws)p(rz) = p(w2).

If w 1s not a k-local geodesic, then w has a sub-path p of length at most k which
is not geodesic. This means that w can be shortened as required.

Suppose now that w is a k-local geodesic. Then w stays within distance 36 of
any geodesic for w. But since p(w) is the identity element of G, a geodesic for p(w)
is the empty word. Thus the path w lies in the 3d-neighborhood of the identity
element in I'x (G). But then w must be of length at most 34, for if w has an initial
subpath of length 35 + 1, then this subpath is geodesic and hence strays distance
34 + 1 from the identity, which is a contradiction. In particular, w € R. [

The proof of the following is immediate.

Theorem 2.16.
If G has a Dehn’s algorithm, then G satisfies a linear isoperimetric inequality.

The existence of a Dehn presentation has a simple consequence concerning ele-
ments of finite order in a hyperbolic group:

Corollary 2.17. ([GH,3.13])
In a hyperbolic group, there are only finitely many conjugacy classes of elements
of finite order.
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Proof. Consider the presentation giving a Dehn’s algorithm. Let g be an element
of finite order, and let [¢] be the set of all conjugates of ¢ in G. Let w be a word in
F(X), chosen to be shortest over all v € F(X) such that p(v) € [g]. Let n be the
order of p(w). As p(w™) = 1, there must be some subword of w™ which is more
than half of a word r € R. This implies that {(w) < {(r), else w, or some cyclic
conjugate of w, can be shortened. (In fact w is contained in a cyclic conjugate of
a relator.) Thus the number of conjugacy classes of elements of finite order is less
than the number of elements of length at most max,cr ¢(r). O

This result contrasts with Gromov’s result that in a hyperbolic group which is not
a finite extension of a cylic group, there are an infinite number of conjugacy classes
of prime (i.e. not proper powers) non-torsion elements [G, 5.1.B]. In particular an
infinite torsion group is not hyperbolic (an alternative proof of this is to be found

in [GS2)).

Solving the Word Problem in Linear Time
B. Domanski and M. Anshel have shown [DA] that if a group has a Dehn pre-

sentation, then there is an algorithm for solving the word problem in a length of
time bounded linearly in terms of the length of the input word. To accomplish
this requires a Turing machine with more than one tape. The way the machine
works 1s to read through a given word, and on finding a place wher the word can
be shortened, it does so. This may affect introduce a shortening in the part of the
word already read, but not too far away. Here are the details.

Since the longest relator in our Dehn presentation has length 2k = 84, we know
that we may shorten any word w representing the trivial element by replacing
subwords of w of length at most 2k by shorter words of length at most k. Since each
such replacement reduces the length of w by at least one, at most ¢(w) replacements
are required. We carry this procedure out on a Turing machine with an input tape,
T and two pushdown stacks, S and S’. We also assume that there is enough internal
memory to remember the final 2k letters of S at each step. We start with the word
w =ay,...,a, written on tape T, and the two stacks S and S’ empty.

Assume now that the first j letters from T have been read, and the contents of
S and S’ are respectively 1 ...x, and y; ... y,.

First we consider the case when a shortening of the last 2k letters is possible.
Suppose that 1 < p—r 41 < 2k and the final p —r + 1 letters 2, ...z, of S can be
shortened to v = vy ...vs,. We now read v onto S’ in reverse order, together with
letters from S , until 2k letters have been transferred (if possible). The contents of S
and S" are now xy ... 241 and yq ... Y4V ... V1 Tr—1 ¢ Where t = max{l,r —2k—1}.

Now suppose that the final max{p, 2k} letters of S do not form a word which
can be shortened. According to the values of p, q, 7, one of the following happens.
If ¢ > 1, read the last letter of S’ onto S, so that their new contents are x4 ... x,y,
and y1 ...ygs—1. If ¢ =0 (i.e. the S’ tape is empty) and j < n, one letter is read
from T onto S, so that j + 1 letters have now been read from 7', and the word on
Sis a1 ...xpa;41; S’ remains empty. If ¢ = 0 and j = n but p # 0, then all of T
has been read, but w does not reduce to the empty word, and thus w is rejected
by the machine as it cannot represent the trivial element of the group. Finally if
p=¢q =0 and j = n, the word w is accepted by the machine as we have reduced w
to the empty word, so that u(w) = 1.

It is easy to see that this procedure halts after a length of time proportional to
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n = l(w). To see this, notice that we read each letter of w once from T and move at
most 4k letters from S to S” and back again for each replacement we make. Since
each replacement reduces length, we make at most n replacements.

One might ask when the stack S’ can be replaced by a finite amount of memory.
In this case, the word problem can actually be solved by a pushdown automaton.
This is equivalent to saying that the word problem for the group is a context free
grammar. That is to say, the collection of all words representing the identity element
of the group may be generated by a simple set of replacement rules (for more about
languages and automata see for instance [HU]). It is a result of Muller and Schupp
[MS] (together with Dunwoody’s accessibility result) that this can be done if and
only if the group is virtually free.

Now 1t is easy to see how to extend this procedure to a group GG which is a direct
product of finitely many hyperbolic groups, say Gi,...,Gy. One simply takes a
Turing machine with a tape T and m pairs of pushdown stacks, Sy, 57,...,Sm,S,.
Then as each letter a; is read off of T, one may rewrite it in terms of the generators
of {G;} and sort these out to the appropriate stacks. Since this rewriting requires
only a linear amount of time, this procedure solves the word problem in G in linear
time.

Finally, if H is a finitely generated subgroup of GG, the restriction of this procedure
to elements of H solves the word problem in H in linear time. We have shown the
following

Theorem 2.18.
Let H be a finitely generated subgroup of a direct product of hyperbolic groups.
Then the word problem wn H 1is soluble in linear time.

Such groups can be fairly complicated. They include, for example, the finitely
generated subgroups of the direct product of two free groups of rank 2. Many of
these are not finitely presented. In fact, it is a theorem of G. Baumslag and J.
Roseblade that these groups are finitely presented if and only if they contain a
subgroup of finite index which is itself a direct product [BR].

