MATH 118A, FALL 2014, PROBLEM SET 3 DUE WEDNESDAY, OCTOBER 22

1. [Rudin 2.11] Let x and y be real numbers. For each of the following functions, determine whether it satisfies the axioms of a distance function for a metric space. If it does, prove it. If not, show that it fails one of the axioms (by plugging in specific values for one of the axioms, for instance).

> (a) $\quad d_{1}(x, y)=|x-y|^{2}$
> (b) $\quad d_{2}(x, y)=\sqrt{|x-y|}$
> (c) $\quad d_{3}(x, y)=\left|x^{2}-y^{2}\right|$
> (d) $\quad d_{4}(x, y)=|x-2 y|$
> (e) $\quad d_{5}(x, y)=\frac{|x-y|}{1+|x-y|}$
2. Consider the following two metrics on \mathbb{R}^{2}, the euclidean distance:

$$
d_{\ell^{2}}(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}},
$$

and the taxicab distance:

$$
d_{\ell^{1}}(x, y)=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right| .
$$

(a) Show that $d_{\ell^{2}}(x, y) \leq d_{\ell^{1}}(x, y)$
(b) Show that $d_{\ell^{1}}(x, y) \leq d_{\ell^{2}}(x, y) \sqrt{2}$
(c) Show that the metric spaces $\mathbb{R}^{2}, d_{\ell^{2}}$ and $\mathbb{R}^{2}, d_{\ell^{1}}$ have the exact same open sets. That is, show that a set is open in one if and only if it's open in the other.

Hint: For part (c), look at the definition of open set and how it relates to open balls.
3. Determine which of the following subsets of \mathbb{R}^{2} are open (in the usual euclidean metric on \mathbb{R}^{2}). If it's not open, name an explicit point (a, b) that shows this. If it is open, prove it.
(a) $\left\{(a, b) \in \mathbb{R}^{2}: 0<b \leq 1\right\}$
(b) $\mathbb{R}^{2}-\{(a, b): a=0,-1 \leq b \leq 1\}$
(c) $\mathbb{R}^{2}-\{(0,1 / n): n \in \mathbb{Z}, n>0\}$
(d) $\left\{(a, b) \in \mathbb{R}^{2}: a=b\right\}$
(e) $\left\{(a, b) \in \mathbb{R}^{2}: b<|a|\right\}$

Challenge (not for credit): How about the set $\mathbb{R}^{2}-\{(a, b): a>0, b=\sin (1 / a)\}$?

