MATH 118A, FALL 2014, PROBLEM SET 2 DUE WEDNESDAY, OCTOBER 15

1. Fun with supremums

Let $S \subset \mathbb{R}$ and $T \subset \mathbb{R}$ be two nonempty subsets of \mathbb{R}, each bounded from above.
(a) Suppose $s \leq x$ for all $s \in S$. Show that $\sup (S) \leq x$.
(b) Let $x \in \mathbb{R}$. Define $x+S=\{x+s: s \in S\}$. Show that $\sup (x+S)=x+\sup (S)$.
(c) Define $S+T=\{s+t: s \in S, t \in T\}$. Show that $\sup (S+T)=\sup (S)+\sup (T)$.

Hint: If you're stuck on how to prove these equalities in (b) and (c), here's a tip: First prove LHS \leq RHS and then prove LHS \geq RHS. Part (a) is useful.

2. Roots of polynomials of odd degree

In this problem, we'll prove that the polynomial $p(x)=x^{5}-3 x+1=0$ has at least one root in the real numbers. That is, there exists $t \in \mathbb{R}$ such that $p(t)=0$.

Challenge (not for credit): The techniques of this problem can be extended to prove the result for any odd degree polynomial. Can you prove this much more general claim?
(a) Prove that $p(x)<0$ for $x<-100$ and that $p(x)>0$ for $x>100$.

Remark: Hence the set $S=\{x: p(x) \leq 0\}$ is nonempty and is bounded from above.
(b) Show that if $|x| \leq 1$ and $|h|<1$, then $|p(x+h)-p(x)|<100|h|$.

Hint: Expand out $p(x+h)=(x+h)^{5}-3(x+h)+1$. Note that $|h| \geq\left|h^{2}\right|$ etc.
(c) Show that if $|x|>1$ and $|h|<1$, then $|p(x+h)-p(x)|<100|x|^{4}|h|$.

Hint: Here note that $\left|x^{4}\right| \geq\left|x^{3}\right|$ etc.
(d) Let $t=\sup \{x: p(x) \leq 0\}$. Prove that $p(t)=0$.

Hint: Prove this by contradiction. Parts (b) and (c) will help. Part (a) was just to show this supremum exists.
3. [Rudin 1.6] Exponentiation by a real number

Fix a real number $b>1$.
(a) Let $m, n, p, q \in \mathbb{Z}$ with $n, q>0$ and with $m / n=p / q$. We call this $r=m / n=p / q$. Prove that

$$
\left(b^{m}\right)^{1 / n}=\left(b^{p}\right)^{1 / q}
$$

Hence for $r \in \mathbb{Q}$, we define $b^{r}=\left(b^{m}\right)^{1 / n}$ when $r=m / n$, and this is well-defined (i.e. does not depend on the in what terms we expressed r as a fraction).

Note: Here $b^{1 / a}$ is defined as the unique positive real number c such that $c^{a}=b$. You may assume that c exists and is unique.

Note: You may use that $\left(b^{a}\right)^{b}=b^{a b}$ when a and b are integers, but for this problem you may certainly not assume this when they are not integers, since we are defining what a rational power means, and thus may not assume it satisfies a property unless we prove it ourselves.
(b) Prove that $b^{r+s}=b^{r} b^{s}$ for $r, s \in \mathbb{Q}$
(c) Prove that, for $r \in \mathbb{Q}$, we have

$$
b^{r}=\sup \left\{b^{s}: s \in \mathbb{Q}, s \leq r\right\}
$$

Note: This supremum, like all others to come in this course, is taken in the reals. (Also, b^{s} for s rational is real but need not be rational.)

Now we define b^{x} for x real by the same expression: $b^{x}=\sup \left\{b^{s}: s \in \mathbb{Q}, s<x\right\}$.
(d) Prove that $b^{x+y}=b^{x} b^{y}$ for $x, y \in \mathbb{R}$.

