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Abstract. We let ϕ be an ageometric fully irreducible outer automorphism so that its Handel-
Mosher [HM11] axis bundle consists of a single unique axis (as in [MP13]). We show that the
centralizer Cen(〈ϕ〉) of the cyclic subgroup generated by ϕ equals the stabilizer Stab(Λ+

ϕ ) of the

attracting lamination Λ+
ϕ and is isomorphic to Z. We further show, via an analogous result about

the commensurator, that the normalizer N(〈ϕ〉) of 〈ϕ〉 is isomorphic to either Z or Z2 ∗ Z2.

1. Introduction

It is well known [McC94] that, given a pseudo-Anosov mapping class ϕ, the centralizer Cen(〈ϕ〉)
and normalizer N(〈ϕ〉) of the cyclic subgroup 〈ϕ〉 are virtually cyclic. In fact, this property char-
acterizes pseudo-Anosov mapping classes.1

We recall some of the history for this problem for the outer automorphism groups Out(Fr). In
[BFH97], Bestvina, Feighn, and Handel constructed for a fully irreducible outer automorphism
ϕ ∈ Out(Fr) the attracting lamination Λ+

ϕ . They proved that the stabilizer Stab(Λ+
ϕ ) of Λ+

ϕ in

Out(Fr) is virtually cyclic. The centralizer Cen(〈ϕ〉) of ϕ in Out(Fr) is a subgroup of Stab(Λ+
ϕ ),

see Lemma 2.21. Moreover, the normalizer N(〈ϕ〉) of 〈ϕ〉 in Out(Fr) has a subgroup of index at
most 2 which is contained in Stab(Λ+

ϕ ). With this relationship in mind, the result of [BFH97] can

be reinterpreted as saying that the groups Stab(Λ+
ϕ ), Cen(〈ϕ〉), N(〈ϕ〉) are each virtually cyclic.

Using attracting trees instead of laminations, Kapovich and Lustig were able to reprove and
strengthen this result as follows. Given the dilitation homomorphism σ : Stab(T+

ϕ ) → R>0 (see

Equation 2), and denoting its kernel PT , they proved [KL11, Thereom 4.4] that Stab(T+
ϕ ) = PT oZ

and PT is finite. (In fact their theorem applies more generally to stabilizers of very small Fr-trees
where Stab(T+

ϕ ) is infinite).

This article is concerned with identifying the centralizer and normalizer of 〈ϕ〉 when ϕ is an
ageometric lone axis fully irreducible outer automorphism, as defined in Subsection 2.6. The term
“lone axis” is connected with the axis bundle defined by Handel and Mosher [HM11]. The axis
bundle is an analogue of the axis of a pseudo Anosov, but in general contains many fold lines.

We start with the following theorem.

Theorem A. Let ϕ ∈ Out(Fr) be an ageometric fully irreducible outer automorphism such that
the axis bundle Aϕ consists of a single unique axis, then Cen(〈ϕ〉) = Stab(Λ+

ϕ ) ∼= Z.

To motivate this theorem consider the faithful and discrete action of PGL(2,Z) on the upper
half-plane model of H2 via Möbius transformations (see Remark 3.5 for more details regarding
this example). Let A ∈ PGL(2,Z) act hyperbolically on H2 with fixed points λ, 1

λ ∈ R. If C ∈

1The following argument for this fact is given by Sisto in
http://mathoverflow.net/questions/82889/centralizers-of-non-iwip-elements-of-outf-n?rq=1

If the centralizer Cen(〈ϕ〉) is not virtually cyclic, then 〈ϕ〉 has infinite index in Cen(〈ϕ〉) and hence ϕ is not a
Morse element of the mapping class group. Thus, by [Beh06] or alternatively by [DMS10, Theorem 1.5], ϕ is not a
pseudo-Anosov mapping class.
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PGL(2,Z) fixes the ordered pair (λ, 1
λ), then C preserves the hyperbolic geodesic between these

two points. Consider the homomorphism σ : StabPGL(2,Z)((λ,
1
λ)) → (R,+) given by the signed

hyperbolic translation length. If C ∈ StabPGL(2,Z)((λ,
1
λ)) is not the identity, then C cannot fix any

other point on this geodesic. Therefore the kernel of σ is trivial. An easy argument (such as in
Corollary 3.3, for example) implies that StabPGL(2,Z)((λ,

1
λ)) = CenPGL(2,Z)(〈Ā〉) ∼= Z.

