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Abstract

A geometric transition is a continuous path of geometric structures that changes type, mean-

ing that the model geometry, i.e. the homogeneous space on which the structures are modeled,

abruptly changes. In order to rigorously study transitions, one must define a notion of geometric

limit at the level of homogeneous spaces, describing the basic process by which one homogeneous

geometry may transform into another. We develop a general framework to describe limits of

geometries as sub-geometries of a larger ambient geometry. Specializing to the setting of real

projective geometry, we classify the geometric limits of any sub-geometry whose structure group

is a symmetric subgroup of the projective general linear group. As an application, we classify

all limits of three-dimensional hyperbolic geometry inside of projective geometry, finding Eu-

clidean, Nil, and Sol geometry among the limits. We prove, however, that the other Thurston

geometries, in particular H2 × R and S̃L2 R, do not embed in any limit of hyperbolic geometry

in this sense.

1 Introduction

Following Felix Klein’s Erlangen Program, a geometry is given by a pair (Y,H) of a Lie group H

acting transitively by diffeomorphisms on a manifold Y . Given a manifold of the same dimension

as Y , a geometric structure modeled on (Y,H) is a system of local coordinates in Y with transition

maps in H. The study of deformation spaces of geometric structures on manifolds is a very rich

mathematical subject, with a long history going back to Klein and Ehresmann, and more recently

Thurston. In this article we are concerned with geometric transition, an idea that was recently

promoted by Kerckhoff, and studied by Danciger in his thesis [10, 11]. A geometric transition is a

continuous path of geometric structures for which the model geometry (Y,H) abruptly changes to a

different geometry (Y ′, H ′). The process involves the limiting of the two different geometric struc-

tures to a common transitional geometry which, in some sense, interpolates the geometric features

of the two geometries. For this to make sense, one must define a notion of geometric limit at the

level of homogeneous spaces which describes the basic process by which one homogeneous geometry

may transform or limit to another. In this article we develop a general framework to describe such

geometric transitions, focusing on the special situation in which both geometries involved are sub-

geometries of a larger ambient geometry (X,G). Working in this framework, we then study limits

of certain sub-geometries of real projective geometry, giving an explicit classification in some cases.

The best-known examples of geometric transition arise in the context of Thurston’s geometriza-

tion program. For example, the transition between hyperbolic and spherical geometry, passing

through Euclidean geometry, was studied by Hodgson [19] and Porti [25] and plays an important

role in the proof of the orbifold theorem by Cooper, Hodgson, Kerckhoff [9], and Boileau, Leeb,

Porti [3]. More recently, a transition going from hyperbolic geometry to its Lorentzian analogue,
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anti de Sitter (AdS) geometry, was introduced by Danciger [10] and studied in the context of cone-

manifold structures on Seifert-fibered three-manifolds. The hyperbolic-AdS transition plays an

important role in very recent work by Danciger, Maloni, and Schlenker [13] on the classical subject

of combinatorics of polyhedra in three-space, which characterizes the combinatorics of polyhedra

inscribed in the one-sheeted hyperboloid, generalizing Rivin’s famous characterization of polyhe-

dra inscribed in the sphere. The transition between constant curvature Lorentzian geometries very

recently found applications in the setting of affine geometry. One of the most striking features differ-

entiating affine geometry from Euclidean geometry is the existence of properly discontinuous actions

by non-abelian free groups. In three-dimensions, such proper actions of free groups preserve a flat

Lorentzian metric and their quotients are called Margulis space-times. In [12], Danciger, Guéritaud,

and Kassel study Margulis space-times as limits of collapsing complete AdS three-manifolds, giving

related characterizations of the geometry and topology of both types of geometric structures. In

particular, they give a proof of the tameness conjecture for Margulis space-times [12] (also proved

using a different approach by Choi and Goldman [7]). Each of the results mentioned here involves

the construction of a geometric transition in some specialized geometric setting. The general clas-

sification program initiated by this paper seeks to expand the scope of transitional geometry to a

wide class of geometric contexts. We expect our results to be useful in a wide array problems, for

example the study of boundaries/compactifications of deformation spaces of geometric structures,

and the construction of interesting proper affine actions in higher dimensions.

Let us now illustrate the general context in which the construction of a geometric transition

is desirable. Consider a sequence Yn of (Y,H) structures on a manifold M , and suppose that

as n → ∞, the structures Yn fail to converge, meaning that the charts fail to converge as local

diffeomorphisms, even after adjusting by diffeomorphisms of M and coordinate changes in H. Of

central interest here is the case that the Yn collapse: The charts converge to local submersions

onto a lower dimensional sub-manifold of Y and the transition maps converge into the subgroup

of H that preserves this sub-manifold. Next suppose that (Y,H) is a sub-geometry of (X,G); this

means that Y is an open sub-manifold of X and H is a closed subgroup of G. The sequence Yn
of collapsing (Y,H) structures need not collapse as (X,G) structures, because the larger group G

of coordinate changes could be used to prevent collapse. In certain cases, one may find a sequence

(cn) ⊂ G, so that the conjugate structures cnYn converge to a (non-collapsed) (X,G) structure Y∞.

This limiting structure Y∞ is modeled on a new sub-geometry (Z,L) which is, in a sense to be

defined presently, a geometric limit of (Y,H).

Consider two sub-geometries (Y,H) and (Z,L) of (X,G). First, at the level of structure groups,

we say L is a limit of H, if there exists a sequence (cn) in G so that the conjugates cnHc
−1
n converge

to L in the Chabauty topology [6] on closed subgroups (i.e. cnHc
−1
n converges to L in the Hausdorff

topology in every compact neighborhood of G). If in addition there exists z ∈ Z ⊂ X so that z ∈ cnY
for all n sufficiently large, then we say (Z,L) is a geometric limit of (Y,H) as sub-geometries of

(X,G). See Section 2. The description of limit groups and limit geometries is in general a difficult

but important problem. A thorough description of the network of sub-geometries and how they limit

to one another is an important step in the study of transitioning geometric structures on manifolds.

The precise sequence of conjugations by which a particular limit geometry is obtained may indicate

how one should construct a path of transitioning geometric structures to and through that limit

geometry. Our main theorem (Theorem 1.1 below) is a classification of the limit geometries in a

certain special case. We also give the precise conjugation sequences needed to achieve each limit.

However, here we do not construct non-trivial examples of transitioning geometric structures on a

manifold that exhibit these changes of geometry.
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Symmetric subgroups

Let G be a semi-simple Lie group of noncompact type with finite center. A subgroup H ⊂ G is called

symmetric if H = Gσ is the fixed point set of an involution σ : G → G, or more generally Gσ0 ⊂
H ⊂ Gσ, where Gσ0 denotes the identity component of Gσ. The coset space G/H is called an affine

symmetric space. Affine symmetric spaces have a rich structure theory, generalizing the structure

theory of Riemannian symmetric spaces. In particular there is a Cartan involution θ : G → G

which commutes with σ. Let K = Gθ and g = k⊕ p the corresponding Cartan decomposition. The

involution σ analogously defines a decomposition of g = h⊕ q into (±1)–eigenspaces. An important

tool in determining the limits L of symmetric subgroups H is the following well-known factorization

result: Let b be a maximal abelian subalgebra of p ∩ q. Then any g ∈ G can be written as g = kbh

with k ∈ K, b ∈ B = Exp(b), and h ∈ H. Moreover b is unique up to conjugation by the Weyl group

WH∩K := NH∩K(b)/ZH∩K(b). Using this factorization theorem we can characterize all limits of

symmetric subgroups as follows (see Section 4 for a more precise version).

Theorem 1.1. Let H be a symmetric subgroup of a semi-simple Lie group G with finite center.

Then any limit L′ of H in G is the limit under conjugacy by a one parameter subgroup. More

precisely, there exists an X ∈ b such that the limit L = limt→∞ exp(tX)H exp(−tX) is conjugate

to L′. Furthermore,

L = ZH(X) nN+(X),

where ZH(X) is the centralizer in H of X, and N+(X) is the connected nilpotent subgroup

N+(X) := {g ∈ G : lim
t→∞

exp(tX)−1g exp(tX) = 1}.

In the special case when H = K (in other words σ is a Cartan involution), the limit groups

are determined by Guivarc’h–Ji–Taylor [16] and also by Haettel [17]. Moreover in these articles the

Chabauty-compactification of G/K is shown to be isomorphic to the maximal Satake-Furstenberg

compactification. The analysis leading to Theorem 1.1 bears a lot of similarity with the analysis

in [15], where the maximal Satake-Furstenberg compactification for affine symmetric spaces G/H

is defined. We would like to raise the question whether the Chabauty-compactification of G/H is

homeomorphic to its maximal Satake-Furstenberg compactification.

The groups G = PGLnK with K = R or C are of particular interest, since they are the structure

group for projective geometry. In this case, Theorem 1.1 implies that the limits of symmetric

subgroups have a nice block matrix form. Let H ⊂ PGLnK be a symmetric subgroup and let L be

a limit of H. Then, there is a decomposition Kn = E0⊕ · · ·⊕Ek of Kn with respect to which L has

the following block form: 
A1 0 0 · · · 0

∗ A2 0 · · · 0

∗ ∗ A3 · · · 0

· · · · · · · · · · · · · · ·
∗ ∗ ∗ · · · Ak

 .

Here, the blocks denoted ∗ are arbitrary, and the diagonal part diag(A1, . . . , Ak) is an element

of H. The groups POnC, P(GLpC×GLqC), P Sp(2m,C), where n = 2m, PGLnR, PU(p, q), where

n = p + q, and SL(m,H), where n = 2m are some of the symmetric subgroups of PGLnC. The

symmetric subgroups of PGLnR are P(GLpR×GLqR), PO(p, q), where p+ q = n, or P Sp(2m,R)

and P(GL(m,C)), where n = 2m. See Section 4 for a full characterization of the limit groups in

each of these cases.
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Limits of constant curvature semi-Riemannian geometries.

Let β denote a quadratic form on Rn of signature (p, q), meaning β ∼ −Ip ⊕ Iq. The group

P Isom(β) = PO(p, q) acts transitively on the domain

X(p, q) = {[x] ∈ RPn−1 : β(x) < 0} ⊂ RPn−1,

with point stabilizer isomorphic to O(p − 1, q). The geometry (X(p, q),PO(p, q)) is the projective

model for semi-Riemannian geometry of constant curvature, of dimension p+ q− 1 and of signature

(p− 1, q). In the cases (p, q) is (n, 0), (1, n− 1), (n− 1, 1) or (2, n− 2) we obtain spherical geometry,

hyperbolic geometry, de Sitter geometry, and anti de Sitter geometry respectively.

By applying Theorem 1.1, we characterize the limits of these constant curvature semi-Riemannian

geometries inside real projective geometry. Here is a brief description of the limit geometries.

A partial flag F = {V0, V1, · · ·Vk+1} of Rn is a descending chain of vector subspaces

Rn = V0 ⊃ V1 ⊃ · · · ⊃ Vk ⊃ Vk+1 = {0}.

A partial flag of quadratic forms β = (β0, · · · , βk) on F is a collection of non-degenerate quadratic

forms βi defined on each quotient Vi/Vi+1 of the partial flag. Define Isom(β,F) to be the group of

linear transformations which preserve F and induce an isometry of each βi, and denote its image in

PGLnR by P Isom(β,F). Define the domain X(β) ⊂ RPn−1 by

X(β) := {[x] ∈ RPn−1 : β0(x) < 0}.

Then P Isom(F ,β) acts transitively on X(β). When the flag and quadratic forms are adapted to

the standard basis, we denote X(β) and Isom(β) by

X(β) =: X((p0, q0), . . . , (pk, qk)),

Isom(β) =: O((p0, q0), . . . , (pk, qk))

=


O(p0, q0) 0 0 · · · 0

∗ O(p1, q1) 0 · · · 0

∗ ∗ O(p2, q2) · · · 0

· · · · · · · · · · · · · · ·
∗ ∗ ∗ · · · O(pk, qk)

 ,

where ∗ denotes an arbitrary block. Note that X(β) is non-empty if and only if p0 > 0. As a

set, the space X((p0, q0) . . . (pk, qk)) depends only on the first signature (p0, q0) and the dimension

n =
∑
i(pi+ qi). However, we include all k signatures in the notation as a reminder of the structure

determined by PO((p0, q0), . . . , (pk, qk)).

Theorem 1.2. The limits of the constant curvature semi-Riemannian geometries (X(p, q),PO(p, q))

inside (RPn−1,PGLn R) are all of the form (X(β),P Isom(F ,β)). Further, X(β) is a limit of X(p, q)

if and only if p0 6= 0, and the signatures ((p0, q0), . . . , (pk, qk)) of β partition the signature (p, q) in

the sense that

p0 + · · ·+ pk = p and q0 + · · ·+ qk = q,

after exchanging (pi, qi) with (qi, pi) for some collection of indices i in {1, . . . , k} (the first signature

(p0, q0) must not be reversed).

See Section 5.1 for a detailed discussion of these partial flag geometries.
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The Thurston geometries

One motivation for our work is the study of transitions between the eight three-dimensional Thurston

geometries, homogeneous Riemannian geometries which play an essential role in the classification

of compact three-manifolds. Since each of the eight geometries (almost) admits a representation in

real projective geometry [23], [28], it is natural to study transitions between them in the projective

setting.

From the point of view of Thurston’s picture of hyperbolic Dehn surgery space, one expects

to find five of the eight Thurston geometries as limits of hyperbolic geometry. There are various

methods, due to Porti and collaborators [25, 26, 20], to realize Euclidean, Nil, and Sol geometry

structures as limits of certain families of collapsing hyperbolic structures. However, efforts to realize

the Thurston geometries which fiber over the hyperbolic plane, namely H2 × R and S̃L2 R, as

limits of three-dimensional hyperbolic geometry have so far proved fruitless. Many Seifert-fibered

three-manifolds which admit a structure modeled on either H2 × R or S̃L2 R also admit hyperbolic

cone-manifold structures with cone angles arbitrarily close to 2π. Commonly in examples, such

structures are found to collapse down to a hyperbolic surface (the base of the Seifert fibration)

as the cone angle increases to 2π. Recent work of Danciger [10, 11] shows that in this context,

the most natural sequence of conjugacies in projective space yields a non-metric geometry called

half-pipe geometry as limit. However, Danciger’s construction does not rule out the possibility that

some other clever sequence of conjugacies could produce H2 × R or S̃L2 R geometry as limit. As

an application of Theorem 1.2, we enumerate the limits of hyperbolic geometry inside of projective

geometry and prove:

Theorem 1.3. The Thurston geometries which locally embed in limits of hyperbolic geometry (within

real projective geometry) are : E3, Solv geometry, and Nil geometry. In particular, neither H2 × R
nor S̃L2 R locally embed into any limit of hyperbolic geometry.