Any problem which can be solved in linear time is also solved in linear space.
Such problems correspond to the so-called contert sensitive grammars. Such lan-
guages are also characterized by a set of rules for generating the words of the
language (see [HU]). Clearly the class of groups with context sensitive word prob-
lem is much larger than the class of groups with context free word problem! In
fact, though we will not show it here, the automatic groups of [CEHPT]all have
context sensitive word problem, and hence so do their finitely generated subgroups.
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Divergence of geodesics

Here we shall show (2.20) that in a geodesic metric space, non-linear divergence
of geodesics implies that the space is hyperbolic. (The definition of divergence
functions is given in 1.7.) We first show the more elementary result (2.19) that
in a hyperbolic space geodesics diverge exponentially, leading to the remarkable
fact that exponential and non—linear divergence are equivalent in geodesic metric
spaces.

Theorem 2.19.
In a hyperbolic metric space geodesics diverge exponentially.

Proof. Suppose that all geodesic triangles are d-thin. Let v and 4" be geodesics
of length R + r beginning at the point x such that d(~v(R),~ (R)) > 6. We thus
set €(0) = d. Let p be a path from (R + r) to 7'(R + r) lying in the closure
of the complement of Br,.(x) We will show there is an exponential function e(r)
independent of the choice of v and ~+' such that ¢(p) > e(r).

Let o be a geodesic from v(R + r) to ¥'(R 4+ r). Let b be a binary sequence
of length s (possibly 0), and suppose a; to have been chosen (the geodesic a thus
corresponds to the empty sequence). Let my be the midpoint of the segment of p
between the ends of . We choose ayg to be a geodesic from a(0) to my, and o
to be a geodesic from my to ap(1).

Figure 2.12
We continue this subdivision until each o3 in our final subdivision has length

% and 1. This ensures that these last a;’s are contained in p. This also

means that we have divided the original path « into n pieces, where

between

log,({(p)) < n <logy({(p)) +1.

Notice that for each b, the segments «aj, apg and ap; form a geodesic triangle.

As d(y(R),~'(R)) > 4, there is a point v(0) on « wth the property that
(d(0,7(R)) < 5.

For each ¢, if a point v(¢) lies on a3, then as the triangle with sides ay, apo, g1
is é-thin, there is a point v(i + 1) on ape or apy such that d(v(i),v(i + 1)) < .
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Thus we may find a path from « to a point v(n) on p whose length is at most
R+ 6(log,(¢(p)) + 2). But as the path p lies outside of the ball of radius R + r,
d(x,v(n)) > R+ r, so that

R+ d(logy(Up)) +2)) > R+

& U(p) > 2572,
and we see that ¢ is an exponential function as required. O
We now establish the opposite direction of the equivalence.

Proposition 2.20.
If X s a geodesic metric space with a non-linear divergence function, then geo-
desic triangles are d-slim for some §.

Proof. Let e be a divergence function for X, and let xyz be a geodesic triangle in
X. Consider the edge [vy] (resp. [xz]) as an isometric embedding a; (resp o)
: [0,n] = X based at x.

Let T be the maximum value of ¢ € [0, n] such that

Vt € [0,T], d(ai (1), a2(t)) < €(0),

and let 21 = a1 (T), 22 = a3(T). Similarly define points z1, z2, y1, y2.
Claim 1 If [z21] N [y2y] # O, then there is a bound on max{d(z2,y1),d(z1,z2)}, and
so the triangle is §-slim with § = % + 2¢(0).

If [xxy] N [y2y] # O then there are points x5 € [rx2] and y3 € [yyi] such that
d(xs,ys3) < 2e(0). Applying the divergence function to [zy3] and [zx3] bounds the
lengths of [z123] and [22y3], and hence the lengths of [zy22] and [z9y1].

Figure 2.13

Hence we assume that there are no such intersections. Let L3, Lo, Ly be the
lengths d(z2,y1),d(x2,21),d(y2,21), and suppose that Ly = max{Ls, Ly, L1}. It
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suffices to show that L; is bounded by some constant K, for then zyz will be
(K/2 + e(0)-thin).

Let t be the midpoint of [xy2].

Let a = d(x,z1) and b = d(y,y1); then t € Boyp,/2(x) N Byyp, /2(y), though
these balls (call them By, By) have disjoint interiors.

Without loss of generality say Ls > Lo (i.e. d(x2,2) < d(y1,2)).
Claim 2 [z32] Nint(Bz) = (.

Suppose not, and let s € [x2z] Nint(By). As s ¢ By, it follows that d(s,x3) >
Li/2. Since L3 > L, there is a point u € [y, z] such that d(u,z) = d(s,z). It
follows that

Li1/2 < d(s,x9) d(xg,z) —d(z,s)

d(xg,z1) +d(z1,2) — d(z, s)
d(z2,y1) + d(z1,2) — d(z, u)
(

d(z yl) (Z u)—d(U,yl)

IA

Hence u ¢ int(B2); but
d(z,y) = d(z,u) +d(u,y) < d(z,s)+d(s,y)

and so

b+ Li/2 < d(u,y) < d(s,y) < L1/2+b.

This contradiction establishes claim 2.

Let v be a point on the edge [yz] such that d(y,v) = b+ Ly /2. There is a path
from t to v in the complement of By of length at most

d(t,$1)+3€0—|—L3—|—3€0 —|—d(22,1}) S L1/2—|—6€0—|—L1 —|—L1/2

Hence e(L1/2) < 2Ly + 6¢p, giving the required bound for L;. O
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Chapter 3 Quasigeodesics

In this chapter we shall study the infinite cyclic subgroup (g) generated by a
non-torsion element ¢ in a word hyperbolic group. We shall see that the set of
vertices in the Cayley graph I'x (G) which correspond to (g) form something like a
geodesic (a quasigeodesic). This in turn is used to obtain various results which are
analogous to existing results about groups acting discretely and cocompactly on
hyperbolic space. For instance, we show that an abelian subgroup of a hyperbolic
group is a finite extension of a cyclic group (i.e. there are no Z x Z subgroups in a
hyperbolic group). Most of the treatment here is due to Mihalik and Lustig.

In a geodesic metric space, we can define the length of an arc a between two
points as do(x,y) = supy_ d(x;, x,41) over finite sets of points x; on o between the
points x,y.

Or, working in the domain, in order to give a precise sense to ‘between’ :

let o : [0,1] = X be a path from « to y in X. We define the length of the arc to

be do(z,y) = limy e Sy da( L), a( L)),

Definition 3.1
An arc a in a geodesic metric space X is called a (), €)-quasigeodesic if there
are positive constants A > 1, e > 0 such that for all points =,y on «a,

da(l',y) S /\d(l‘,y) —I_ €.

