MATH 118A, FALL 2014, PROBLEM SET 1 SOLUTIONS

1. Fun with rationals
(a) If r is rational and nonzero and x is irrational, prove that $r+x$ and $r x$ are irrational.

Since r is rational, let it be $\frac{a}{b}$ for a, b integers with $b \neq 0$. Also $a \neq 0$ since r is nonzero.

First we show $r+x$ is irrational: We will prove this by contradiction. Suppose $r+x$ is rational. Then $r+x=\frac{m}{n}$ for some integers m, n with $n \neq 0$. Then $\frac{a}{b}+x=\frac{m}{n}$.

Rearranging, we get $x=\frac{m}{n}-\frac{a}{b}=\frac{m b-a n}{n b}$. This is a ratio of integers (with the denominator not zero, since n and b aren't zero). This shows x is rational, but we are given that it is irrational. Contradiction. Thus $r+x$ must be irrational.

Next we show $r x$ is irrational: We again prove this by contradiction. Suppose $r x$ is rational. Then $r x=\frac{m}{n}$ for some integers m, n with $n \neq 0$. Then $\frac{a x}{b}=\frac{m}{n}$.

Rearranging: we get $x=\frac{m b}{a n}$, with $m b$ and $a n$ integers and $a n \neq 0$ since $a \neq 0$ and $n \neq 0$. Thus x is rational. A contradiction again. Thus $r x$ must be irrational.
(b) Prove that there is no rational number whose cube is 2.

We work by contradiction. Suppose there does exist $r=\frac{m}{n}$ a rational number (with m, n integers with $n \neq 0$) such that $r^{3}=2$. Since 2 is positive, r is positive, so, multiplying both by -1 if necessary, we may assume m and n are both positive.

Then we have $\frac{m^{3}}{n^{3}}=2$. Rearranging, we have $m^{3}=2 n^{3}$.
Now we can conclude that m^{3} is even, so m is even. But then $m=2 p$ for some positive integer $p($ since $m \neq 0)$. So $(2 p)^{3}=2 n^{3}$. So $8 p^{3}=2 n^{3}$. So $4 p^{3}=n^{3}$. Thus n is even as well. Thus $n=2 q$ for q some positive integer.

Thus $r=\frac{p}{q}$.
Consider the set S of all positive numerators of fractions whose cube is two. This is a set of positive integers, so if it is nonempty, it has a least element. But we've shown that given any fraction $\frac{m}{n}$ whose cube is two, there is one with a smaller numerator. So S does not have a least element. Thus S must be empty.
2. First notice

$$
\frac{\partial}{\partial y}\left(\frac{y}{x^{2}+y^{2}}\right)=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
$$

This gives us the antiderivative with respect to y of the first integrand:

$$
\begin{aligned}
\int_{1}^{\infty}\left(\int_{1}^{\infty} \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} d y\right) d x & =\int_{1}^{\infty}\left(\lim _{N \rightarrow \infty} \int_{1}^{N} \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} d y\right) d x \\
& =\int_{1}^{\infty} \lim _{N \rightarrow \infty}\left[\frac{y}{x^{2}+y^{2}}\right]_{y=1}^{y=N} d x \\
& =\int_{1}^{\infty}\left(\lim _{N \rightarrow \infty} \frac{N}{x^{2}+N^{2}}\right)-\frac{1}{x^{2}+1} d x \\
& =\int_{1}^{\infty} \frac{-1}{x^{2}+1} d x \\
& =-\lim _{N \rightarrow \infty} \int_{1}^{N} \frac{1}{x^{2}+1} d x \\
& =-\lim _{N \rightarrow \infty}[\arctan (x)]_{1}^{N} \\
& =-\lim _{N \rightarrow \infty}(\arctan (N))+\arctan (1) \\
& =-\frac{\pi}{2}+\frac{\pi}{4}=-\frac{\pi}{4}
\end{aligned}
$$

The second part is the same, except with signs reversed (since x and y have roles swapped, so the $x^{2}-y^{2}$ gives us a different sign).

I'll do it out. First notice

$$
\begin{aligned}
& \frac{\partial}{\partial x}\left(\frac{-x}{x^{2}+y^{2}}\right)=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& \int_{1}^{\infty}\left(\int_{1}^{\infty} \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} d x\right) d y=\int_{1}^{\infty}\left(\lim _{N \rightarrow \infty} \int_{1}^{N} \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} d x\right) d y \\
&=\int_{1}^{\infty} \lim _{N \rightarrow \infty}\left[-\frac{x}{x^{2}+y^{2}}\right]_{x=1}^{x=N} d y \\
&=\int_{1}^{\infty}\left(\lim _{N \rightarrow \infty}-\frac{N}{N^{2}+x^{2}}\right)+\frac{1}{y^{2}+1} d y \\
&=\int_{1}^{\infty} \frac{1}{y^{2}+1} d y \\
&=\lim _{N \rightarrow \infty} \int_{1}^{N} \frac{1}{y^{2}+1} d y \\
&=\lim _{N \rightarrow \infty}[\arctan (y)]_{1}^{N} \\
&=\lim _{N \rightarrow \infty}(\arctan (N))+\arctan (1) \\
&=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}
\end{aligned}
$$

For this problem set only (i.e. not in the future), it's okay if you "plugged in" ∞. We'll talk about infinite sums and infinite integrals when we get there, though, so my doing this out properly is just a teaser.