In future work we intend to give a complete description of the possible transitions between the eight

Thurston geometries.

Structure of the paper

In Section 2 we introduce the notion of (geometric) limits of groups and limits of geometries and

revisit the transition from hyperbolic geometry through Euclidean geometry to spherical geometry

(within real projective geometry). In Section 3 we describe several notions of limits of groups,

illustrate their differences, show when they agree, and describe some basic properties of geometric

limits of real algebraic Lie groups. In Section 4 we recall the basic structure theory of affine

symmetric spaces, and prove (a more descriptive version of) Theorem 1.1, determining the limit

groups of symmetric subgroups. We then apply the theorem to give explicit descriptions of the limits

of symmetric subgroups of the general linear group. The limit geometries of the semi-Riemannian

real hyperbolic geometries in terms of partial flags geometries are described in Section 5. In the end

of that section we discuss the applications to Thurston geometries.
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2 Limits of Geometries

Definition 2.1. A geometry is a pair (X,G) where G is a Lie group acting transitively by analytic

maps on a connected, smooth manifold X.

The requirement in the definition that the action be transitive implies that X identifies with G/Gx,

where Gx denotes the stabilizer of a point x ∈ X. Note that we do not require the point stabilizer

Gx to be compact. Some examples of geometries are

(1) Euclidean geometry En: The space X = Rn and the structure group G is the semi-direct

product of the orthogonal group O(n) and the translation group Rn.

(2) Spherical geometry Sn: The space X is the unit sphere in Rn+1 and the group G is the

orthogonal group O(n+ 1).

(3) Hyperbolic geometry Hn: The space X = {[x] ∈ RPn : −x2
n+1 +x2

1 + · · ·+x2
n < 0} is the set of

negative lines with respect to the standard quadratic form of signature (1, n). The structure

group G = PO(1, n) is the group of projective transformations preserving X.

(4) Real projective geometry: X = RPn, G = PGLn+1 R.

Definition 2.2. Given geometries (X,G) and (X ′, G′) a morphism (X,G) → (X ′, G′) is a Lie

group homomorphism Φ : G → G′ such that for some (and hence any) x ∈ X there is an x′ ∈ X ′
such that Φ(Gx) ⊂ G′x′ . The map Φ induces an analytic map F : X → X ′ defined by F (x) = x′ and

the property that F is Φ-equivariant:

F (g · y) = Φ(g)F (y).

The map Φ defines an isomorphism of geometries if Φ is an isomorphism of Lie groups and Φ(Gx) =

G′x′ . If Φ is surjective, we say (X,G) fibers over (X ′, G′).

Recall that a local homomorphism ϕ : G 99K G′ of Lie groups is a map ϕ : V → G, defined on a

neighborhood V of the identity in G, such that ϕ(gh) = ϕ(g)ϕ(h) and ϕ(g)−1 = ϕ(g−1) whenever all

terms are defined. A local homomorphism ϕ is a local isomorphism if ϕ is locally injective, meaning

injective when restricted to some small neighborhood of the identity in G, and locally surjective,

meaning has image containing a small neighborhood of the identity in G′. Note that if g and g′

denote the Lie algebras of G and G′, then the differential ϕ∗ : g → g′ of a local homomorphism of

Lie groups ϕ is a homomorphism of Lie algebras ϕ∗ : g→ g′ and conversely any homomorphism of

Lie algebras is the differential of a local homomorphism of Lie groups as above.
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Definition 2.3. A local morphism of geometries (X,G) 99K (X ′, G′) is a local homomorphism

ϕ : G 99K G′ such that for some (and hence any) x ∈ X, there is an x′ ∈ X ′ with the property

that the restriction of ϕ to Gx has image in G′x′ . The local homomorphism ϕ induces a local

analytic map f : X 99K X ′, defined on a neighborhood of x, which is locally ϕ-equivariant, meaning

f(g · y) = ϕ(g)f(y) whenever all terms are defined. The local morphism is a local isomorphism if ϕ

is a local isomorphism G 99K G′ and ϕ restricts to a local isomorphism Gx 99K G′x′ .

Note that given ϕ as in the definition, the differential ϕ∗ : g → g′ satisfies that ϕ∗(gx) ⊂ g′x′ ,

where gx and g′x′ are the Lie algebras of the point stabilizers Gx and G′x′ . Conversely a Lie algebra

homomorphism g→ g′ taking infinitesimal point stabilizers into infinitesimal point stabilizers (which

could be called an infinitesimal morphism of geometries) determines a local morphism of geometries.

The map ϕ : G 99K G′ determines a local isomorphism if and only if ϕ∗ is an isomorphism and

ϕ∗(gx) = g′x′ .

If G is connected then the universal cover (X̃, G̃) −→ (X,G) of a geometry (X,G) is defined as

follows: Let Gx ⊂ G be the stabilizer of a point x ∈ X so that X = G/Gx. Then G̃ → G is the

universal covering Lie group of G, and X̃ = G̃/G̃x, where G̃x ⊂ G̃ is the identity component of the

inverse image of Gx. Indeed X̃ → X is the universal cover of X. Note that the action of G̃ on X̃

might not be faithful, even if the action of G on X was faithful. In this case, one may replace G̃ with

its quotient by the kernel of the action. Every geometry is locally isomorphic to its universal cover.

A local morphism (resp. local isomorphism) of geometries induces a morphism (resp. isomorphism)

of the universal covering geometries.

Definition 2.4. The geometry (Y,H) is a subgeometry of (X,G), written (Y,H) ⊂ (X,G), if H

is a closed subgroup of G and Y is an open subset of X on which H acts transitively. We say

that a geometry (Y,H) locally embeds in (X,G) if (Y,H) is locally isomorphic to a subgeometry

(Y ′, H ′) ⊂ (X,G).

For example, both hyperbolic and Euclidean geometry, in the forms described above, are sub-

geometries of real projective geometry. Spherical geometry is a two fold covering of a subgeometry

of projective geometry, and therefore spherical geometry locally embeds in projective geometry but

it is not a subgeometry. Similarly, the Thurston geometry known as S̃L2 R is not a subgeometry of

projective geometry, but it does locally embed.

In this article we are concerned with limits of geometries, in particular with limits of subgeome-

tries of a given geometry (X,G). First we introduce the notion of limit of closed subgroups.

Definition 2.5.

1. A sequence Hn of closed subgroups of a Lie group G converges geometrically to a closed

subgroup L if every g ∈ L is the limit of some sequence hn ∈ Hn, and if every accumulation

point of every sequence hn ∈ Hn lies in L. We also say that L is the geometric limit of the

sequence Hn. Note that L is the geometric limit of Hn if and only if Hn converges to L in the

Chabauty topology on closed subgroups.

2. We say L is a conjugacy limit (or just limit) of H if there exists a sequence cn ∈ G so that

the conjugate groups Hn = cnHc
−1
n converge geometrically to L.

The set C(G) of closed subgroups with the Chabauty topology is a compact space [6], [4], [14], so

for every sequence of closed subgroups there is some subsequence which has a geometric limit. We

on the set of all closed subsets of a non-compact space is commonly defined to be the topology of

Hausdorff convergence in compact neighborhoods. The Chabauty topology is simply the subspace

topology on the set of closed subgroups.
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Definition 2.6.

1. A sequence of subgeometries (Yn, Hn) ⊂ (X,G) converges to the subgeometry (Z,L) ⊂ (X,G)

if Hn converges geometrically to L and there exists z ∈ Z ⊂ X such that for all n sufficiently

large z ∈ Yn.

2. We say that a subgeometry (Z,L) is a conjugacy limit (or just limit) of (Y,H) if there exists

a sequence gn ∈ G so that the sequence of conjugate subgeometries (gnY, gnHg
−1
n ) converges

to (Z,L).

The motivating situation, as described in the introduction, is that of collapsing (Y,H) structures

on a manifold: structures for which each chart (or alternatively the developing map) collapses to

a local submersion onto a lower-dimensional subset N of Y and each transition map (alternatively

the holonomy representations) converges into some smaller subgroup P ⊂ H that preserves N . The

goal is to conjugate the (Y,H)-structures inside of (X,G), so that the charts (developing maps) no

longer collapse and the transition maps (holonomy representations) converge into some limit group

L of H which contains P . Then, setting Z = L ·N , the geometry (Z,L) is a limit of (Y,H) in the

sense of Definition 2.6 and the limiting geometric structure is a (Z,L) structure.

2.1 The transition from spherical to Euclidean to hyperbolic

Let us now illustrate the definitions in a familiar example.

Consider the path of quadratic forms βt = −x2
n+1− t(x2

1 + · · ·+x2
n) on Rn+1, and assume t ≥ 0.

These quadratic forms define sub-geometries (X(βt),PO(βt)) of projective geometry where

X(βt) = {[x] ∈ RPn : βt(x) < 0},

PO(βt) = P {A ∈ GL(n+ 1) : A∗βt = βt} .

For all t > 0, PO(βt) is conjugate to PO(β1) which is the standard copy of PO(n + 1), and the

geometry (X(βt),PO(βt)) is conjugate to the standard realization (found at t = 1) of spherical

geometry Sn as a (covering) sub-geometry of projective geometry. The element ct ∈ PGL(n + 1)

conjugating (X(β1),PO(β1)) to (X(βt),PO(βt)) is the diagonal matrix ct = diag(1/
√
t, . . . , 1/

√
t, 1)

with the first n diagonal entries equal to 1/
√
t and the final diagonal entry equal to one (note

c∗tβt = β1). This corresponds to scaling the plane Rn ⊂ Rn+1 spanned by the first n coordinate

directions.

At time t = 0, the quadratic form becomes degenerate. The group preserving β0 is simply the

group of matrices that preserve the last coordinate |xn+1|; this is a copy of the affine group

Aff(n) =

{(
A b

0 1

)}
⊂ PGL(n+ 1,R).

However, the affine group is not the limit of the groups PO(βt) as t→ 0+. In fact, the limit of the

conjugate subgroups PO(βt)) as t → 0+ is the group of Euclidean isometries. In order to simplify

the discussion, let us demonstrate this at the level of Lie algebras. The Lie algebra so(βt) of PO(βt)

is conjugate to the Lie algebra so(β1) = so(n+ 1):
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so(βt) =


√
t
−1

√
t
−1

. . .

1




0 aij
...

. . . b

−aji
. . .

...

. . . −bT . . . 0



√
t √

t
. . .

1



=


0 aij

...
. . .

√
t
−1
b

−aji
. . .

...

. . .
√
tbT . . . 0

 .

It is easy to read off the limit Lie algebra via the following heuristic reasoning. To find an element

of the limit Lie algebra, we are allowed to vary the entries aij , b of the matrix as t→ 0+ in any way

that produces a limit. Since
√
t
−1 → ∞, it follows that we must have b = O(

√
t). Thus the limit

Lie algebra has the form:

lim
t→0+

so(βt) =


0 aij

...
. . . b′

−aji
. . .

...

. . . 0 . . . 0

 = isom(En)

where b′ can be any column vector. We recognize this limit as the Lie algebra of the subgroup of

the affine group preserving the standard Euclidean metric on the affine patch xn+1 6= 0. In fact, it

is only slightly more difficult to show that the limit of the Lie groups PO(βt) is indeed the group of

Euclidean isometries

Isom(En) = P

((
O(n)

±1

)
n
(
In Rn

1

))
.

To determine the limit of the homogeneous spaces X(βt), we use Definition 2.6. Consider any point

z in the affine patch En = {[x] : xn+1 6= 0}. Then, of course z is in X(βt) = RPn for all t > 0. Note

that if we choose z to be the usual origin of En, then z is fixed by ct. The notion that the limit of

a constant sequence of spaces (RPn) could be anything other (En) than that space again may seem

counter-intuitive. However, the important thing to realize is that the orbit of z under the groups

PO(βt) is RPn while the orbit of z under the limit group Isom(En) is now the smaller space En.

This is indeed the relevant notion of limit in the context of geometric structures.

Next, for t < 0, the βt have signature (1, n) and the corresponding sub-geometries (X(βt),PO(βt))

are all conjugate to the standard copy (X(β−1),PO(β−1)) of the projective model for hyperbolic space

Hn. The reasoning above applies similarly in this case to show that the limit of PO(βt) as t→ 0−

is again the group Isom(En) of Euclidean isometries. In this case the spaces X(βt) are expanding

balls in RPn which eventually engulf any point z in the affine patch En = {[x] : xn+1 6= 0}. Thus

(En, Isom(En) is the limit of (X(βt),PO(βt)) as t→ 0−.

It is worth noting that this transition of homogeneous spaces can be seen nicely in terms of

certain quadric hyper-surfaces in Rn+1. For, the level sets of the quadratic forms βt are either

ellipsoids if t > 0, or hyperboloids of two sheets if t < 0. Any such level set βt = −k is preserved

by the lift O(βt) of PO(βt) and projects (two to one) to X(βt) in projective space; hence it gives a

9



nice model for the same geometry. In the case t = 1, the level set βt = −1 is the unit sphere and

describes the standard model for spherical geometry, while in the case t = −1, the level set βt = −1

is the standard hyperboloid model for hyperbolic geometry. Note that for all t, the level set βt = −1

contains the two points (0, . . . , 0,±1). As t → 0 (from either direction), the limit of the surfaces

βt = −1, in the topology of Hausdorff convergence on compact sets, is the surface β0 = −1, which

is two parallel affine hyper-planes xn+1 = ±1. See Figure 1. If one wishes, one may define invariant

metrics on the X(βt) which transition from uniform positive curvature to uniform negative curvature

as t changes from positive to negative. However, its important to note that there is no natural such

continuous path of metrics defined from the ambient geometry. In particular, the natural metric

on the surfaces βt = −1 induced by the quadratic forms βt have curvature +1 when t > 0 and

curvature −1 when t < 0 (and of course, β0 itself does not define any metric). Hence the projective

geometry formulation of the transition from spherical to Euclidean to hyperbolic is independent of

any metric formulation.

t = −1

t = − 1
2

t = 0

t = 1
2

t = 1

Figure 1: Ellipsoids and hyperboloids defined by βt = −1 limit as t→ 0 to a pair of opposite affine

hyperplanes (only one of these planes is drawn).