We must first prove the following technical result, which is essential to all that
follows.

Proposition 3.2. ([G, 8.1.D], [GH,8.21])

Let g be an element of infinite order in a hyperbolic group G, and let T' be the
Cayley graph with respect to some finite generating set. Let o be a path from the
vertex corresponding to the identity element to the vertex corresponding to g. Then
the bi-infinite path

(....,9 0,0, g0,...)
18 a quasigeodesic.

Proof. Suppose that the positive integer R is given, and choose k such that
d(g*,1) > 8R + 26, Let 3 be the geodesic from 1 to g, and let y be the mid-
point of 3. Let I be the subinterval of 3 of length R centered on y. Recall that
B, (z) denotes the ball of radius r about the point z in I In what follows, by
‘midpoint’of a geodesic we mean a vertex at distance at most 1/2 from the actual
midpoint of the arc.

Claim 1 If p € Bg(1) and ¢ € Br(g*), then the midpoint m; of the geodesic arc
[pq] is in Nas(I), ie. d(mq,I) < 20.

Note that if @ € Bgr(1) and b € B,(¢g*) then the midpoint of [ab] is at least
distance R from balls of radius R 4 § about 1 and ¢*, by the choice of k.

If my is the midpoint of [p, ¢¥] then as [(([pg*]) —(([pq])| < R, we have |d(m1,p)—
d(map)| < R/2.

By assumption geodesic triangles are d-thin in I'. Considering the geodesic tri-
angle pgg®, we see that the internal points are all inside the ball Br1s(g¥), so that
there is a point m} € [pg*] such that

(1) d(mlvp) = d(mllvp)v
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(2) d(mj,m2) < R/2,
(3) d(m1,my) <6,
(4) d(m},1) > 3/2R+ 6

ER+28

Figure 3.1

Similarly the internal points of the geodesic triangle 1pg* are all inside the ball

Bprys(1), and there are points mb, m/ on [1¢g*] satisfying
( ) (m27 ) - d(m2vgk) and d(mlllvgk) = d(mllvgk)v
(2) d(mi,my) < § and d(mf,m}) <4,
(3) d(mY,mj) = d(mj, m2),
(4) d(mf,y) < R/2

It follows from (2) that d(m/,m1) < 24, and from (3) and (4) that d(y, m}) < R.
The claim is thus established.

Let N be the number of distinct vertices of I' in the ball Bys(1); the 26 neighbour-
hood of the interval I then contains at most RN vertices. Now consider the mid-
points of each translate of the arc a = [1¢*] by each of the elements 1, g, ¢%,... ¢V %,
These midpoints are all distinct (else some power of ¢ would act on I fixing a point,
and thus would have finite order), and there are 1 + NR of them. Hence there is
a number p(R) < NR such that ¢?®) ¢ Br(1) (and so g*tP(®) ¢ Br(g*)). Notice
that p(R) > R/{(g).
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Claim 2 ((gN®) > R for all R.
Suppose that the claim is false, and thus that there is some Ry with £(g"V o) <
Ro. For all s > NRg, let s =nNRg+ Ry, withn € ZT and 0 < R; < NRy Then

0(g°) < (g™ o) + 0(g"™) < nt(g™ o) + (g™ ) < n(Ro —€) + ((g™)

<nRy when ne > ((g")

But this means that for all sufficiently large values of n, we have that ((¢®) < nRo.
If we choose a value of R such that p(R) > NRy, then by claim 1, we have that
((g?®)) > R. But the above says that ell(¢?®)) < p(R)/N < R, giving the
required contradiction.

We now show that the bi-infinite arc 3 = (..., g7 ', a, ga, .. .) is a quasigeodesic.
Let ~ be a geodesic arc between two points z,y on 3. By construction, the initial
and final points of v are within N{(g) of vertices ¢*V and ¢*" for some integers
a,b, and so the length dg(z,y) of the subarc of 5 between the points ,y is at most
(|6 — a| +2)¢(g)N. But by the above, d(¢g*",d*™) > |b — al, and so

d(z,y) = [b—al = 2((g)N.
This means that
ds(z,y) < |b—all(g)N +2U(g)N < Ug)Nd(z,y) +2((g)*N* + 2((g)N
and it follows that 3 is a (\, €)-quasigeodesic for

A= /((g)N and e=2((g)>N* 4 2((g)N.

4

We now show that geodesic arcs between points on a quasigeodesic lie near the
quasigeodesic. More precisely, let N,.(U) denote the r neighborhood of the subset
U of X.

Proposition 3.3. ([G, 7.2.A], [CDP,3.1.3], [GH, 5.6, 5.11))

Let x,y be points in the hyperbolic metric space X. If o is a (N, €) quasigeodesic
between the points x,y, there are integers L(\,€), M(\ €) such that if v is any
geodesic [xy], then v C Np(«) and o C Nps(v).

Proof. Let e : N — R™ be an exponential divergence function for X. We first show
the existence of the bound L.
Let D = supger{d(z,a)}, and choose a point p € v where this supremum is
reached. Then
IntBp(p) Na =10

Let a,b be points on v at distance D from p, and let a’,b" be points on v at
distance 2D from p (or the points x or y if these are at distance < 2D from p).
There are points w,v on « such that d(a’,u) < D, d(b',v) < D. Notice that
([¢',u] U [b',v]) N IntBp(p) = 0. Following a path via a',p and o', we see that
d(u,v) < 6D, and as «a is a (\, €) quasigeodesic, we have dq(u,v) < 6AD 4 €. Hence
there is a path of length < 4D +46AD+ € from a to b which does not meet IntBp(p).
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But the divergence function e says that the length of such a path is exponential in
D — (e(0)/2). This gives us the bound L(\,€) for D. (Notice again that we have

only used the fact that the divergence function is nonlinear.)

Now suppose that o ¢ Nz(v). Then a component of cl(a — Np(v)) is a path £
with endpoints u, v at distance L from points a, b say on ~.

