Bernd Ammann (Regensburg)

March 12, 2010

A surgery formula for the smooth Yamabe invariant

The smooth Yamabe invariant of a compact manifold M is defined as

$$\sigma(M) := \operatorname{sup\,inf} \int_M \operatorname{scal}^g \, dv^g$$

where the supremum runs over all conformal classes $[g_0]$ on M and the infimum runs over all metrics g of volume 1 in $[g_0]$. The invariant $\sigma(M)$ is positive iff Mcarries a metric of positive scalar curvature.

We prove: If N is obtained by surgery of codimension ≥ 3 from M, then

$$\sigma(N) \ge \min\{\sigma(M), \Lambda_n\},\$$

where $\Lambda_n > 0$ only depends on $n = \dim M$. This formula unifies and generalizes previous formulas by Gromov-Lawson, Schoen-Yau, Kobayashi, Petean-Yun and allows many conclusions by using bordism theory. In particular, bordisms classes represented by manifolds with $\sigma(M) > \epsilon$ form a subgroup in the corresponding bordism group.

The subgroup structure might be a first step to build a topological characterization of manifolds with $\sigma(M) > \epsilon$, extending the topological knowledge about the class of manifolds admitting positive scalar curvature metrics.