3 Limits of Groups

Classifying the limits of closed subgroups H of G is the central problem when classifying the limits

of a sub-geometry (Y,H) in (X,G). Thus in the next two sections, we restrict our attention to limits

of Lie groups and momentarily forget about homogeneous spaces.

We are mainly interested in geometric limits of Lie subgroups (Definition 2.5). However, there

are other inequivalent definitions of limit of a group, and it is helpful to understand how they differ

and when they coincide. We explore a few of these alternative notions in Section 3.1 and illustrate

them through examples in Section 3.2. In Section 3.3 we derive some basic properties of geometric

limits of linear algebraic Lie groups.

3.1 Various notions of limit

Let Hn be a sequence of closed Lie subgroups, of constant dimension, of the Lie group G. We

introduced the geometric limit of Hn in Definition 2.5. Here are several related notions of limit.

(1) The connected geometric limit lim0Hn is the connected component of the identity in the geo-

metric limit. In general this is different than the geometric limit of the connected component
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of the identity.

(2) In the specific case that Hn = cnHc
−1
n are all conjugate, we may define the local geometric

limit, denoted local-limHn, as the union of the geometric limits of conjugates cnCc
−1
n of

compact neighborhoods C ⊂ H of the identity. It might have smaller dimension than H.

This limit is contained in the geometric limit, but excludes conjugates of elements moving

to infinity. One may also define a notion of local geometric limit with respect to a subgroup

P ⊂ H; this means the union of geometric limits of neighborhoods of the form P · C for C a

compact neighborhood of the identity.

(3) Very much related to the local geometric limit is the notion of expansive limit. Again, we work

in the case that Hn = cnHc
−1
n are all conjugate and we consider a subgroup P ⊂ H, such that

cnPc
−1
n = P . A (local) geometric limit is called an expansive limit, if every element of the

limit group L is of the form ` = lim cnhnc
−1
n , for some sequence hn ∈ H with hn → h∞ ∈ P .

Intuitively, an expansive limit is a limit obtained by blowing up an infinitesimal neighborhood

of P . Expansive limits are often the relevant limits to study in the context of collapsing

geometric structures and geometric transitions. See discussion following Definition 2.6. In

Section 4, we will demonstrate that all limits of symmetric subgroups of semi-simple Lie

groups are expansive.

(4) The Lie algebra limit is the Lie sub-algebra of g = Lie(G) obtained from the limit of the

sequence of Lie subalgebras hn ⊂ g of the subgroups Hn. As the hn are vector sub-spaces of g,

we may (up to subsequence) extract a limit l, which is a vector subspace of the same dimension

as the hn and in fact a Lie sub-algebra. Then l defines a local group near the identity in G

and generates a subgroup that we call a-limHn. It has the same dimension as the Hn. Note,

however, that this subgroup might not be closed. We call the closure of a-limHn the algebraic

limit, denoted a-limHn. It is a connected Lie subgroup which might have larger dimension

than the Hn.

(5) Let us return to the case that the groups Hn = cnHc
−1
n are conjugate subgroups of G. In

this case, the Lie algebra limit is related to the notions of contraction and degeneration of

a Lie algebra [5, 21]. The definitions of degeneration and contraction of a Lie algebra h is

independent of any embedding of h into a larger Lie algebra. Specifically, a degeneration

of h is determined by taking limits of the structure constants with respect to some (non-

convergent) sequence of bases of h. In our context, the limiting Lie sub-algebra l of the

sequence hn = Adcn h is always a degeneration of h, when h and l are regarded as abstract Lie

algebras. In most cases l is not a contraction of h in the sense of Inönü-Wigner.

(6) Although we do not pursue it here, there is also a notion of geometric limit of a Lie group that

does not involve conjugacy inside a larger group. It is based on the idea that an arbitrarily

large compact subset of the limit is almost isomorphic to a (possibly small) subset of the

original group. A Lie group L is an intrinsic limit of a Lie group G if for every compact

subset C ⊂ L and ε > 0 there is an open set U ⊂ G and an immersion f : U −→ L such

that f(U) ⊃ C and f is ε-close to an isomorphism in the sense that if a, b, ab ∈ C there are

α, β, αβ ∈ U with f(α) = a, f(β) = b and dL(f(αβ), ab) < ε. Here dL is a metric on L. It is

easy to see that if L is a geometric limit of a closed subgroup H of a Lie group G then L is

an intrinsic limit of H in this sense. Moreover, this definition extends in an obvious way to

pairs (H,K) with K a closed subgroup of H and gives a notion of limit of the homogeneous

geometry H/K independent of an ambient geometry G/R.
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3.2 Examples of limits of groups

We now give some examples to demonstrate various possible behavior of limits. In what follows we

make use of three 1-parameter subgroups of SL(2,R):

D(t) =

(
cosh(t) sinh(t)

sinh(t) cosh(t)

)
, R(t) =

(
cos(t) − sin(t)

sin(t) cos(t)

)
, P (t) =

(
1 t

0 1

)
,

All groups in this section will be groups of matrices, described in terms of at most three parameters

t, s, u ∈ R. Whenever one of these parameters is present, the reader is meant to take the union over

such matrices for all possible values of the parameters. We will abuse notation as such throughout,

because it is cumbersome to write the definitions properly using set notation.

(1) Let cn =

(
n 0

0 n−1

)
. Then as n → ∞, the sequence of conjugates cnD(t)c−1

n ⊂ SL(2,R)

converges (for all notions of limits introduced above) to the parabolic subgroup P (t).

(2) In SL(2,R) the sequence of conjugates cnR(t)c−1
n , with cn as in (1), converges geometrically

to the parabolic subgroup ±P (t) with two connected components. This illustrates that the

geometric limit of a connected group might not be connected.

(3) A subgroup of SL(3,R) containing non-diagonalizable elements may have a geometric limit

containing only diagonal elements:

lim
n→∞

 1/n 0 0

0 n 0

0 0 1

 1 t 0

0 1 0

0 0 e−2t

 1/n 0 0

0 n 0

0 0 1

−1

=

 1 0 0

0 1 0

0 0 e−2t


(4) Next, we give an example of a one-dimensional group with a two-dimensional conjugacy limit.

Let H be the 1-parameter closed subgroup of SL(4,R) defined by

H =

(
P (t) 0

0 R(t)

)
The geometric limit under conjugacy by cn = diag(n−1, n, 1, 1) is two dimensional:

lim
n→∞

cnHc
−1
n =

(
P (s) 0

0 R(t)

)
,

where t, s are independent parameters. The group H is a one-parameter subgroup of R× S1

that looks like a helix, and conjugating by cn coils the helix more tightly. The algebraic limit

is the one-dimensional group

a- lim
k→∞

PkHP
−1
k =

(
I 0

0 R(t)

)
because the limit of Lie algebras is described by:

0 n−1t

0 0

0 −t
t 0

 −−−−→n→∞


0 0

0 0

0 −t
t 0

 .
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In fact, the local geometric limit is also strictly smaller than the geometric limit; it coincides

with the algebraic limit. This is because every element with non-trivial entries in the P (s)

block of the geometric limit comes from a sequence of elements of H which go to infinity.

(5) To construct a limit of a connected group with infinitely many components, consider again

the group from (4):

H =

(
P (t) 0

0 R(t)

)
.

The geometric limit under conjugacy by the sequence cn = diag(1, 1, n, n−1) is

L =

{(
P (Nπ) 0

0 (−1)NP (t)

)
: N ∈ Z, t ∈ R

}
and this has countably many components.

(6) Next, here is an example where the conjugacy limit of a group is a proper subgroup of itself.

Consider the group L from (5). Now conjugate L by the sequence cn = diag(n, n−1, 1, 1). The

limit is:

L′ =

(
I2 0

0 P (t)

)
.

(7) The following subgroup of GL(6,R) has infinitely many non-conjugate geometric limits. Fix

α and define

H = H(s, t) =


es 0 0 0 0

0 et 0 0 0

0 0 1 s t

0 0 0 1 0

0 0 0 0 1

 cn =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 n αn

0 0 0 n n−1 + αn


Then

cnHc
−1
n =


es 0 0 0 0

0 et 0 0 0

0 0 1 n−1 + n(αs− t) −n(αs− t)
0 0 0 1 0

0 0 0 0 1


The limit as n→∞ is the two-dimensional group

Lα = Lα(s, u) =


es 0 0 0 0

0 eαs 0 0 0

0 0 1 u −u
0 0 0 1 0

0 0 0 0 1


Consideration of the character shows that if α 6= β then Lα is not conjugate to Lβ .

(8) We modify the previous example to obtain algebraic limit groups. For β ∈ R define a two-

dimensional representation of R2 by

σβ : R2 −→ SL(2,R) σβ(x, y) =

(
1 βx− y
0 1

)
,
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and define also the two-dimensional representation of R2, by

τ(s, t) =

1 s t

0 1 0

0 0 1

 .

Now define a three-parameter algebraic subgroup H(r, s, t) of SL(11,R) as a direct sum of

representations

H(r, s, t) = σ0(r, s)⊕ σ1(r, s)⊕ σ2(r, s)⊕ σ1(t, r)⊕ τ(s, t).

Let cn = Id9 ⊕ bn, where bn =

(
n αn

n n−1 + αn

)
. Then the limit of H under conjugacy by cn

is the algebraic group

Lα(r, s, u) = σ0(r, s)⊕ σ1(r, s)⊕ σ2(r, s)⊕ σ1(αs, r)⊕ τ(u,−u).

We claim that the function which sends α ∈ R to the conjugacy class of Lα is finite to one.

This requires an invariant.

Given a unipotent representation ρ : RN −→ SL(k,R) and 0 6= x ∈ RN , the nullity of (ρ(x)−
Id) only depends on [x] ∈ RPN−1. This defines a function Nρ : RPN−1 −→ {0, 1, · · · , k}. If

ρ and ρ′ have conjugate images there is a projective transformation T ∈ PGL(N,R) such that

Nρ′ = Nρ ◦ T .

Thinking of Lα, in the above example, as a representation of R3 in terms of the parameters

r, s, u, we have that NLα([r : s : u]) = 8 iff u = 0 and [r : s] is one of four points

[1 : 0], [1 : 1], [1 : 2], [1 : α]

on the projective line [∗ : ∗ : 0] in RP 2. The cross ratio of {0, 1, 2, α}, up to the action

of the finite group that permutes these points, provides an invariant which shows there is a

continuum of non-conjugate Lα.

3.3 Properties of limits

As we saw in the previous section, it is possible for the dimension of a subgroup to increase under

taking limits. However, in the algebraic setting, this does not happen. Therefore, in this setting,

the connected component of the geometric limit (the connected geometric limit) is equal to the

Lie algebra limit (the group generated by taking the limit at the Lie algebra level first and then

exponentiating).

Proposition 3.1. Let G be an algebraic group (defined over C or R). Suppose that H is an algebraic

subgroup and L a conjugacy limit of H. Then L is algebraic and dimL = dimH.

Proof. Suppose cn ∈ G and Hn = c−1
n Hcn converges in the Chabauty topology to a subgroup L.

Assume, for contradiction, that dimL > dimH. Then for every neighborhood U of the identity in

G the number of connected components of U ∩Hn goes to infinity as n → ∞. Let V be a variety

of dimension dimG − dimH passing through the identity, and smooth there. Choose V so that it

is transverse to each Hn (for n sufficiently large) in a fixed neighborhood U of the identity. The set

V ∩Hn ∩U is a finite set of points, with cardinality going to infinity as n goes to infinity. However,

this is impossible, because the degree of the variety V is constant and the degree of the varieties Hn
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is also constant equal to that of H. Therefore the degree of V ∩Hn is bounded and the cardinality

of the finite sets V ∩Hn ∩ U must also be bounded.

In the case G is defined over C, the fact that the limit group L is algebraic follows from a theorem

of Tworzewski and Winiarski [29] using work of Bishop [2]. They showed that the set of all pure

dimensional algebraic subsets of Cn of bounded degree is compact in the topology of local uniform

convergence. From this one may deduce the case G is defined over R by complexification.

Note that Proposition 3.1 applies also when G is the connected component of an algebraic group.

In particular Proposition 3.1 holds when G is the general or special linear group over R or C, and

also when G = PGL(n,R), which are the main cases of interest in this article.

Next, we investigate the behavior of multiple limits taken in succession, with the goal of showing

that the relation “L is a limit of H” induces a partial order of the space of closed subgroups of G.

To begin, we study the behavior of the normalizer. Given a closed subgroup H of G, let H0 denote

its identity component. The normalizer of H0 in G will be denoted NG(H0).

Proposition 3.2. Let G be an algebraic Lie group (defined over C or R), let H be an algebraic

subgroup and let L be any limit of H. Then dimNG(H0) ≤ dimNG(L0) with equality if and only if

L and H are conjugate.

Proof. Let h and l denote the Lie algebras of H and L respectively. Then the normalizers NG(H0)

and NG(L0) are equal to the normalizers of the respective Lie algebras NG(h) and NG(l). By

Proposition 3.1, dim h = dim l =: k. So h and l define points in the projectivization PV of the

kth exterior power V = Λkg. The orbit G · h under the adjoint action of G is a smooth subset of

PV corresponding to the Lie algebras of conjugates of H. The closure (in the classical topology)

G · h, which contains l, is a union of G · h and orbits of strictly smaller dimension (in the case that

G is defined over R, this follows because the orbit G · h is semi-algebraic by the Tarski-Seidenberg

theorem). If l ∈ G · h, then L is conjugate to H and, of course, NG(L0) is conjugate to NG(H0).

Assume then that l ∈ G · h \G · h, so that dimG · l < dimG · h. Then

dimNG(l) = dimG− dimG · l
> dimG− dimG · h = dimNG(h).

Let Grp0(G) denote the set of conjugacy classes of connected, algebraic, Lie subgroups of an

algebraic Lie group G. If L is the connected geometric limit of H under some sequence of conjugacies

(so L is the identity component of a limit of H), then we write H →0 L.

Theorem 3.3. Let G be an algebraic Lie group. The relation of being a connected geometric limit

induces a partial order on the connected, algebraic, sub-groups Grp0(G). Moreover the length of

every chain is at most dimG.

Proof. It follows from Proposition 3.2 that H →0 L and L →0 H implies L is conjugate to H.