Figure 3.2

If o is an arc [0,1] — X, and £ = a([t1,t2]), then each point on v between «
and b is within distance L of some point of «([0,%1]) U a([t2,1]) = a1 U a2 by the
first part of the proof. Then there is some point z on v between a and b which
is at distance < L from a point u; on «y and from a point us on as. But then
d(uy,uz) < 2L, so do(ur,uz) < 2\L + €, bounding the length of the arc £. It thus
follows that every point on £ is at distance at most L + AL 4 ¢/2 from ~, and the
proposition holds. O

Notice that when the geodesic space under consideration is the Cayley graph of
a hyperbolic group, the above results say

Corollary 3.4. If g 1s an element of infinite order in a hyperbolic group, then
there is a constant L such that for any point x on a geodesic arc [g'¢’] there is an
integer k such that d(zx,g*) < L.

We now use these results on quasigeodesics to obtain information about sub-
groups of a hyperbolic group. In particular we shall show that an abelian subgroup
of a hyperbolic group is cyclic-by-finite. This follows from:

Proposition 3.5. ([CDP, 10.7.2], [GH, 8.35])

Let H be a hyperbolic group, and let g be an element of G of infinite order.
Let C(g) denote the centralizer of g, and let (g) denote the infinite cyclic group
generated by g.

Then C(g)/{g) s finite.

Proof. Let T'" be the Cayley graph of G with respect to some finite generating
set, and suppose that geodesic triangles are § thin in I'. Let L be the constant
(guaranteed by the above proposition) such that the geodesic [1¢g"] lies in a L-
neighborhood of the set {1,¢,¢%,...,9"}. Let s € C(g), and choose m such that
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d(1,g™) > 20(s) 4+ 26 (it is here that we use the fact that ¢ has infinite order).
Consider the geodesic 4-gon (parallelogram) with vertices 1,¢™, s, s¢g™ and sides

[s(sg™)] = s[1g™], [g™(sg™)] = g™[1s], [1g"™] and [1s].

3

Figure 3.3

By considering the two (J-thin) geodesic triangles with vertices 1,¢™,s¢g™ and
1,s,59™ we see that either some point of [1s] is at distance < 24 from some point
of [¢g™(sg™)], or there is a point on [1¢g™] which is at distance < 24 from some
point of [s(s¢™)]. By the choice of m, the former cannot occur, else there is a
path of length at most 2((s) + 26 from 1 to g™. So let a € [1¢g™] and b € [s(s¢g™)]
such that d(a,b) < 25. But there are integers 7,j < m such that d(a,¢') < L and
d(b,sg’) < L, sod(g",sg’) < 2L+25. But then d(1,sg’~%) < 2L+ 2§, and so every
coset s(g) in C(g) intersects the ball of radius 2L + 2§ about the identity. O

Corollary 3.6.
An abelian subgroup of a hyperbolic group which contains an element of infinite
order 1s finite-by-cyclic.

Definition 3.7 ([G, 5.3 page 139, and 7.3 page 191], [CDP, chap. 10])

If X is a geodesic metric space then a subset A is e-quasiconvez if for all geodesics
[ab] with endpoints a,b € A, [ab] C N.(A). A subgroup of a finitely generated group
is said to be quasiconvex if the vertices in the subgroup form a quasiconvex subset
of the Cayley graph.

It is not hard to see that this last definition is independent of the finite set of
generators chosen (for more about quasiconvexity see [S]).

It follows from 3.3 that an infinite cyclic subgroup of a hyperbolic group defines
a quasiconvex subset of the Cayley graph.

Also, a subgroup of finite index is quasiconvex. A finitely generated subgroup
of a finitely generated free group is quasiconvex, as can be seen by thinking of the
Cayley graph as a tree.
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Rips has shown, [R], that a small cancellation group may have finitely gener-
ated subgroups which are infinitely related. This cannot happen for quasiconvex
subgroups:

Lemma 3.8. ([CDP, 10.4.2])

A quasiconver subgroup H of a hyperbolic group G 1s finitely generated, and in
fact 1s also hyperbolic .

Proof. Let X be finite set of generators for G. Let w = ay...a,, a; € X U X1
be a geodesic in the Cayley graph I'x (G) which ends at a vertex which lies in the
subgroup H. The quasiconvexity condition implies that there for each 1 = 1,....n
there is a word v(i) € F(X) of length at most € such that a; ...a;v(i) represents
an element of H. Thus w = [[i_, v(: — 1)"'a;v(¢) where v(0) = v(n) = the empty
word, and the set Y of words v € F(X) of length at most 2¢ + 1 is a finite set of
generators for H.

Now let dy (h,h') denote the distance between the vertices h,h' € H in I'yv(H),
and dx(g,¢’) denote distance between the vertices ¢g,¢’ € G in I'x(G), and
dxuy(g,g') denote the distance between the vertices ¢, ¢" in I'x vy (G).

Then by rewriting the elements of ¥ as words in F(X), we see that

(26 + 1)dy(h,h/) > dx(h,h/) > dXUy(h,h/).
Also, the way the generators Y were found shows that dy (h,h') < dx(h,h'). Again
by rewriting words in F(X UY") as words in F(X) we see that (2¢+1)dxuy(g,9") >
dX (gv g/) Thus

1
2¢ 4+ 1

dXUy(h, h/) < dy(h, h/) < (26 + 1)dXUy(h, h/)

and a geodesic word for an element h € H (in terms of the generators Y) is a
(2¢ + 1)—quasigeodesic for h in terms of the generators X UY. Thus a geodesic
triangle in I'y (H ) has quasigeodesic sides when regarded as a triangle in I'x vy (G),
and these quasigeodesics lie close to geodesics, which are close in I'xy (G), as G
is hyperbolic. Thus the original geodesic triangle was slim.

4

Proposition 3.9.
If 1 - N — G — B — 1 1s a short exact sequence of infinite groups, with G
hyperbolic, then N 1s not quasiconvex.

Proof. Let T' be the Cayley graph of G with respect to some finite generating set,
and suppose that N is quasiconvex in I'. Let p : I' — A be the quotient map of
the action of N on I'. When =,y € A and « is a geodesic of length n from z to y,
for any preimages a € p~!(z) and b € p~!(y), we have that d(a,b) > n. Since B
is infinite and finitely generated, A is a locally finite, infinite 1-complex. Choose a
geodesic 3 of length I > 2¢ 4 2§ with initial point p(1) and endpoint b, and let 3
be a lift of 3 based at 1, with endpoint c¢. Note that 3 is also geodesic of length K.
Choose u € N such that ((u) > 2K 4 2§ and consider the geodesic 4-gon in I" with

sides [1u], 3, u3, [c(uc)].
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Wl

Figure 3.4

As we choose u to be long, no point of uf3 is within 2§ of a point of 3. As in the
proof of proposition 3.5, some point r of [lu] is within 26 of a point s of [¢(uc)].
As N is normal, ¢ luc € N so uc = ¢(c7luc) € eN = p~1(b); also we have that
l,u € N = p~1(1). Since N is e-quasiconvex for some ¢, some point n; of N is
within € of r and some point ny of ¢N is within € of s. But then ny is within 2¢ 424
of ny, contradicting the restriction on the length of 5. O

S. M. Gersten has pointed out that the above proof shows:

Corollary 3.10.
If G s a hyperbolic group, and H 1is an infinite quasiconvex subgroup of G, then
each element of the factor group Ng(H)/H s of finite order.

In general, it does not immediately follow that Ng(H)/H is finite.

Remark M. Mihalik and W. Towle have since then used the methods of the above
proof to show that if H is a quasiconvex subgroup of a hyperbolic group, then H
has finite index in Ng(H), the normalizer of H in G, and this index is bounded by
a function depending on 4, € and the number of generators for G. Furthermore they
show that if H is a quasiconvex subgroup of the hyperbolic group G and * € G
such that tHz ! is contained in H, then ztHz~' = H.

When G is a finitely generated free group, all finitely generated subgroups are
quasiconvex, so that 3.8 reduces to the result that a non—trivial finitely generated
normal subgroup of a finitely generated free group is of finite index (due originally
to Schreier).

Using results from [BGSS], it is shown in [GS2] that Co(H)/H is finite.
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We finish off this chapter by relating quasigeodesics with the existence of a Dehn
presentation and local geodesics (see definition 1.11 and 2.12-2.17). Recall that a
path is a k-local geodesic if all subpaths of length at most & are geodesic.

Theorem 3.11. (c¢fr. [Can2])
Let X be a geodesic metric space where all geodesic triangles are d-thin.
If w s a 106-local geodesic, then u is a (12,78)-quasigeodesic.

Proof. If v is a geodesic path in X, and # € X, let p(«) be a point on v at minimum
distance from z.

Lemma 3.12.
Let u be a 100-local geodesic, and v a corresponding geodesic.

If d(p(u(t)), p(u(t + a))) < 6/2 then |a| < 136/2.

Proof of Lemma 8.12. Recall that Theorem 2.15 shows that a 44-local geodesic lies
in a 3d-neighborhood of a corresponding geodesic. It follows that d(u(t), p(u(t))) <
30, and d(u(t + a), p(u(t + a))) < 39, so that d(u(t),u(t + a)) < 135/2.

Let ug be the segment of u between u(t) and u(t + a), and let vy be a geodesic
between the same points. As before, ug lies in a 36 neighborhood of vy and more-
over vg lies in a 13§/2 neighborhood of u(t). It follows that wo lies in a 194/2
neighborhood of wu(t). If ¢(ug) > 104, then an initial 10§ segment is geodesic, so
leaves the ball of radius 196/2, which is not possible. Thus ¢(ug) < 10§ and, as it
is geodesic, ((ug) < 136/2, and |a] < 136/2. O

Returning to the proof of the theorem, let v be a geodesic corresponding to u
(i.e. a geodesic between the endpoints of u). Divide v into subintervals vy, v, ..., v,
where ((v;) < §/2 and n < 14 20(v)/4.

Let u; = p~(v;) Nu; then diam(u;) < 135/2 by the lemma. It follows that

- 136 135 20 136
Ou) < Zdiam(ui) < n% < %( ((SU) + 1) =130(v) + %
i=1

and v is therefore a (13,7§)-quasigeodesic. 0O

By more careful bookkeeping, we can improve this to say that an 89-local geodesic
is a (8, 7d)-quasigeodesic.



NOTES ON WORD HYPERBOLIC GROUPS 41

Chapter 4 The boundary

The aim of this section is to define a boundary 90X for a hyperbolic metric space
X, which gives a compactification X = X UdX when X is complete and locally
compact. We follow the plan indicated by Gromov in his section 1.8, [G], using
some of the ideas of [CDP]; the structure of the boundary is much more extensively
developped in [CDP] and in [GH].

As usual we use (2.y) to denote the inner product on the metric space X with
respect to some basepoint w, i.e.

1
(z.y) = 5{d(z,w) +d(y,w) - d(z,y)}.
The points of X are defined to be equivalence classes of sequences in X as follows.

Definition 4.1: A sequence {a;} of points in X is said to converge to infinity if
i,}igloo(ai'aj) = 0.
Note:
(1) This definition is independent of the choice of basepoint since |(2.y)w, —
(.y)w | < d(w,w’).
(2) If {a;} converges to infinity then

Zli>r£10 d(a;,w) = 0o

since (2.y) < min{d(z,w),d(y,w)}.
Let Soo(X) denote the set of all sequences convergent to infinity, and define the
relation

{a;}R{b; } iff lim (a;.b;) = <.
T—> 00

Note that a sequence which converges to infinity is related to all of its subsequences.

The relation is symmetric and reflexive and independent of the choice of base-
point. For a general metric space R is not transitive as the following example
shows.

Ezample. Let X be the Cayley graph of the group

Zx7Z=<z,ylay=yx >
(with respect to the generators x and y) and let w be the vertex corresponding to
the identity element, ¢ = 2°y°. Define a,, = 2", b, = y™ and ¢, = 2"y". Then
the sequences {a;}, {b;} and {¢;} all converge to infinity and (a,.c,) = (by.cn) =n
while (a,.b,) = 0. Thus {a;}R{c;} and {b;}R{c;}, but {a;} and {b;} are not
related.

Ezample. With X as in the last example, consider the sequence defined by
{ ™, if n=2m
bn = xmy™, ifn=2m+ 1.

Then {p,} € Soo(X) but the two subsequences consisting of odd and even terms
are tending to infinity in different directions.

Recall that we say X is é-hyperbolic if for all z,y,z € X
(x.y) > min{(z.2), (y.2)} — 9.
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Lemma 4.2. When X is d-hyperbolic the relation R s transitive.

Proof. If {a;},{bi},{ci} € Soc(X) with {a;}R{b;} and {b;} R{c¢;} then {a;}R{c;}
since (aj.c;) > min{(a;.b;), (b;.c;)} — 4.