It remains to show transitivity. Suppose limHn = L and K = limLm with Hn = anHa
−1
n and

Lm = bmLb
−1
m . Let C(G) denote the closed subgroups of G, equipped with the Chabauty topology

(i.e. the topology of Hausdorff convergence in compact sets). The map θm : C(G) −→ C(G) given

by θm(P ) = bmPb
−1
m is continuous. Hence limn→∞ θm(Hn) = Lm in C(G). It follows there is a

sequence θmn(Hn) which converges to K in C(G).
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Now we restrict our attention to the case when G is locally isomorphic to GLnR. If L is a limit

of H, the eigenvalues of elements of L are related to those of H. This leads to an obstruction to

L being a limit of H. The idea is that under degeneration eigenvalues either are unchanged or

degenerate.

An element A of glN = End(Rn) has a well defined characteristic polynomial, denoted char(A).

Given a Lie sub-algebra h of gl, we denote by Char(h) the closure of the subset of R[x] consisting

of characteristic polynomials of all elements in h. Thus Char(h) is closed and invariant under

conjugation of h.

Proposition 3.4. Suppose H is a closed algebraic subgroup of GLnR, and L is a conjugacy limit

of H. Then Char(l) ⊂ Char(h), where h, l ⊂ gl(n) denote the Lie algebras of H and L respectively.

Proof. Suppose p(x) = char(`) for some ` ∈ l. By assumption we have that ckHc
−1
k → L and since

H is an algebraic subgroup, we have convergence at the Lie algebra level as well: Adckh→ l. Hence,

there exists a sequence hk ∈ h so that Adckhk → ` as k → ∞. The characteristic polynomials

char(hk) = char(Adckhk) then converge to char(`) and therefore char(`) ∈ Char(h) since Char(h) is

closed.

For example, if P (t) and R(t) are the one parameter subgroups of GL2R described in Section 3.2, and

p and r denote their respective Lie algebras, then Char(r) = {x2 +θ2 : θ ∈ R} while Char(p) = {x2}.
Proposition 3.4 implies that R(t) is not a limit of P (t). This also follows from Theorem 3.3 because

P (t) is a (connected) limit of R(t) and they are not conjugate (see example (2) from Section 3.2).

We conclude this section by applying Proposition 3.4 to prove that H2×R geometry is not con-

tained in any limit of hyperbolic geometry, when both are considered as sub-geometries of projective

geometry. A more general statement on which Thurston geometries can arise as limits of hyperbolic

geometry will be given in Theorem 1.3.

Proposition 3.5. Isom+(H2×R) is not a subgroup of a limit of PO(3, 1) in GL(4,R) and therefore

H2 × R is not a sub-geometry of any limit of hyperbolic geometry inside of projective geometry.

Proof. The (almost) embedding of H2 × R geometry in RP3 geometry represents the isometries of

H2 × R which preserve the orientation of the R direction as

Isom+(H2 × R) =

{(
etA 0

0 e−3t

)
: A ∈ SO(2, 1), t ∈ R

}
.

The Lie algebra is described by

isom+(H2 × R) =

{(
tI3 + a 0

0 −3t

)
: a ∈ so(2, 1), t ∈ R

}
.

The eigenvalues of elements of this Lie sub-algebra of gl(4) are of the form t, t + λ, t − λ,−3t with

λ2 ∈ R. The set of characteristic polynomials is:

Char(isom+(H2 × R)) = {(x− t)((x− t)2 − λ2)(x+ 3t) : t, λ2 ∈ R}.

On the other hand, the isometries of H3 in the projective model are PO(3, 1) and

Char(so(3, 1)) = {(x2 − λ2)(x2 + θ2) : λ, θ ∈ R}.

Inspection of these two sets and an application of Proposition 3.4 proves the claim.
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4 Symmetric subgroups

We turn now to a special class of Lie groups and their subgroups, namely semi-simple Lie groups

G with finite center and their symmetric subgroups H. We will give an explicit description of

the conjugacy limits of such symmetric subgroups and a more descriptive version of Theroem 1.1

in Section 4.1. Then, Sections 4.2–4.7 are dedicated to symmetric subgroups of the (projective)

general linear group and their limits.

4.1 Symmetric subgroups in a semi-simple Lie group

Let G be a connected semi-simple Lie group of non-compact type and with finite center. Let

σ : G → G be an involutive automorphism, i.e. σ is a continuous automorphism with σ2 = 1. The

subset of fixed points

Gσ = {g ∈ G : σ(g) = g }

is a closed subgroup of G. A closed group H with Gσ0 ⊂ H ⊂ Gσ, where Gσ0 denotes the connected

component of the identity, is called a symmetric subgroup of G. The quotient space G/H is an affine

symmetric space. Let us give some examples of affine symmetric spaces:

• When H = K is a maximal compact subgroup, then G/K is a Riemannian symmetric space.

• When G = L× L and H = Diag(L) is the diagonal, then G/H ∼= L, via (l1, l2) 7→ l1l
−1
2 .

• Let G = PO(p, q) and H = O(p− 1, q). Then the affine symmetric space

X(p, q) = PO(p, q)/O(p− 1, q)

is a model space for semi-Riemannian manifolds of signature (p−1, q) and of constant curvature

−1. The geometries (X(p, q),PO(p, q)) are in fact subgeometries of real projective geometry

(RPp+q−1,PGLp+q R), and we will describe their limiting geometries explicitly in Section 5.

• The symmetric subgroups of PGLnR are P(GLpR⊕GLqR) and PO(p, q) where p+ q = n, or

P(GLmC) and P(Sp(2m,R)) where n = 2m, where for a subgroup H ′ ⊂ GLnR, P(H ′) denotes

the image of H ′ under the projection GLnR→ PGLn R. See Section 4.3.

In order to describe the conjugacy limits of symmetric subgroups, we will make use of the

rich structure theory of affine symmetric spaces and symmetric subgroups. In order to keep the

presentation concise we recall only the necessary details of the structure theory and refer the reader

for more details and proofs to [18, 27, 24, 1]. We denote by g and h the Lie algebra of G and

H respectively, and let the differential of σ, an involution of g, be again denoted by σ : g → g.

Then h is the +1 eigenspace of σ and we denote the −1 eigenspace by q. This gives the orthogonal

decomposition

g = h⊕ q.

Note also that [h, q] ⊂ q, [q, q] ⊂ h.

There exists a Cartan involution θ : g → g, which commutes with σ. We denote by K = Gθ

the maximal compact subgroup of G given by the fixed points of θ and we let g = k ⊕ p be the

corresponding Cartan decomposition of g. Since the involutions commute, all four subspace are

preserved by both involutions and so is the following decomposition:

g = k ∩ h⊕ k ∩ q⊕ p ∩ h⊕ p ∩ q.
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Next, we may choose a maximal abelian sub-algebra a ⊂ p so that the intersection b = a ∩ q

is a maximal abelian sub-algebra of p ∩ q. Note that b is unique up to the action of H ∩ K. We

let A := exp(a) be the corresponding connected subgroup of G and B := exp(b) ⊂ A. Note that

in some cases b = a while in others the containment is strict. The following is well-known (see for

example Proposition 7.1.3 of [18]):

Theorem 4.1 (KBH decomposition). For any g ∈ G there exists k ∈ K, b ∈ B and h ∈
H, such that g = kbh. Moreover b is unique up to conjugation by the Weyl group WH∩K :=

NH∩K(b)/ZH∩K(b).

Remark 4.2. This factorization theorem will be our main tool in determining the limits of H. In

the case G = PGLnR, this is equivalent to a matrix decomposition theorem for GLnR. Furthermore,

in this case we may conjugate so that A is a subgroup of diagonal matrices. Hence every conjugacy

limit of a symmetric subgroup H < PGLnR is conjugate to a conjugacy limit by a sequence of

diagonal matrices.

Using Theorem 4.1, we prove Theorem 1.1 from the introduction, restated here for convenience:

Theorem 1.1. Let H be a symmetric subgroup of a semi-simple Lie group G with finite center.

Then for any geometric limit L′ of H in G, there exists X ∈ b, so that L′ is conjugate to the

limit group L = limt→∞ exp(tX)H exp(−tX) obtained by conjugation by the one parameter group

generated by X. Furthermore,

L = ZH(X) nN+(X),

where ZH(X) is the centralizer in H of X, and N+(X) is the connected nilpotent subgroup

N+(X) := {g ∈ G : lim
t→∞

exp(tX)−1g exp(tX) = 1}.

Proof. Let (cn) ⊂ G be a sequence and L = limn→∞ cnHc
−1
n . By Theorem 4.1, we may factorize

cn = knbnhn, where kn ∈ K, bn ∈ B, hn ∈ H. Then,

cnHc
−1
n = knbnhnHh

−1
n b−1

n k−1
n

= knbnHb
−1
n k−1

n

We may assume, after passing to a subsequence, that kn → k ∈ K, so it follows that cnHc
−1
n

converges if and only if bnHb
−1
n converges and their limits are conjugate by k. Hence we assume

that kn = 1 = hn and consider only conjugacies by sequences (bn) ∈ B.

Consider the set of roots

Σ(g, a) := {α ∈ a∗ | there exists non-zero Z ∈ g with ad(X)(Z) = α(X)Z, for all X ∈ a}.

Denote by gα := {Z ∈ g | ad(X)(Z) = α(X)Z, for all X} the root spaces and let g =
∑
α∈Σ(g,a) gα

be the corresponding root space decomposition of g. Choose a basis for g compatible with this

root space decomposition. We work with the adjoint representation Ad : G → GL(g) ∼= GL(N),

expressed in this basis, which takes the subgroup B to a subgroup of diagonal matrices in GL(N).

The diagonal entries Ad(bn)ii of Ad(bn) are positive, and we may assume they are arranged in

increasing order: Ad(bn)jj ≥ Ad(bn)ii for all n and j > i. Further, we may assume that for

consecutive indices j = i+ 1, the diagonal entries of Ad(bn) satisfy exactly one of the following:

• Either Ad(bn)jj = Ad(bn)ii holds for all n, or

• Ad(bn)ii < Ad(bn)jj holds for all n, and Ad(bn)jj/Ad(bn)ii →∞.
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For if Ad(bn)jj/Ad(bn)ii remains bounded we may multiply (bn) by a sequence (b′n) ⊂ B which

remains in a compact subset of B so that the above holds; the resulting limit differs only by

conjugation (by the limit of b′n).

Now consider a sequence (hn) ⊂ H, so that bnhnb
−1
n → ` ∈ L. Then, the matrix entries

Ad(bnhnb
−1
n )ji =

Ad(bn)jj
Ad(bn)ii

Ad(hn)ji

converge to Ad(`)ji as n→∞. We therefore have that, for i ≤ j,{
Ad(hn)ji −→ Ad(`)ji if Ad(bn)ii = Ad(bn)jj , or

Ad(hn)ji −→ 0 if
Ad(bn)jj
Ad(bn)ii

→∞ as n→∞.
(1)

This gives us information about the block lower diagonal entries of Ad(hn). We use the involution

σ to obtain control over the block upper diagonal matrix entries. Note first that the involution σ

satisfies Ad(σ(bnhnb
−1
n ))ji = Ad(b−1

n hnbn)ji. Now σ(bnhnb
−1
n )→ σ(`) as n→∞ and therefore the

matrix entries

Ad(σ(bnhnb
−1
n ))ji = Ad(b−1

n hnbn)ji

=
Ad(bn)ii
Ad(bn)jj

Ad(hn)ji

also converge. Then, similar to the above, we conclude that, for i ≥ j:{
Ad(hn)ji −→ Ad(`)ji if Ad(bn)ii = Ad(bn)jj , or

Ad(hn)ji −→ 0 if
Ad(bn)jj
Ad(bn)ii

→ 0 as n→∞.
(2)

Therefore, we conclude that Ad(hn) converges, and because G → Ad(G) is proper (because Z(G)

is finite), we may take a subsequence so that hn → h∞ as n→∞, where{
Ad(h∞)ji = Ad(`)ji if Ad(bn)ii = Ad(bn)jj .

Ad(h∞)ji = 0 if Ad(bn)ii 6= Ad(bn)jj .
(3)

In other words, Ad(h∞) belongs to the centralizer ZGL(N)(Ad(bn)). It follows that

h∞ ∈ ZH(bn).

This is because the commutator of h∞ with bn is in the kernel of Ad. However bn lies in a one

parameter group that commutes with h∞ so their commutator lies in a connected, hence trivial,

subgroup of the center of G. In the above expressions, note that ZGL(N)(Ad(bn)) and ZH(bn) are

independent of n by our assumptions on the sequence (bn).

Observe that ZH(bn) ⊂ L. In fact, we have shown that L is an expansive limit of H about the

subgroup ZH(bn) (see Section 3.1). From the above arguments, we may also conclude that

Ad(`)ji = lim
n→∞

Ad(bn)jj
Ad(bn)ii

Ad(hn) = 0

in the case that Ad(bn)jj/Ad(bn)ii → 0. It then follows that Ad(b−1
n `bn)→ Ad(h∞) because

Ad(b−1
n `bn)ji =

Ad(bn)ii
Ad(bn)jj

Ad(`)ji


= Ad(h∞)ji if Ad(bn)ii = Ad(bn)jj
= 0 = Ad(h∞)ji if Ad(bn)jj < Ad(bn)ii
−→ 0 = Ad(h∞)ji if Ad(bn)jj > Ad(bn)ii

(4)
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Hence b−1
n `bn → h′∞ ∈ ZH(bn) (in fact, h′∞ = h∞, but we have only shown Ad(h∞) = Ad(h′∞)).

Therefore b−1
n (h′∞)−1`bn → 1 as n→∞ and therefore (h′∞)−1` lies in the group

N+ := {g ∈ G : b−1
n gbn → 1 as n→∞}.

It follows that

L ⊂ 〈ZH(bn), N+〉 = ZH(bn) nN+. (5)

We next show equality. We have that L = ZH(bn) n N ′ where N ′ = N+ ∩ L ⊂ N+ is a closed

subgroup. We also have that N+ is connected because N+ is preserved by conjugation by B, and

conjugation by b−1
n , for large n, brings elements arbitrarily close to the identity; hence all elements are

in the identity component. So equality in (5) will follow by showing that dimN+ + dimZH((bn)) =

dimH. We show this at the Lie algebra level. Observe that g = z + n+ + n− where

z = {Y ∈ g : Ad(bn)Y = Y for all n}
n+ = {Y ∈ g : Ad(b−1

n )Y → 0 as n→∞}
n− = {Y ∈ g : Ad(bn)Y → 0 as n→∞}

The involution σ fixes z, and exchanges n+ and n−. Therefore n+ and n− have the same dimension

and the dimension of the +1 eigenspace h of σ is equal to dim z + dim n+ while the dimension of

the −1 eigenspace is dim n+. Since z is the Lie algebra of ZH(bn) and n+ is the Lie algebra of N+,

we conclude that L = ZH(bn) nN+. Observe that Ad(N+) is upper triangular and therefore N+ is

nilpotent.