4

From now on we assume that X is a é-hyperbolic metric space.

Observe that for {a;}, {b;} € Soo(X) we have
{a; }R{b;} iff lim (a;.b;) = cc.

?,]—

Definition 4.3 The boundary of X is 0X = Soo(X)/R. We say that {a;} € Soo(X)

converges to v € 0X if = [{a;}] and we write a; — x.

Note. If x € X then ‘z; — 2’ has the usual meaning of convergence in the metric
sense.

Ezample. Take X = R with the usual metric and 0 as the basepoint. If {a;} €
Soo(X) then either a; > 0 for almost all values of 7 or a; < 0 for almost all values
of 7. This defines two distinct equivalence classes of sequences which we call +o00
and —oo respectively and 0X = {—o0, +00} as expected. Similarily for R-trees the
boundary is the set of ends.

In order to put a topology on the set X = X UdX we first extend the inner
product to the boundary.

Definition 4.4: For x,y € X,
(x.y)s = inf{limiinf(xi.yi)},
where the infimum is taken over all pairs of sequences z; — = and y; — .

Note. This definition may seem unduly complicated. The next example illustrates
the need for this complexity even in a very simple metric space.

Ezample. Let X be the Cayley graph ( with respect to the generators « and y ) of
ZxZo=< z,yly* =1, 2y =yzx >.

This space, like R above, has a boundary consisting of two points which we will
also call +o00 and —oo. Let

n —n n —
an =2", by =2~ ", ¢, = ya", d, = yx

z2n, if m=2n
Zm =
y:1;2"+1 m = 2n-+1.

7

Then ay, ¢, and z, all tend towards 4+oc, while b, and d,, tend towards —oo.

Observe that (dy.z,) is 0 if n is even, and 1 if n is odd. Thus we use lim inf rather
than lim in the definition. Furthermore (a,.b,) = 0, while (¢,,.dy,) = 1. Thus we
take the infimum over all sequences in the definition.

Some properties of the inner product on X are given in the following lemmas.
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Lemma 4.5.
(1) If » € X and y € X then (r.y)s = inf{liminf;(x.y;)} where the infimum

18 taken over sequences y; — y, t.e. it suffices to consider the constant
sequence at x.

(2) For x,y € X, (x.y)s = (x.y), i.e. (.)s restricts to (.) away from the
boundary.

Proof of (1). Let #; — « and y; — y be any pair of sequences. Since x,xz;,y; € X
1
(i-yi) = (2.yi)| =5 ld(2i, w) + d(yi, w) — d(zi, i)

:%|d(:1;i7w) —d(z,w) +d(x,y;) — d(z, ;)|

< lldlais ) = dla )] + de, ) = d(ei )]}
§%{d($i,x) +d(x, )}

=d(x;, )

= limiinf(xi.yi) = limiinf(x.yi).

Proof of (2). This follows from 4.5.1.
0

Lemma 4.6.
(1) If v,y € X then

(r.y)s =00 & x,y € 0X and v = y.
(2) If v € 0X and {x;} is any sequence of points in X then
(x;.2)s = o0& {a;} € Soo(X) and z; — .
(3) If v,y € X there are sequences T; — , y; — y with
Zlglglo(wzyz) = (z.y)s

and if x or y lies in X then the corresponding sequence can be chosen to be
the constant sequence.
(4) If v,y € 0X and x; — x, y; — y then

(x.y)s < liminf(a;.y;) < (v.y)s + 26.
(5) If v,y,z € X then
(x.y)s > min{(z.2)s,(z.y)s} — 4.
(6) Let x,y € X and yi — y; then

liminf(z.y;)s > (2.y)s.
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Proof of (1).
(«): This follows from the definition of (2.y)s.
(=): First we show that x,y € 9X. Suppose, for example, that € X; then

(x.y)s = inf{limiinf(x.yi )}

where the infimum is taken over sequences y; — y. But (z.y;) < d(w,z) < oo.
Thus ¢ € X = (z.y)s < oo.
Now suppose that x,y € 0X with a; — @ and b; — y. Then
liminf(a;.b;) > inf  {liminf(x;.y;)} = oc.

Ti—T, Yi—Y

Thus

lim(a;.b;) = co and © = y.
Proof of (2). («<): Let {x;} € Soo(X) with x; — = and suppose that
lim(x;.2)s # 0.

Then the sequence of real numbers, {(z;.7)s}, has a bounded subsequence. Since
{z;} is related to all its subsequences we can assume, by passage to a subsequence,

that for some M, (2;.2)s < M, ¥i. Thus

inf{lim inf(z;.y;)} < M,
j

where the infimum is taken over all sequences y; — x. Thus for each z;, we can find

a sequence y; D as J — oo satisfying (z;.y (¢ )) < M, Vj. Since X is §-hyperbolic

we also have
(2. y; )) > min{(z;.2%), (Tk. y; ))} J.

This gives a contradiction because the quantity (x;.x)) can be made arbitrarily
large since {x;} € Soo(X), and the quantity (xk.yﬁl)) can be made arbitrarily large
since {xk}R{yﬁl)}

(=): First we show that {x;} € So(X). Suppose that (v;.2)s — oo. Then
there is a sequence {n;} of real numbers with

lim n; = oo
T—> 00
such that, for all ¢,
inf{liminf(z;.y;)} > n,.
j
(1)

So, for each 1, there is a sequence y;

each j. Thus

— & as jJ — oo satisfying (yﬁl)xl) > n; for
(irj) > min{(eiyy”), (v 2;)} = 8
>min{(vi.y,”). (v ;7). < )} -2

> min{n, (v, 91”).n,} -
>min{n;,n;} — 2§
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for k and [ large enough since {y,(j)}R{yl(j)}. Thus

Z7£1£>nm(xlx]) = 00

and {z;} € Soo(X).

45

Finally we show that x; — x. Assume {;} € So(X) with (z;.2) — oco. Let

y;i) — x be as above and fix a specific sequence z; — x. Then

(24.24) > miﬂ{(ﬂ?i-y;i))a (yﬁl)zz)} — 0
> min{(eiy;”). (4] .2)), (5.7} — 26

for j large enough since {y;i)}R{Z]‘}. So

and z; — =z.

Proof of (3). Let x,y € 0X and let
A= (z.y)s = inf{liminf(x;.y;)}.

(n)

?

(n)

Then for each n € Z there are sequences x, " — v and y, = — y satisfying

n n 1
A< lim‘inf(:zj( ).yl( )) <A+ e

13
By passing to subsequences we can assume that, for each 1,

n n 1
Ag(:cg ).yl( ))<A—|-—

o n

(n)

?

(n)

Now z;”" — z and y, * — y, so, by 4.6.2,

(:zj(n)x) — oo and (yl(n).y) — 00 as 1 — 00.

7

(n)

So, for each n, there is an i, such that (z,

J}E:) and y, = y(n)

in

n

. By 4.6.2, ¥, — 2 and y, — y and since (7,,.y,) = (:z;(n)

1y

1
A< (Tpyn) <A+ —.
n

.x) > n and (yl(:).y) > n. Define #; =

)

If one of the points, say x, actually lies in X, then the proof is similar but uses
4.5.1 and a constant sequence for x. If both x and y lie in X constant sequences

can be used for both.
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Proof of (4). It follows from the definition of (x.y)s that (v.y)s < liminf(a;.y;).
To get the other inequality we observe that, by 4.6.3, there are sequences ¥; — «
and y; — y satisfying
Zlglglo(wzyz) = (z.y)s
so that
(2i-9i) 2 min{(Zi.xi), (wiyi), (yi-vi) } — 26.

Now (#;.2;) — oo and (y;.y;) — o0, so, taking liminf of both sides gives
(z.y)s = liminf(7,.5;) > lim inf(z;.y;) — 26.

Proof of (5). By 4.6.3 there are sequences x; — « and y; — y satisfying

lim (2;.y:) = (z.y)s.

71— 00

Now, if z; — z is any sequence converging to z,

(;.y:) > min{(x;.2:), (z.9:)} — 9.
Taking the lim inf of both sides gives
(r.y)s > min{liminf(x;.z;), iminf(z;.y;)} — ¢
>min{(z.z)s, (z.y)s} — ¢

by 4.6.4.
Proof of (6). Suppose that y; — y satisfies

liminf(z.y)s < (z.y)s — € < (x.y)s.

By passing to a subsequence we can assume that (2.y;)s < (2.y)s — €. Then for

each 1, there is a sequence l’gl) — x with

lim‘inf(:zj;i).yi) < (r.y)s —¢€
j

Again passing to subsequences, we can assume that

(xgl).yi) < (x.y)s — e
Since l’gi) — x we can choose, for each 1, a j; satisfying (xif)x) > 1. This allows

us to define a sequence x; = xij) Then ; — = by 4.6.2 and

lminf(7;.yi) < (2.y)s —€ < (v.y)s

contradicting 4.6.4.
O
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Note: As the extended inner product (, )g, has all these properties, we shall hence-
forth drop the suffix, 5.

We now propose a basis of open sets for a topology on X.

Definition 4.7: Let B be the collection of subsets of X consisting of

(1) the usual basis for the metric topology on X, i.e. open neighbourhoods
B,(x) ={y € X,d(z,y) < r}, for each x € X and r > 0, and
(2) all sets of the form N, ={y € X |(z.y) > k}, for each # € X and k > 0.

Proposition 4.8. The set B is a basis for a topology.

Proof. We need to show that B satisfies the two requirements for a basis, 1.e. that
the elements of B form a cover of X and that if Bi,B; € B with y € By N By then
there is a By € B with y € Bs C By N Bs.

B has been chosen so that the first requirement is automatically satisfied. The
proof that B satisfies the second condition breaks up into cases occording to the
types of the two basis elements.

Case 1: If By and B; are both of type (1) the proof is the usual metric space
proof.

Case 2: If one of the neighbourhoods is of type (1) and one is of type (2) then the
neighbourhood Bj will be of type (1). We need to show that if y € B(z,e) N N,
then there is an € satisfying B(y,€') C B(z,e) N N, j.

Since y € B(x,€) there is an € satisfying B(y, ;) C B(x,€). On the other hand,
y € N.j means that (z.y) > k, so there is an e; with (z.y) > k + e > k. Set
¢ = min{e, e }.

It follows that B(y,€') C B(z,€). To see that B(y,e’) C N, let p € B(y,€')
and apply 4.6.3 to give a sequence z; — z satisfying

lim (z;.p) = (2.p).

1—> 00

As in the proof of 4.5.1,

[(zi.p) — (z5.y)] < d(p,y) < € < e,

so that
—€3 < (z5.p) — (z3.y) < €.

Applying lim inf to both sides gives

—€ez < liminf(z;.p) — liminf(z;.y) < e
= —e2 < (z.p) — liminf(z;.y) < €.

So by 4.5.1,
—€2 < (2.p) — (2.y).

= (z.p) = (2.p) = (z.y) + (z.y)
> (z.p) — (z.y) + k + €2
> —ey + k4 e
= k.
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Case 3: If both neighbourhoods are of type (2), we need to show that if
Y E NN Ny
then there is a Bs € B with
y € B3 C Ny N Ny

If y € X then this Bz will be of type (1). By Case 2, there is an €; with
B(y,e1) C Ny i and an e; with B(y,e2) C Ny . Letting € = min{e;, e} we get

B(y,E) C ]\7357]C N Nx’,k’-

If y € 0X then the neighbourhood Bs will be of type (2). Since Ny, C Ny,
for ry > ry it suffices to show that, if + € 0X and y € X N N, i, with y # z, then
there is an m satisfying Ny, C Ny .

Suppose that this is not the case. Then for each m there is a

Ym € (Nym) N (X — Nop),

ie. (y.ym) > m while (2.yn) < k. We consider two subcases:
3a) A subsequence of the y,,’s actually lies in X. By passing to this subsequence
we get (Ym.y) > m, (Ym-¢) < k and y,, € X. Thus by 4.6.2, y,, — y, giving a
contradiction since
E<(zy) < lin%inf(x.ym) <k,

where the second inequality follows from 4.6.6.

3b) Suppose only a finite number of the y,,’s lie in X. By passing to a subse-
quence we can assume all the y,,’s lie on 0X.