The proof now concludes by observing that any sequence (bn) ⊂ B whose eigenvalues satisfy our

above assumptions will produce exactly the same limit. In particular, let X = log(bm) for some m.

Then conjugating H by the sequence b′n = exp(tnX), also produces L as the limit for any sequence

of reals (tn) such that tn →∞. In this case ZH(exp(tnX)) = ZH(X) and this implies the claim.

The proof of Theorem 1.1 shows that the limit is determined up to conjagacy by an ordered

partition of the numbers {1, . . . , N}. Hence there are finitely many limits, up to conjugacy, of

a symmetric subgroup H of G. We now introduce some notation in order to enumerate these

limits. Consider the root system Σ(g, b) ⊂ b∗ defined by the adjoint action of b on g. The Weyl

group W = NK(b)/ZK(b) acts on b; it is the group generated by reflections in the hyperplanes

determined by the roots. We may similarly consider the adjoint action of b on the smaller Lie

algebra gτ := h ∩ k ⊕ p ∩ q; this is the Lie algebra of the symmetric subgroup defined by the

involution τ = σθ. Then the corresponding root system Σ(gτ , b) is contained in Σ(g, b), and the

corresponding Weyl group WH∩K := NH∩K(b)/ZH∩K(b) is a subgroup of W . Let Σ+ ⊂ Σ(g, b)

denote a system of positive roots, and let ∆ ⊂ Σ+ be a choice of simple roots. Define:

b+ = {Y ∈ b : α(Y ) > 0 for all α ∈ ∆}, B+ = exp b+,

b+ = the closure of b+, B+ = exp b+.

Then b+ is the closed Weyl chamber corresponding to Σ+; it is (the closure of) a fundamental

domain for the action of W . A closed Weyl chamber for the action of WH∩K is then given by a

union W · b+ of translates of b+ by a set W of coset representatives for the quotient W/WH∩K .

By Theorem 4.1, any element g ∈ G may be decomposed as g = kbh, where k ∈ K, b ∈ B, h ∈ H.

There exists w1 ∈ WH∩K so that the conjugate w−1
1 bw1 lies in the exponential image of the closed

Weyl chamber W · b+. Therefore w−1
1 bw1 = w−1b+w where b+ ∈ B+ and w ∈ W. Therefore, we

may write

g = k′b+wh′
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where k′ = kw1w
−1 and h′ = w−1

1 h. Here b+ ∈ B+ and w ∈ W are uniquely determined.

It follows that any limit of H may be obtained by conjugating by a sequence in B+w for

some w ∈ W. We next apply these observations in combination with Theorem 1.1 to obtain an

enumeration of the limit groups in terms of the element w and the behavior of the sequence in B+.

Let I ⊂ ∆ be a subset, and Σ+
I the span of ∆− I in Σ+. We set

bI =
⋂
α∈I

ker(α) ⊂ b, BI = exp(bI),

b+
I =

⋂
α∈I

ker(α) ∩
⋂

α∈∆−I
{X ∈ b |α(X) > 0}, B+

I = exp(b+
I ).

Theorem 4.3. Let H be a symmetric subgroup of a semi-simple Lie group G with finite center. Let

L be a limit of H under conjugacy in G. Then L is conjugate to a subgroup of the form

LI,w = ZHw(bI) nNI

where w ∈ W and I ⊂ ∆ is a subset of the set of simple roots ∆ ⊂ Σ(g, b). Here, Hw := wHw−1

and NI is the connected subgroup of G with Lie algebra nI =
∑
α∈Σ+

I
gα. Further, any LI,w is

achieved as a limit.

Proof. By Theorem 1.1, we may assume (after conjugating) that L = ZH(X) n N+(X) for some

X ∈ b. Define

I = {α ∈ ∆ : α(X) = 0}

and let u ∈ WH∩K and w ∈ W be such that X ′ := Ad(wu)X lies in b+. Note that, in fact, X ′ lies

in b+
I . Then, we have

ZH(X) = ZH(Ad(u−1w−1)X ′) N+(X) = N+(Ad(u−1w−1X ′)

= u−1w−1ZHwu(X ′)wu = u−1w−1N+(X ′)wu

= (wu)−1ZHw(X ′)wu = (wu)−1N+(X ′)wu.

where in the last step Hwu = Hw because u ∈ H. Therefore L is conjugate to ZHw(X ′) nN+(X ′).

Now, its clear that N+(X ′) = NI because their Lie algebras agree. The Lie algebra of N+(X ′)

consists of all elements Y ∈ g such that Ad(exp(−tX ′))Y → 0 as t → ∞; this is exactly the span

of the root spaces gα for which α(X ′) > 0, in other words α ∈ Σ+
I . It remains to show that

ZHw(X ′) = ZHw(b+
I ). The following Lemma will complete the proof.

Lemma 4.4. Let Y1, Y2 ∈ b+
I . Then ZG(Y1) = ZG(Y2).

Proof of Lemma. By replacing G by Ad(G) ∼= G/Z(G), we may assume G is an algebraic subgroup

of GL(N). Let S1 and S2 denote the Zariski closures of the one parameter subgroups generated by Y1

and Y2 respectively. Then S1 and S2 are R-tori. Therefore ZG(Y1) = ZG(S1) and ZG(Y2) = ZG(S2)

are Zariski connected closed subgroups of G. It follows that ZG(Y1) = ZG(Y2) since both groups

have the same Lie algebra.

Corollary 4.5. Let ∆ be a set of simple positive roots in Σ(g, b), let S denote the power set of ∆

and let W denote a set of representatives of W/WH∩K . Let us denote by L(H) the conjugacy classes

of limits of H in G. Then there is a surjection from S ×W onto L(H). In particular, there are up

to conjugacy only finitely many limits of H in G.
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Remark 4.6. The map of S × W onto L(H) is in general not injective. For example if I = ∅,
then LI,w is conjugate to LI,w′ for any w,w′ ∈ W. The conjugacy classes of limits can be labeled,

with less redundancy, in the following way. First, two subsets I1, I2 ⊂ ∆ give rise to conjugate limit

groups LI1,1, LI2,1 if and only if I1 = I2. Next, consider a fixed subset I ⊂ ∆. Let WI ⊂ W be

the subgroup of the Weyl group which acts trivially on bI . Then for any w ∈ W and u ∈ WI , the

limit groups LI,w and LI,uw are conjugate. Let WI be a set of representatives of the double cosets

WI\W/WH∩K . For I = ∅, WI is trivial, so WI = W. Then the pairs (I, w), where I ∈ S and

w ∈ WI give all possible limits LI,w of H. We note that this finer enumeration may still have some

redundancy; see Remark 4.11.

Remark 4.7. Taking a different point of view, a more detailed analysis of the limits under con-

jugation can lead to a description of the Chabauty compactification of the affine symmetric space

X = G/H. The Chabauty compactification is defined as follows. Consider the continuous map

φ : X = G/H −→ C(G), which sends the left coset gH to the closed subgroup gHg−1. Since C(G),

endowed with the Chabauty topology is compact, the closure of φ(X) defines a compactification of

X, called the Chabauty compactification [6].

In the case when H = K is a maximal compact subgroup the Chabauty compactification of G/K

was determined by Guivárch–Ji–Taylor [16] and Haettel [17]. They also show that the Chabauty

compactification of G/K is homeomorphic to the maximal Furstenberg compactification.

The similarities of the above analysis with the definition of the maximal Satake-compactification

of G/H as defined in [15, Theorem 4.10] suggests that such a homeomorphism might also hold for

affine symmetric spaces.

4.2 Limits of symmetric subgroups of G = PGLnK and G = SLnK
We are mainly interested in classifying the limits of sub-geometries of projective geometry whose

structure group H is a symmetric subgroup of G = PGLnK, with K = R or C. So we now apply

Theorems 4.3 to the setting of symmetric subgroups in the projective linear group. However, we note

that everything described in this section can be easily adapted to the (very similar) case G = SLnK.

We may choose coordinates so that the Cartan involution θ that commutes with σ is the standard

one, i.e. θ(X) = X−T for PGLnR and θ(X) = X
−T

for PGLn C. Then, thinking of the Lie algebra

g as trace-less n × n matrices, we may choose the Cartan sub-algebra a to be the trace-less (real)

diagonal matrices and so the algebra b from the previous section is a sub-space of trace-less diagonal

matrices. These coordinates are particular nice for calculating limit groups.

Let X ∈ b, and let E0, . . . , Ek be the eigenspaces of X, listed in order of increasing eigenvalue.

Consider the partial flag F = F(X), defined to be the chain of subspaces V0 ⊃ V1 ⊃ . . . ⊃ Vk, where

Vj = Ej ⊕ · · · ⊕ Ek

and by convention, we take Vk+1 = {0}. We define the partial flag group PGL(F) to be the subgroup

of PGLnR which stabilizes F . There is a natural surjection

πF : PGL(F) −→ P
( k⊕
i=0

GL(Vi/Vi+1)
)
,

where on the right-hand side, P denotes the projection GLn → PGLn. We call the group U(F) =

ker(πF ) the flag unipotent subgroup. It is connected and unipotent, however in general it is not

maximal among unipotent subgroups of PGL(F). Here is a simple corollary of Theorem 1.1:
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Corollary 4.8. Let L = ZH(X) nN+(X) be any limit of H ⊂ PGLnR as in Theorem 1.1, where

X ∈ b. Then L ⊂ PGL(F). Further, the group ZH(X) consists of all elements of H which

preserve the decomposition Rn = E0 ⊕ · · · ⊕ Ek, while N+(X) = UF . So, in a basis respecting the

decomposition Rn = E0 ⊕ · · · ⊕ Ek, every element of L has the form:
A0 0 0 · · · 0

∗ A1 0 · · · 0

∗ ∗ A2 · · · 0

· · · · · · · · · · · · · · ·
∗ ∗ ∗ · · · Ak


where diag(A0, . . . , Ak) ∈ H ∩ P(GL(E0) ⊕ · · · ⊕ GL(Ek)) and each ∗ denotes a block which may

take arbitrary values.

Proof. That ZH(X) consists of all elements of H that preserve the eigenspaces of X is clear. Next,

we examine the action by conjugation of exp(tX) on PGLn. Writing an element g ∈ PGLnK in

block form with respect to the decomposition Kn = E0 ⊕ · · · ⊕ Ek, we see that conjugation by

exp(−tX) multiplies the (i, j) block by the scalar e−t(di−dj), where di is the ith eigenvalue of X

with eigenspace Ei. Therefore, exp(−tX)g exp(tX) → 1 as t → ∞ if and only if g ∈ PGL(F) and

πF (g) = 1.

4.3 Symmetric subgroups of G = GLnR
Although the general linear group GLnR is not semi-simple, we abuse terminology and call a sub-

group H < GLnR symmetric if there exists an involution σ, commuting with the Cartan involution

θ, such that H is the set of fixed points of σ. It is sometimes more convenient to work with sym-

metric subgroups in GLnR than with symmetric subgroups in PGLn R or SLn R. Theorems 1.1

and 4.3 do not directly apply in this setting. However, one may determine the limits of a symmet-

ric subgroup H of GLnR by applying the theorems to either the image PH under the projection

P : GLn → PGLn, or to H ∩ SLnR. This strategy will be employed in the following sections.

We now list the symmetric subgroups of GLnR. Any involution of GLnR commutes with a

Cartan involution θ. So, we take θ to be the standard Cartan involution, given by θ(X) = X−t and

give a list of all involutions that commute with θ.

(1a) First, there are inner involutions of the form σ(X) = JXJ−1, where J = −Ip ⊕ Iq for some

p+ q = n. Note that J2 = Id and J ∈ K, so σ commutes with θ. In this case the symmetric

subgroup of fixed points of σ is:

Hσ = ZGLnR(J) = GLpR⊕GLqR.

(1b) For n = 2m even, let J be the complex structure on R2m given by m copies of the standard

complex structure on R2:

J =
⊕
m

[
0 −1

1 0

]
.

Again, J is orthogonal, so the involution σ defined by σ(X) = JXJ−1 commutes with θ.

Then,

Hσ = ZGLnR(J) =: GLmC.

(2) Of course there is the Cartan involution θ itself. In this case Hθ = O(n).
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(3) Let φ be the involution defined by φ(X) = |detX|−2/nX. Then Hφ = SL±n R := {A ∈ GLnR :

detA = ±1}.

(4) Assume n = 2m is even. Let ϕ be the involution that is the identity on matrices of positive

determinant and multiplication by −1 on matrices of negative determinant. Then Hϕ =

GL+
nR =: {A ∈ GLnR : detA > 0} is the identity component of GLnR.

(5) In fact, θ, φ and ϕ commute with each other and with any inner involution σ of type (1a)

or (1b). So if ε1, ε2, ε3 ∈ {0, 1} and σ is any inner involution of type (1a) or (1b), then

τ = σθε1φε2ϕε3 defines an involution.

Since the involutions of types (3) and (4) are not so interesting, we will be most interested in

the inner involutions σ of type (1a) and (1b) and their products τ = σθ with the Cartan involution.

If σ is an inner involution of type (1a), then Hτ is the orthogonal group:

Hτ = O(p, q).

If σ is an inner involution of type (1b), then Hτ is the symplectic group:

Hτ = Sp(2m,R).

Proposition 4.9. Every continuous involution of GLnR is conjugate to one listed above.

Proof. The outer (continuous) automorphism group of SLnR is cyclic of order 2 generated by the

Cartan involution θ for n ≥ 3 and trivial otherwise (see Theorem 4.5 of [8]). Since GLnR ∼= SL±n ×R,

it follows that the outer automorphisms of the identity component GL+
nR are Out(GL+

nR) ∼= Z2 ×
Aut(R), generated by θ and φ. If n is even, then there is exactly one nontrivial outer involution of

GLnR which fixes the identity component, namely ϕ. If n is odd, there are no such outer involutions.

Every inner involution is given by conjugation by some J with J2 central. We may assume

det J = ±1. Then J is conjugate to one of the matrices listed.

We next apply Theorem 4.3 to determine the limits in the most interesting cases.

4.4 Limits of GLmC in GL2mR
Consider the involution σ of GL2mR defined by σ(X) = JXJ−1 where

J =

(
0 Im
−Im 0

)
.

Then the fixed point set of σ naturally identifies with the group GLmC. The standard basis

e1, . . . , em, em+1, . . . , e2m is compatible with the complex structure J in the sense that ej+m = Jej
and ej = −Jej+m. Note that the center Z(GL2mR) is contained in GLmC. Therefore, to determine

the limits of GLmC inside of GL2mR, we pass to the projective general linear group via the quotient

map P : GL2mR → PGL2m R. The image of GLmC is the subgroup H = P(GLmC) ∼= GLmC/R∗.
Note that σ is well-defined on PGL2m R and that H is precisely the fixed point set of σ. So we may

apply Theorem 4.3 to determine the limits of H inside of G = PGL2m R. All limits of GLmC in

GL2mR are of the form P−1 L where L ⊂ PGL2m R is a limit of H.

Note that σ commutes with the standard Cartan involution θ. The −1 eigenspace q of σ is given

by matrices of the form (
A B

B −A

)
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A maximal abelian subgroup b of p ∩ q is given by elements X of the form

X =

(
D 0

0 −D

)
where D = diag(d1, . . . , dm) is a diagonal m × m matrix. The system of positive simple roots of

gl2mR with respect to b can be chosen to be

∆ = {di+1 − di}m−1
i=1 ∪ {2dm}.

In this case the inclusion WH∩K ↪→ W is an isomorphism; both Weyl groups simply permute the

diagonal entries of D and also the signs. Therefore, W = {1} and we may take b+ to be the

collection of diagonal matrices X as above, where 0 ≤ d1 ≤ . . . ≤ dm. Then, by Theorem 4.3, the

conjugacy classes of limits of H in G are enumerated by subsets I ⊂ ∆. For a given subset I ⊂ ∆,

the corresponding limit group

LI = ZH(bI) nNI = ZH(X) nN+(X)

is the limit under conjugacy by exp(tX) as t→∞, where X ∈ b+
I . Let

−λk < −λk−1 < · · · < λ0 = 0 < λ1 < · · · < λk

denote the eigenvalues of X (symmetric under negation). Note that either λj or −λj is a diagonal

entry of D. Note also that the eigenspaces Eλj satisfy Eλj = JE−λj , and in particular the zero

eigenspace E0 is a complex subspace, invariant under J . Hence any element g ∈ ZH(X) preserves

the eigenspace decomposition R2m = E0

⊕k
j=1Eλj ⊕ E−λj . The action of g on E0 is J-linear. The

action of g on Eλj ⊕ E−λj is also J-linear and further preserves the real and imaginary parts Eλj
and E−λj = JEλj . Therefore, the matrix for the action of g on Eλj ⊕ E−λj has the form(

Aj 0

0 Aj

)
in a basis which is the union of a basis for Eλj and J times that basis (which is a basis for E−λj ).

This characterizes ZH(X). Next, the flag F defining the unipotent part U(F) = NI = N+(X) of L

(see Section 4.2) is given by the sub-spaces

V−k ⊃ V−(k−1) ⊃ · · ·V0 ⊃ V1 ⊃ · · · ⊃ Vk

where Vj = Eλj ⊕ · · · ⊕ Eλk , where λ−j := −λj .
We may explicitly describe the corresponding limit P−1 L of GLmC in GL2mR. In a basis

respecting the ordered eigen-space decomposition

R2m := Eλk ⊕ · · · ⊕ E0 ⊕ · · ·E−λk

and such that the basis elements for E−λj are J times the basis elements for Eλj (where λj > 0),

the elements of the limit group P−1 L are exactly the matrices of the form:
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

Ak
∗ Ak−1

...
...

. . .

∗ ∗ · · · A1

∗ ∗ · · · ∗ A0 B0

−B0 A0

∗ ∗ · · · ∗ ∗ A1

...
... · · ·

...
...

...
. . .

∗ ∗ · · · ∗ ∗ ∗ · · · Ak−1

∗ ∗ · · · ∗ ∗ ∗ · · · ∗ Ak


where each Aj is a square matrix with dimension dim(Ej), which is equal to the multiplicity of the

eigenvalue λj of X. Each ∗ is an arbitrary block matrix of the appropriate dimensions, and the

(blank) upper diagonal entries are all zero. The central block

(
A0 B0

−B0 A0

)
describes the J-linear

transformations of the 0-eigenspace E0 of X; this block only appears if the root 2dm ∈ I. The

group P−1(ZH(bI)) is the subgroup for which all ∗ blocks are zero. The group P−1NI ∼= NI is the

subgroup for which all diagonal blocks Aj are the identity (and B0 = 0).

Remark 4.10. In the case that D = diag(1, 1, . . . , 1), we have only two eigenspaces E1 and JE1.

The limit group is then the centralizer of the matrix

(
0 0

Im 0

)
which we should think of as a de-

generation of the complex structure. The limit group is isomorphic to the general linear group in

dimension m over the ring R[ε]/(ε2).

4.5 Limits of Sp(2m) in GL2mR
Consider H = Sp(2m,R) inside of GL2mR. Note that H ⊂ SL2m R. To determine the conjugacy

classes of limits of H in GL2mR it suffices to determine the limits of H in G = SL2m R. We

apply Theorem 4.3. The defining involution for H, at the Lie algebra level, is τ(X) = σ(θ(X)) =

−JXTJ−1 where θ is the standard Cartan involution, and σ is conjugation by a complex structure

J fixed by θ. In this case, it will be more convenient to take

J =


J0 0 · · · 0

0 J0 0

0 0
. . .

0 0 · · · J0

 ,

where J0 =

(
0 1

−1 0

)
. The −1 eigenspace q of τ is given by matrices of the form (Ajk)mj,k=1 where

each Ajk is a 2× 2 block with Ajk = −J0A
T
kjJ0. The diagonal blocks of elements of q have the form

Ajj =

(
dj 0

0 dj

)
. A maximal abelian sub-algebra b of p ∩ q is given by matrices of the form

D =


D1 0 · · · 0

0 D2 0

0 0
. . .

0 0 · · · Dm

 ,
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where Dj =

(
dj 0

0 dj

)
and d1 + · · ·+ dm = 0. The system of positive simple roots can be chosen to

be

∆ = {di+1 − di}m−1
i=1 .

In this case the inclusion WH∩K ↪→ W is an isomorphism; both Weyl groups simply permute the

block diagonal entries of D. Therefore, W = {1} and b+ is the collection of diagonal matrices X as

above, where d1 ≤ . . . ≤ dm. Then, by Theorem 4.3, the conjugacy classes of limits of H in G are

enumerated by subsets I ⊂ ∆. For a given subset I ⊂ ∆, the corresponding limit group

LI = ZH(bI) nNI = ZH(X) nN+(X)

is the limit under conjugacy by exp(tX) as t → ∞, where X ∈ b+
I . Here, ZH(bI) = ZH(X) has

block form:

ZH(bI) =


Sp(2m1) 0 · · · 0

0 Sp(2m2) · · · 0
...

...
. . .

...

0 0 · · · Sp(2mk)

 ,

where each block Sp(2mj) is the symplectic group of dimension 2mj consisting of those elements

of Sp(2m) which preserve the jth eigenspace of X and act as the identity on the other eigenspaces

of X. The flag F preserved by L is given by V0 ⊃ . . . ⊃ Vk, where Vj = Ej ⊕ · · · ⊕ Ek is the

direct sum of the last k− j+ 1 eigenspaces Ei of X, where the Ei are indexed in order of increasing

eigenvalue. The flag unipotent subgroup NI = U(F) (see Section 4.2) has block structure:

NI =


Im1 0 · · · 0

∗ Im2 · · · 0
...

...
. . .

...

∗ ∗ · · · Imk

 ,

where all lower diagonal blocks are labeled ∗ to denote that the entries are arbitrary.

4.6 Limits of GLp ⊕GLq in GLp+qR

Consider the involution σ defined by σ(X) = JXJ−1 where J =

(
−Ip 0

0 Iq

)
. We assume without

loss of generality that q ≥ p and set r = q − p. The fixed set of σ naturally identifies with

GLpR⊕GLqR. Note that the center Z(GLp+q) is contained in GLp⊕GLq. Therefore the involution

σ is well-defined on the quotient PGLp+q R. The image H = P(GLp⊕GLq) under the projection P :

GLp+q → PGLp+q is therefore a symmetric subgroup of PGLp+q R and we may apply Theorem 4.3

to determine the limit groups L of H. Then any limit of GLpR⊕GLqR in GLp+qR is conjugate to

P−1 L where L is some limit of H.

Note that σ commutes with the standard Cartan involution θ. The −1 eigenspace q of σ is given

by matrices of the form (
0p×p B

C 0q×q

)
where B is p × q and C is q × p. A maximal abelian sub-algebra b of p ∩ q is given by matrices of

the form

X =

0p×p D

D 0p×p
0r×r


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where D = diag(d1, . . . , dp) is a p× p diagonal matrix. The system of positive simple roots can be

chosen to be

∆ = {di+1 − di}p−1
i=1 ∪ {2dp}.

In this case the inclusion WH∩K ↪→ W is an isomorphism; both Weyl groups simply permute the

diagonal entries of D and also the signs. Therefore, W = {1} and b+ is the collection of matrices

X as above, where 0 ≤ d1 ≤ . . . ≤ dp. Then, by Theorem 4.3, the conjugacy classes of limits of H

in G are enumerated by subsets I ⊂ ∆. For a given subset I ⊂ ∆, the corresponding limit group

LI = ZH(bI) nNI = ZH(X) nN+(X)

is the limit under conjugacy by exp(tX) as t→∞, where X ∈ b+
I .

Let’s see more explicitly what this group LI looks like. The eigenvalues of X are

−λk < −λk−1 < · · · < λ0 = 0 < λ1 < · · · < λk

where if j 6= 0, λj = 2dij is twice one of the diagonal elements of D. The multiplicity mj of λj is

determined by the subset I. The eigenvalue λ0 = 0 has multiplicity equal to r + 2m0 where m0 is

the number of the di which are zero. Note also that Eλj = JE−λj . Hence an element h ∈ ZH(bI)

preserves both Eλj and E−λj and has identical matrix on both subspaces, when the basis for E−λj
is taken to be J times the basis for Eλj ; we work in such a basis. Also, the zero eigenspace E0 is

invariant under J ; the elements of H which preserve E0 form a copy of GL(r +m0)⊕GL(m0).

Next, the flag F defining the unipotent part U(F) = NI = N+(X) of L (see Section 4.2) is given

by the sub-spaces V−k ⊃ V−(k−1) ⊃ · · ·V0 ⊃ V1 ⊃ · · · ⊃ Vk where Vj = Eλj ⊕ · · · ⊕ Eλk , and where

λ−j := −λj . Therefore NI = U(F) is the unipotent group which is block lower diagonal in a basis

respecting the ordered decomposition Rn = E−λk ⊕· · ·⊕E0⊕· · ·⊕Eλk into eigenspaces. Therefore,

in such a basis, the elements of the corresponding limit P−1 LI of GLp⊕GLq in GLp+q have matrix

form 

Ak
∗ Ak−1

...
...

. . .

∗ ∗ · · · A1

∗ ∗ · · · ∗ A0 0

0 B0

∗ ∗ · · · ∗ ∗ A1

...
... · · ·

...
...

...
. . .

∗ ∗ · · · ∗ ∗ ∗ · · · Ak−1

∗ ∗ · · · ∗ ∗ ∗ · · · ∗ Ak


where for j 6= 0, the matrix Aj is the square mj×mj matrix representing both the action on Eλj and

on E−λj = JEλj , and the block matrix

(
A0 0

0 B0

)
represents an element of GL(r+m0)⊕GL(m0)

corresponding to the action on E0. As always, the ∗ blocks are arbitrary.

4.7 Limits of O(p, q) in GLp+qR
Set p+ q = n. Let τ be the involution of GLp+q defined by τ(g) = Jg−TJ−1 where J is the matrix

J =

(
−Ip

Iq

)
.
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The group O(p, q) is the fixed point set of τ . Consider the image PO(p, q) of O(p, q) under the

projection P : GLnR→ PGLnR. To determine the limits of O(p, q) in GLnR, it suffices to determine

the limits of H = PO(p, q) in G = PGLnR. For, O(p, q) is the intersection of P−1(PO(p, q)) with

the subgroup SL± of matrices of determinant ±1. Therefore, all limits of O(p, q) are of the form

P−1(L)∩SL± where L is a limit of H in G. Note also that τ preserves the center Z(GLn), therefore

τ descends to a well-defined involution of the projective general linear group; its fixed point set is

exactly H = PO(p, q). So we may apply Theorem 4.3 to determine the limits of H.

At the Lie algebra level, our involution has the form τ(X) = −JXTJ−1. A maximal abelian

sub-algebra b of p ∩ q is in this case given by the full Cartan sub-algebra a of traceless diagonal

matrices

D =


d1

d2

. . .

dn

 .

The system of positive simple roots can be chosen to be

∆ = {di+1 − di}n−1
i=1 .

In this case, the Weyl group W is the full symmetric group Sp+q permuting the standard basis

of Rp+q. The closed Weyl chamber b+ corresponding to ∆ consists of the diagonal matrices X,

as above, such that d1 ≤ d2 ≤ · · · ≤ dn. The Weyl group WH∩K for Σ(gτθ, b) is given by the

permutations Sp × Sq of the standard basis which preserve the signature; in other words WH∩K
permutes the first p basis vectors and the last q coordinate directions independently. A closed Weyl

chamber W · b+ for Σ(gτθ, b) is given by the diagonal matrices diag(d1, . . . , dn) such that di ≤ di+1

if i = 1, . . . , p− 1 or if i = p+ 1, . . . , p+ q = n. Then W consists of permutations $ of the following

form. For some 1 ≤ k ≤ p (assuming p ≤ q), and two sets of k indices 1 ≤ i1 < · · · < ik ≤ p and

p + 1 ≤ j1 < · · · < jk ≤ p + q = n, we have that $(ir) = p + r and $(jr) = p − k + r and the

remaining p − k indices between 1 and p are mapped in order to the first (smallest) p − k indices,

while the remaining q − k indices between p + 1 and n are mapped in order to last (largest) q − k
indices. In fact, this specific form of W is not important; we may work with any collection W of

coset representatives of W/WH∩K .