There is a k" such that

E<k'<(xy) < oo, while (2.y,,) <k <k

(m)

and (ym.y) > m. By 4.6.3 we can choose, for each m, a pair of sequences x, = — x

and y(m)

7

— Ym satisfying

lim(x(m).yl(m)) = (z.ym) <k <K'\

7

By excluding a finite number of terms, we can further assume that, for each m

and for each 1, (:L'Em).yl(m)) < k’. Since :L'Em) — & we can require that

(*) (:L'Em)x) > m,

for each 7 and m.
Similarily, since, by 4.6.6,

liminf(y!™.y) > (ym.y) > m
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we can require that

(%) (y:™ ) > m,

(2) (2)

for each ¢ and m. Now we define ¥; = ;" and y; = y, . Equations (%) and (#x*)
together with 4.6.2 give ¥; — = and y; — y. This gives a contradiction since

E < (z.y) = inf{liminf(x;.y;)}
<k
O
Note: With this topology on X, the inner product
(.):XxX >R

is not continuous. For suppose that =,y € 0X and we have a pair of sequences
x; — x and y; — y. Then, by 4.6.2, (z;.2) — oo so that

{2i} " Ny # 0 for all k.

Thus {a;} converges to x in the topological sense. Similarily, {y;} converges to y
in the topological sense. If ( . ) were continuous then we would have

(zi.y;) = (x.y).

However, as we have seen in the examples above, {(x;.y;)}; need not converge and
even lim inf(x;.y;) may not be (z.y).
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The Rips complex

In this section we describe Rips’ construction of a complex on which a word
hyperbolic group acts in an specially nice way, allowing one to deduce properties of
the group. More details on the construction, and some extensions of the methods
to automatic groups are given in J. Alonso’s preprint [A] (see also [CDP, chap.5]).

Theorem 4.11. (Rips)
A word hyperbolic group G acts simplicially on a simplicial complex P satisfying:

(1) P s contractible, locally finite and finite dimensional;
(2) on the vertices of P, G acts freely and transitively;
(3) the quotient complex P/G is compact.

Before giving the construction required to prove the theorem, we state several
corollaries:

Corollary 4.12. Let G be a word hyperbolic group.

(1) G s finitely presented and is of type FPo (i.e. Z has a free ZG resolution
of finite type).

(2) The fact the action is free on the set of vertices means that the stabilizer of
each simplex 1s finite.

(3) If G s torsion—free, then P/G is a finite K(G,1), and G is of type FL, and
has finite cohomological dimension (written c¢d(G) < o).

(4) If G is virtually torsion—free, then the virtual cohomological dimension s
finite (ved(G) < o0).

(5) Hi(G;Q) and H*(G; Q) are finite dimensional.

Proof of Corollary. (1)

To prove this, we quote the following theorem

Theorem. (K. Brown, [Br2])

Let X be a contractible G-complex such that the stabilizer of each cell 1s finitely
presented and of type FP.,. Suppose that X has a filtration by G-equivariant sub-
complezes {X;}j>1 such that each Xj 1s finite mod G. If in addition, for each j
there is a j' such that the inclusion maps induce trivial maps m (X;) — m1(X;)

and ﬁi(Xj) — ﬁi(Xj/), then G is finitely presented and of type F Ps,.

The filtration used in this context is the sequence of complexes Py defined below,
and a variation of the slight variation of the argument given in the proof of 4.14
shows that every finite subcomplex of Py collapses in some Py. (The details are
given in [A].)

(2) Let S be the stabilizer of the simplex {¢1,...,¢n}. Define a map from S to the
set of permutations of n letters by simply recording the action of each s € S on the
gi- By (2) in Rips’ Theorem, this map is injective so that S is finite.

(3) and (4) This follows from (1). Serre has shown that if G is virtually torsion—free,
then ved(G) < oo if and only if G acts on some contractible, finite dimensional CW
complex with finite stabilizers.

(5) A spectral sequence argument shows that H,.(G;Q) = H,.(P/G;Q) and
HY(G;Q) = H*(P/G; Q).

4
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We now build the complex P;. The standard resolution of a group G is obtained
by taking Y to be the simplex spanned by (. This has a vertex for each element
of GG, and a simplex for each finite subset of G.

Definition 4.13 Let X be a metric space, and let d be a positive real. We define the
simplicial complex P;(X) to have a vertex for each point in X, and a simplex for
each finite subset of X which has diameter at most d.

Proposition 4.14.

Let G be a finitely generated group and let T be the Cayley gaph of G with respect
to some finite set of generators, regarded as a metric space n the usual way. If T
is a d-hyperbolic metric space, then Py(T') is contractible for d > 4§ + 1.

Proof. As Py4(T') is simplicial, it is contractible if and only if 7;(Py(I')) = 0 for
all 7 > 0. It is sufficient to prove that every finite subcomplex K of Py(I') is
contractible. Choose the identity element zy as base point for G.

Case (i) m?xd(:po,y) < d/2.
yeEK®
Then K lies inside a simplex of P;(I"), and so is contractible.

Case (i) maxd(xo,y) > d/2.
yeKPO

Let yo be the point in K° furthest from x¢. Let y, be the point on a geodesic
from xg to yo such that d(yf, x0) = d(yo,x0) — [d/2], where [r] denotes the integral
part of r. We now define a function

f:EK® = Py(T) by f(yo)=wb, fly) =y, y € K° —{yo}.

Claim: f can be extended to a simplicial map K — Py(T").

We must show that whenever o is a simplex in K, f(o) is a simplex in Py(T").
But simplices of P4(I") consist of sets of elements of G of diameter at most d, so we
must show that

(%) Vy € K°, d(y,yo) < d=d(y,y,) < d

Recall that (sce Corollary 2.4) T is 6-hyperbolic if and only if for all z,y,z,¢ € T,
d(z,y) +d(z,t) <max{d(z,z) + d(y,t),d(x,t) + d(y,z)} + 20.

Replacing (z,y,2,t) by (¥, v, Yo, o), we get

d(y,yo) + d(x0,y0) < max{d(y,yo) + d(xo,45). d(yo, y5) + d(xo,y)} + 20

& d(y,yy) <

max{d(y,yo) + d(z0,y5) — d(x0,y0), d(y), yo) + d(y,z0) — d(x0,y0)} + 26
< max{d — [d/2],d/2} + 25 < d — [d/2] + 26.

This is < d when d > 46 + 1, as required.

It remains to show that f is homotopic to the inclusion map; but this fol-
lows immediately by noticing that f(o) U o is contained in a simplex of Py(T'),
as d(yo,yl) < d.
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