By Theorem 4.3, the conjugacy classes of limits of H in G are enumerated (with redundancy)

by subsets I ⊂ ∆ and elements w ∈ W. For a given subset I ⊂ ∆ and w ∈ W, the corresponding

limit group

LI,w = ZHw(bI) nNI = ZHw(X)×N+(X)

is the limit of Hw = wHw−1 under conjugacy by exp(tX) as t → ∞, where X ∈ b+
I . Let

E0, E1, . . . , Ek be the eigenspaces of X listed in order of increasing eigenvalue. In our chosen

coordinates, each Ei is a span of consecutive coordinate directions. Now, Hw is the fixed point

set of the involution τw defined by τw(g) = Jwg
−TJ−1

w , where Jw = wJw−1 is a diagonal form

of signature (p, q) but with the p (−1)’s and q (+1)’s arranged in a (possibly) different order. Let

(pi, qi) denote the signature of Jw when restricted to Ei. Then p1 + · · ·+pk = p and q1 + · · ·+qk = q,

and ZHw(bI) is seen to have the block diagonal form

ZHw(bI) = P


O(p1, q1)

O(p2, q2)
. . .

O(pk, qk)

 .
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The full limit group LI,w ⊂ PGL(F) preserves the flag F consisting of subspaces V0 ⊃ · · · ⊃ Vk,

where Vj = Ej ⊕ · · · ⊕ Ek. The unipotent part NI = U(F) has the form

NI = P


Ip1+q1

∗ Ip2+q2
...

...
. . .

∗ ∗ · · · Ipk+qk


where the upper diagonal blocks, denoted by ∗, are arbitrary.

Remark 4.11. In this example, we may see explicitly that the finer enumeration of limit groups

described by Remark 4.6 may still have redundancy. For consider the case p = 2, q = 2, and

consider I = {d2−d1, d4−d3}. Then WI consists of four permutations, namely the group generated

by transposing the first and second basis vector and transposing the third and fourth basis vector; so

that WI = WH∩K . One easily computes that |WI\W/WH∩K | = 3; representatives are given by the

permutation w1 that transposes the second and third basis vector, a permutation w2 that exchanges

the first and second basis vectors with the third and fourth, and the identity permutation e. However,

there are only two conjugacy classes of limit group, because LI,w2
= LI,e.

4.7.1 Partial flag of quadratic forms

Finally, we note that if LI,w is as above, then the corresponding limit groups P−1(LI,w) ∩ SL± of

O(p, q) in GLnR are easily described. We will investigate these limit groups and their corresponding

geometries in depth in the next section. Here we introduce some notation to give an invariant

description of the limit groups. Let F be the partial flag formed the chain of subspaces V0 ⊃ V1 ⊃
. . . ⊃ Vk. A partial flag of quadratic forms β = (β0, · · · , βk) on the partial flag F is a collection

of quadratic forms βi defined on each quotient Vi/Vi+1 of the partial flag F . We denote the linear

transformations which preserve F and induce an isometry of each βi by Isom(β,F). The signature of

a non-degenerate quadratic form β is ε(β) = (n−, n+), where n− (resp. n+) is the dimension of the

largest subspace on which β is negative (resp. positive) definite. Two quadratic forms have the same

isometry group iff they are scalar multiples of each other thus O(p, q) ∼= O(p′, q′) iff {p, q} = {p′, q′}.
The signature of a partial flag of quadratic forms β = (β0, · · · , βk) is

ε(β) = (ε(β0), · · · , ε(βk)) = ((p0, q0) · · · (pk, qk)).

The signature ε(β) determines Isom(β,F) up to conjugation. When F is adapted to the standard

basis and all βi are diagonal, we will use the notation

Isom(β,F) =: O((p0, q0), · · · , (pk, qk))

=

O(p0, q0)
. . .

O(pk, qk)

n


Ip0+q0

∗ Ip1+q1
...

...
. . .

∗ ∗ · · · Ipk+qk

 .

The conjugacy class of this group is unchanged by scaling some βi. In fact O((p0, q0), · · · , (pk, qk)) is

conjugate to O((p′0, q
′
0), · · · , (p′k, q′k)) if and only if for all i = 0, . . . , k, (pi, qi) = (p′i, q

′
i) or (pi, qi) =

(q′i, p
′
i). As a special case observe that when F is a full flag, then Isom(β,F) is conjugate to

O((1, 0), · · · , (1, 0)), which is the group of lower triangular matrices with diagonal entries ±1. We

will adopt the convention that the signature (p, 0) can be denoted by (p) so this group is also written
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as O((1), (1), · · · , (1)). This is in agreement with denoting O(n, 0) by O(n). The application of

Theorem 4.3 above shows:

Theorem 4.12. The limits of O(p, q) (resp. PO(p, q)) inside of GLp+qR are all of the form

Isom(β,F) (resp. P Isom(β,F)). Further Isom(F ,β) (resp. P Isom(β,F)) is a limit of O(p, q)

(resp. PO(p, q)) if and only if the signature ((p0, q0), . . . , (pk, qk)) of β satisfies

p0 + · · ·+ pk = p and q0 + · · ·+ qk = q,

after exchanging (pi, qi) with (qi, pi) for some collection of indices i in {0, . . . , k}.

The groups P Isom(β,F) are the structure groups for many interesting geometries, to be de-

scribed in Section 5. As a corollary to Theorem 4.12, we characterize all limits of these groups.

Corollary 4.13. Every conjugacy limit of Isom(F ,β) (resp. P Isom(F ,β)) is of the form Isom(F ′,β′)
(resp. P Isom(F ′,β′)). Further, up to conjugation, the flag F ′ = {V ′j } is a refinement of F = {Vi}
and the signature ε(β′) is a refinement of the signature ε(β) in the sense that

pi =
∑

j:Vi⊃V ′j)Vi+1

p′j qi =
∑

j:Vi⊃V ′j)Vi+1

q′j (6)

after exchanging (p′j , q
′
j) with (q′j , p

′
j) for some collection of indices j. Any Isom(F ′,β′) as above is

realized as a limit of Isom(F ,β) under some sequence of conjugacies.

Proof. Let H = Isom(F ,β). Consider a conjugacy limit L = limn→∞ cnHc
−1
n . The space of

flags having the same type as F is compact. Thus, we may assume that cn ∈ PGL(F) for all n,

and therefore that L ⊂ GL(F). Note that U(F) is preserved by conjugation by cn. Therefore

U(F) ⊂ L. It remains to determine the projections πi(L) where πi : GL(F) → GL(Vi/Vi+1) is

the natural projection map. Now, πi(H) = Isom(βi) ∼= O(pi, qi). The projection πi(L) is the

limit of πi(H) under conjugation by the projections πi(cn). Hence, Theorem 4.12 implies that

πi(L) = Isom(F (i),β(i)), where (F (i),β(i)) is a partial flag of quadratic forms for Vi/Vi+1. Then,

let F ′ be the flag of all lifts π−1
i (V

(i)
j ) of subspaces V

(i)
j of each flag F (i). Let β′ be the flag of

quadratic forms π∗i β
(i)
j on those subspaces determined by pullback. Then, L = Isom(F ′,β′) is as in

the statement of the Corollary.

Next, to see that any Isom(β′) as in the Corollary is achieved as a limit, note that if the

condition (6) is satisfied, then both Isom(β) and Isom(β′) are limits of some O(p, q). In fact, the

elements X,X ′ ∈ b determining the respective limits Isom(β) and Isom(β′) of O(p, q) have the

property that any eigenspace of X ′ is contained in an eigenspace of X. Further if E′λ1
, E′λ2

are

eigenspaces of X ′ corresponding to eigenvalues λ1 < λ2, then E′λ1
⊂ Eµ1

and E′λ2
⊂ Eµ2

, where

Eµ1
, Eµ2

are eigenspaces of X corresponding to eigenvalues µ1 ≤ µ2. It is then easy to see that

lim
t→∞

exp(tX ′) Isom(β) exp(−tX ′) = Isom(β′).

5 The geometry of a partial flag of quadratic forms

In Section 4.7, we showed that the geometric limits of O(p, q) inside of GLp+qR are the groups

Isom(β,F) preserving a partial flag of quadratic forms. In this section we will investigate the

corresponding limit geometries.
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5.1 X(p, q) geometry and its limits

Let β denote a quadratic form on Rn of signature (p, q). We assume that p > 0. Then P Isom(β) ∼=
PO(p, q) acts transitively on the space

X(p, q) := {[x] ∈ RPn−1 : β(x) < 0}

with stabilizer isomorphic to O(p−1, q). Therefore X(p, q) is a semi-Riemannian space of dimension

n− 1 = p+ q − 1 and signature (p− 1, q). We list some familiar cases:

• (X(n, 0),PO(n)) is doubly covered by spherical geometry Sn−1.

• (X(1, n− 1),PO(1, n− 1)) is the projective model for hyperbolic geometry Hn−1.

• (X(2, n− 2),PO(2, n− 2)) is the projective model for anti de Sitter (AdS) geometry AdSn−1.

• (X(n− 1, 1),PO(n− 1, 1)) is the projective model for de Sitter (dS) geometry dSn−1.

We now describe the possible limits of (X(p, q),PO(p, q)) as a sub-geometry of (RPn−1,PGLnR).

Consider a partial flag F equipped with a flag of quadratic forms β = (β0, . . . , βk) as in Section 4.7.

Let (pi, qi) be the signature of βi. Define the domain X(β) ⊂ RPn−1 by

X(β) := {[x] ∈ RPn−1 : β0(x) < 0}.

Then P Isom(F ,β) acts transitively on X(β). When the flag and quadratic forms are adapted the

standard basis, we denote X(β) by

X(β) = X((p0, q0), . . . , (pk, qk)). (7)

Note that X(β) is non-empty if and only if p0 > 0 and that as a set, the space X((p0, q0) . . . (pk, qk))

depends only on the first signature (p0, q0) and the dimension n =
∑
i(pi+ qi). However, we include

all k signatures in the notation as a reminder of the structure determined by PO((p0, q0), . . . , (pk, qk)).

Theorem 5.1. The conjugacy limits of (X(p, q),PO(p, q)) inside (RPn−1,PGLn) are all of the form

(X(β),P Isom(F ,β)). Further, X(β) is a limit of X(p, q) if and only if p0 6= 0, and the signatures

((p0, q0), . . . , (pk, qk)) of β partition the signature (p, q) in the sense that

p0 + · · ·+ pk = p and q0 + · · ·+ qk = q,

after exchanging (pi, qi) with (qi, pi) for some collection of indices i in {1, . . . , k} (the first signature

(p0, q0) must not be reversed).

More generally:

Theorem 5.2. Every conjugacy limit of (X(β),P Isom(F ,β)) is of the form (X(β′),P Isom(F ′,β′)).
Further, up to conjugation, the flag F ′ = {V ′j } is a refinement of F = {Vi} and the signature ε(β′)

is a refinement of the signature ε(β) in the sense that

pi =
∑

j:Vi⊃V ′j)Vi+1

p′j qi =
∑

j:Vi⊃V ′j)Vi+1

q′j

after exchanging (p′j , q
′
j) with (q′j , p

′
j) for some collection of indices j excluding j = 0 (the first

signature (p′0, q
′
0) must not be reversed). Any such geometry (X(β′),P Isom(F ′,β′)) is realized as a

limit of (X(β),P Isom(F ,β)) under some sequence of conjugacies (provided p′0 > 0).
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Proof. Let L = P Isom(β′,F ′) be a limit of P Isom(β,F) under some conjugating sequence (cn) as

in Corollary 4.13. Suppose that (X(β),P Isom(β,F)) limits, under conjugation by (cn) to (Y, L)

(in the sense of Definition 2.6). Then Y ⊂ RPn is an open orbit of L. There are at most two such

orbits. X(β′) is an open orbit of L, non-empty if and only if p′0 > 0. The set of positive lines, X+,

with respect to β′0 is the other open orbit of L, non-empty if and only if q′0 > 0. Let us now show

that Y = X(β′).

By definition, there is some y∞ ∈ Y such that for all n sufficiently large, y∞ ∈ cnX(β); in other

words, β0(c−1
n y∞) < 0. It is easy to see, from the proof of Theorem 1.1, that β′0 is the limit of

λnc
∗
nβ0 where λn > 0 is a sequence of positive scalars. Therefore,

β′0(y∞) = lim
n→∞

λnβ0(c−1
n y∞) ≤ 0.

It follows that Y 6= X+, so we must have Y = X(β′) as desired.

Next we show that any X(β′) as in the Theorem is achieved. As in the proof of Corol-

lary 4.13, we note that X(β′) and X(β) are both limits of some X(β) = X(p, q) under conjuga-

tion by the one parameter groups exp(tX) resp. exp(tX ′) and that the groups satisfy P Isom(β′) =

limt→∞ exp(tX ′) P Isom(β) exp(−tX ′). Further, every eigen-space ofX ′ is contained in an eigenspace

of X and the eigenspace E′0 corresponding to the smallest eigenvalue of X ′ is contained in the

eigenspace E0 corresponding to the smallest eigenvalue of X. Then β′0 agrees with β0 on E′0
and is zero on all other eigenspaces of X ′. Let y∞ ∈ X(β′) ∩ PE′0. Then, since β′0(y∞) < 0 we

have that β0(y∞) < 0 and so y∞ ∈ X(β). Since exp(tX ′)y∞ = y∞, we have shown that the

conjugate sub-geometries (exp(tX ′)X(β), exp(tX ′) P Isom(β) exp(−tX ′)) limit to the sub-geometry

(X(β′),P Isom(β′)).

5.2 The geometry of X(β)

Let us now describe the geometry of (X(β),P Isom(F ,β)). We assume that the flag F and quadratic

forms β are adapted to the standard basis so that we may use the notation (7). Let j ∈ {1, . . . , k}.
The action of Isom(F ,β) preserves the flag of quotient spaces

V0/Vj ⊃ V1/Vj ⊃ · · · ⊃ Vj−1/Vj ,

which we denote F/Vj , as well as the induced flag of quadratic forms β0, . . . , βj−1, which we denote

by β/Vj . Then X(β/Vj) identifies with X((p0, q0) . . . (pj−1, qj−1)) and Isom(F ,β) acts on X(β/Vj)

by transformations of Isom(F/Vj ,β/Vj) ∼= O((p0, q0), . . . , (pj−1, qj−1)).

There is a projection map πj :

Vj/Vj+1
// X(β/Vj+1)

πj

��
X(β/Vj)

which is the restriction of the natural projection map P(V0/Vj+1) \ P(Vj/Vj+1) → P(V0/Vj). The

fiber π−1
j ([x + Vj ]) = {[x + v + Vj+1] : v ∈ Vj/Vj+1} identifies with Vj/Vj+1; the identification

depends on the choice of representative x. Via the identification, βj induces an affine pseudo-metric

%j of signature (pj , qj) on each fiber, defined by:

%2
j (x+ v, x+ w) := βj(v − w).
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The metric is well-defined, provided that the representative x + Vj is always chosen to satisfy

β0(x + Vj) = −1 (there are two such choices). The action of Isom(F ,β) on X(β/Vj+1) preserves

this fibration by affine spaces and preserves the affine (pj , qj) metric %2
j on the fibers.

Alternatively, we will use the notation

Apj ,qj // X((p0, q0), . . . , (pj , qj))

πj

��
X((p0, q0), . . . , (pj−1, qj−1))

where the notation Apj ,qj indicates that the fibers are affine spaces equipped with an affine pseudo-

metric of signature (pj , qj). Combining this information for all possible values of j, we see that X(β)

is equipped with an iterated affine bundle structure (see Figure 2), and the fibers at each iteration

are equipped with an invariant affine pseudo-metric:

Apk,qk // X((p0, q0), . . . , (pk, qk))

πk

��
Apk−1,qk−1 // X((p0, q0), . . . , (pk−1, qk−1))

πk−1��
...

π2

��
Ap1,q1 // X((p0, q0), (p1, q1))

π1

��
X(p0, q0)

(8)

We note that in the case (p0, q0) = (1, 0) the base of the tower of fibrations is a point and the

next space up X((1, 0)(p1, q1)) is an affine space Ap1,q1 equipped with an invariant affine pseudo-

metric of signature (p1, q1). In the case that (p1, q1) is (n, 0) or (0, n), then Ap1,q1 identifies with

the Euclidean space En.

Remark 5.3. In the context of Theorem 5.1, the different levels of the tower of fibrations (8)

correspond to different rates of collapse of X(p, q). The initial projection πk should be thought of as

a collapse map which collapses the directions in X(p, q) most distorted by the conjugation action.

Remark 5.4. It is sometimes easier to work in the double cover X̃(β) of X(β), which is naturally

described by the hyperboloid β0 = −1. In this case, each projection map πj is just the restriction

of the quotient map V0/Vj+1 → V0/Vj to the hyperboloid β0 = −1 in V0/Vj+1. It is natural to call

X̃(β) the hyperboloid model.

Remark 5.5. The action of the unipotent part U(F) preserves each affine fiber of each fibration

in (8). The action on each fiber is simply a translation. However, the amount and direction of

translation may vary from fiber to fiber (with respect to some chosen trivialization), so that the

fibers appear to shear with respect to one another.
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X((1, 1)(1))

X((1, 1)(1)(1))

X(1, 1) ∼= H1

A1,0

A1,0

Figure 2: A picture of the iterated affine bundle structure of X((1, 1)(1)(1)).

In the following sections we apply Theorem 5.1 to several cases of interest, including the classical

two-dimensional geometries, and three-dimensional hyperbolic and AdS geometry. Along the way

we will discuss further the geometry of those (X(β), Isom(β)) which arise as limits in these cases.

5.3 The classical two-dimensional geometries

The two-dimensional Riemannian model geometries of constant curvature may each be realized

as subgeometries of (RP2,PGL3 R). In fact, each is defined by a partial flag of quadratic forms

(Section 5). We use the notation of Section 5.1, and for brevity we will only refer to the space X of

the geometry (X,G) when the group G is clear from context:

• Spherical geometry is (the double cover of) X(3, 0).

• Hyperbolic geometry is X(1, 2).

• Euclidean geometry is X((1, 0)(2))

The following chart depicts all possible limits of geometries given by a partial flag of quadratic

forms in dimension two. The completeness/accuracy of the chart is easy to verify using the calculus

of Theorem 5.2.

X(3, 0)

�� ++

X(1, 2)

vv ��

X(2, 1)

vv �� ''
X((1, 0)(2))

((

X((1, 1)(1))

��

X((2, 0)(1))

vv

X((1, 0)(1, 1))

ss
X((1, 0)(1)(1))

The limits of spherical, hyperbolic, and Euclidean geometry may be read off from the chart:

Theorem 5.6. The limits of spherical, hyperbolic, and Euclidean geometry, considered as sub-

geometries of projective geometry are the following PFQF geometries:
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• limits of spherical: X(3, 0) (no degeneration), X((1, 0)(2)) = Euclidean, and X((1, 0)(1)(1).

• limits of hyperbolic: X(1, 2) (no degeneration), X((1, 0)(2)) = Euclidean, and X((1, 0)(1)(1)).

• limits of Eucldiean: X((1, 0)(2)) (no degeneration), and X((1, 0)(1)(1)).

We give a brief description of the most degenerate two-dimensional partial flag of quadratic forms

geometry X((1, 0)(1)(1)) which is a limit of all three classical two-dimensional geometries. First, the

group

O((1, 0)(1)(1)) =

±1 0 0

∗ ±1 0

∗ ∗ ±1


preserves a full flag R3 = V0 ⊃ V1 ⊃ V2 ⊃ V3 = {0} in R3. In this case, the space X((1, 0)(1)(1)) ∼= A2

is an affine plane, though note that O((1, 0)(1)(2)) is not the full group of affine transformations.

The iterated affine bundle structure is:

A1,0 // X((1, 0)(1)(1)) ∼= A2

π2

��
A1,0 // X((1, 0)(1)) = A1

π1

��
X(1, 0) = {pt}

Hence X((1, 0)(1)(1)) is an affine two-space, equipped with a translation invariant fibration in Eu-

clidean lines A1,0 over a base which is also a Euclidean line A1,0. The group O((1, 0)(1)(1)) is the

group of affine transformations which preserve the fibration as well as the metric on the fibers and

the base. In the standard basis, X((1, 0)(1)(1)) = {x1 6= 0}/R∗, which we identify with the affine

plane x1 = 1 in V0 = R3. The lines of the foliation are the lines of constant x2 and the (square of

the) affine metric on these lines is given by:

%2
2

 1

x2

x3

 ,

 1

x2

x′3

 = (x3 − x′3)2.

5.4 Limits of three-dimensional hyperbolic geometry

Theorem 5.1 gives the limits of three-dimensional hyperbolic geometry H3 = X(1, 3) as a subgeom-

etry of projective geometry. The results are summarized in the following diagram:

X(1, 3)

uu �� ))
X((1, 0)(3))

�� ))

X((1, 2)(1))

�� ))

X((1, 1)(2))

rr ��
X((1, 0)(1)(2))

))

X((1, 0)(2)(1))

��

X((1, 1)(1)(1))

uu
X((1, 0)(1)(1)(1))

(9)

36



We now describe some of the geometries appearing in this list, and their relationships to the

Thurston geometries.

The geometry X((1, 0)(3)) is Euclidean geometry.

The geometry X((1, 2)(1)) is half-pipe geometry, defined by Danciger in [10] and used to construct

examples of geometric structures (cone-manifolds) transitioning from hyperbolic geometry to anti de

Sitter (AdS) geometry. That X((1, 2)(1)) is a limit of three dimensional AdS geometry also follows

from Theorem 5.1, since the projective model for AdS3 is, in our terminology, X(2, 2).

Next, consider the geometry X((1, 0)(2)(1)), which is also a limit of spherical geometry. The

iterated affine bundle structure is:

E1 // X((1, 0)(2)(1)) ∼= A3

π2

��
E2 // X((1, 0)(2)) ∼= E2

π1

��
X(1, 0) = {∗}

Hence, X((1, 0)(2)(1) fibers in Euclidean lines over the Euclidean plane. Let (1 x y z)T be coordinates

for X((1, 0)(2)(1)) = A3, let (1 x′ y′)T be coordinates for X((1, 0)(2)) = E2, and let the projection

π2 be given by x′ = x, y′ = y. Then, consider the contact form α on A3 defined by

α = dz + xdy − ydx.

Note that dα = 2 π∗2dA, where dA is the area form on the Euclidean plane E2. Consider the

following Riemannian metric gNil on X((1, 0)(2)(1)): The fibers of π2 are defined to be gNil orthogonal

to kerα, and gNil is defined to be the pull-back by π2 of the Euclidean metric on kerα, while

gNil(X,X) = α(X)2 for X tangent to the π2 fiber direction. The Riemannian metric gNil makes

X((1, 0)(2)(1)) into the model space for Nil geometry. Of course, O((1, 0)(2)(1)) does not preserve α,

nor the metric gNil. However one may check that the isometries Isom(gNil) are a proper subgroup (up

to finite index) of O((1, 0)(2)(1)), so Nil geometry locally embeds into X((1, 0)(2)(1)). In coordinates,

Isom0(gNil) =

±1

O(2)

±1

n


1

a 1

b 0 1

c b −a 1

 ⊂ O((1, 0)(2)(1)),

where a, b, c ∈ R are arbitrary numbers. That Nil geometry appears, in this context, as a (sub-

geometry of a) limit of hyperbolic geometry is not surprising. Porti [26] proved that a Nil orbifold

with ramification locus transverse to the π2 fibration is (metrically) the limit of collapsing hyperbolic

cone-manifold structures (after appropriate modification of the collapsing metric).

Next consider the geometry X((1, 1)(2)). The iterated affine bundle structure is just one bundle:

E2 // X((1, 1)(2))

π1

��
X((1, 1)) ∼= H1.
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In a basis that respects the partial flag, the structure group has the form

O((1, 1)(2)) =

(
O(1, 1)

O(2)

)
n

 I2
∗ ∗
∗ ∗ I2

 ,

where I2 is the 2× 2 identity matrix. In fact, there is a copy of the group Sol ∼= SO(1, 1)nR2 inside

of O((1, 1)(2)), which is described in coordinates as follows:

Sol =

cosh z sinh z

sinh z cosh z

I2

n

 I2
x x

y −y I2

 .

In fact, Sol acts simply transitively on X((1, 1)(2)). Hence X((1, 1)(2)) is a model for Sol geometry.

Four of the eight components of Isom Sol lie inside O((1, 1)(2)), corresponding to multiplying the

diagonal blocks of Sol by ±1. The missing four components are achieved by adding the block

diagonal matrix diag

((
0 1

1 0

)
, I2

)
. We may also embed Sol geometry, in the exact same way,

as a sub-geometry of X((1, 1)(1)(1)) (see Figure 2 for an illustration of the iterated affine bundle

structure of X((1, 1)(1)(1))). Let M be a torus bundle over the circle with Anosov mondromy. In [20],

Huesener–Porti–Suárez showed that the natural Sol geometry structure on M is realized as a limit

of hyperbolic cone manifold structures, in the sense that the hyperbolic metrics converge to the

Sol metric after appropriate (non-isotropic) modification. It is possible to recast their construction

in the context of projective geometry using the theory developed here. Recently, Kozai [22] used

this projective geometry approach to generalize the work of Huesener–Porti–Suárez to the setting

of three-manifolds M which fiber as a surface bundle over the circle. Kozai shows (under some

assumptions) that the natural singular Sol structure on M may be deformed to nearby singular

hyperbolic structures by first deforming from Sol to half-pipe geometry X((1, 2)(1)) and then from

half-pipe to hyperbolic geometry.

5.5 Thurston geometries as limits of hyperbolic geometry

All eight Thurston geometries locally embed as sub-geometries of real projective geometry (in fact,

each embeds up to finite index and coverings). We have now demonstrated that Euclidean geometry

is a limit and both Nil geometry and Sol geometry locally embed in limits of hyperbolic geometry.

We now prove Theorem 1.3, which says that these are the only Thurston geometries that appear in

this way.

Proof of Theorem 1.3. We show that the projective geometry realizations of the four remaining

Thurston geometries, which are S3 , H2 ×R, S̃L2 R, and S2 ×R, do not locally the embed in any of

the geometries listed in (9).

Consider spherical geometry S3. Up to conjugacy, the local embedding of spherical geometry of

projective geometry is unique. It is clear that the structure group O(4) does not locally embed as

a subgroup in any of the partial flag isometry groups for the geometries appearing in (9).

Next, consider S2×R. The isometry group is (up to finite index) a product SO(3)×R. The only

geometry in the list (9) whose structure group contains a subgroup locally isomorphic to SO(3) is

Euclidean geometry X((1, 0)(3)). Of course S2 × R does not locally embed in Euclidean geometry.

The geometry S̃L2 R is locally isomorphic to (in fact an infinite cyclic cover of) the following

subgeometry of projective geometry. The space PSL(2,R) embeds in RP3 by considering the entries
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of a 2× 2 matrix as coordinates, and the identity component of the isometry group is given by the

linear action of PSL2 R × PSO(2) where the PSL2 R factor acts on the left and the PSO(2) factor

acts on the right. We show that even the stiffening of this geometry obtained by restricting the

structure group to the subgroup PSL(2,R) (acting on the left) does not locally embed in any limit

of hyperbolic geometry. For, the only geometry appearing in (9) whose isometry group contains a

subgroup locally isomorphic to PSL(2,R) ∼= SO0(2, 1) is half-pipe geometry X((1, 2)(1)). Any such

subgroup is conjugate into the block diagonal subgroup diag(O(2, 1), 1) and it is then easy to see

that such a subgroup does not act transitively on X((1, 2)(1)), but rather preserves a totally geodesic

subspace (a copy of the hyperbolic plane, see [10]). Therefore, since the left action of PSL2R is

transitive, we have shown that S̃L2 R does not locally embed in half-pipe geometry.

Finally, consider H2 × R geometry. The isometry group is (up to finite index) the product

SO(2, 1)×R. Again, the only limit of hyperbolic geometry whose isometry group contains a subgroup

H locally isomorphic to SO(2, 1) is X((1, 2)(1)), half-pipe geometry. However, the centralizer of the

smallest such subgroup H = SO0(2, 1)× {1} in O((1, 2)(1)) is diag(±I3,±1), so in particular there

is no subgroup locally isomorphic to SO(2, 1)× R inside of O((1, 2)(1)).
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