Returning to the group Out(Fr) and the case where ϕ is a lone axis ageometric fully irreducible
outer automorphism, our main task was to prove that the kernel of the analogous homomorphism
ρ : Stab(Λ+

ϕ ) → (R,+), defined in Lemma 4.3, is trivial. This is achieved by appealing to the
theorem of Mosher-Pfaff [MP13] characterizing these outer automorphisms. Proposition 4.6 then
shows that the kernel of ρ is trivial.

Our next result involves the commensurator of 〈ϕ〉 (see Definition 2.18), denoted Comm(〈ϕ〉).
Recall that N(〈ϕ〉) ≤ Comm(〈ϕ〉).
Theorem B. Let ϕ ∈ Out(Fr) be an ageometric fully irreducible outer automorphism such that
the axis bundle Aϕ consists of a single unique axis, then either

(1) Comm(〈ϕ〉) ∼= Z and Comm(〈ϕ〉) = N(〈ϕ〉) = Cen(〈ϕ〉) or
(2) Comm(〈ϕ〉) ∼= Z2 ∗ Z2 and Comm(〈ϕ〉) = N(〈ϕ〉).

In particular, N(〈ϕ〉) ∼= Z or N(〈ϕ〉) ∼= Z2 ∗ Z2.
Further, in the case where Comm(〈ϕ〉) ∼= Z2 ∗ Z2, we have that ϕ−1 is also an ageometric fully

irreducible outer automorphism such that the axis bundle Aϕ−1 consists of a single unique axis.

Example 4.1 reveals the necessity of the “lone axis” condition. It is a consequence of [Pfa13]
that ageometric lone axis fully irreducible outer automorphisms exist in each rank and it is proved
in [KP15] that this situation is generic along a specific “train track directed” random walk, but
understanding what properties transfer to inverses of outer automorphisms is much more elusive.
Theorem B gives a condition which guarantees that ϕ−1 also admits a lone axis. However, we do
not know if the latter case in fact occurs, prompting the following question.

Question 1.1. Does there exist some ageometric lone axis fully irreducible outer automorphism
such that Comm(〈ϕ〉) ∼= Z2 ∗ Z2 (i.e N(〈ϕ〉) ∼= Z2 ∗ Z2)?

We pose two further questions.

Question 1.2.

(1) Can one give a concrete description of Cen(〈ϕ〉) and N(〈ϕ〉) when ϕ is not an ageometric
lone axis fully irreducible outer automorphism?

(2) Does there exist a reducible outer automorphism with a virtually cyclic centralizer and nor-
malizer?2

In the more general context of determining the centralizer of the cyclic subgroup generated by
an element ϕ ∈ Out(Fr) we mention the following additional results. Using the machinery of
completely split relative train track maps, Feighn and Handel [FH09] present an algorithm that
virtually determines the weak centralizer of 〈ϕ〉, i.e. all elements that commute with some power
of ϕ. When ϕ is a Dehn twist, Rodenhausen and Wade [RW15] give an algorithm determining a
presentation of a finite index subgroup of Cen(〈ϕ〉). They use this to compute a presentation of
the centralizer of a Whitehead generator.

Acknowledgements. This paper came out of an idea presented to the second author by Koji
Fujiwara after a talk she gave at Hebrew University. Both authors would like to thank Yuval
Ginosar, Ilya Kapovich, Darren Long, Jon McCammond, and Lee Mosher for helpful and interesting
conversations.

2A positive answer to this question is outlined in the mathoverflow conversation of the first footnote.
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2. Preliminary definitions and notation

To keep this section at a reasonable length, we will provide only references for the definitions
that are better known.

2.1. Train track maps, Nielsen paths, and principal vertices. Irreducible elements of Out(Fr)
are defined in [BH92] and fully irreducible outer automorphisms are those such that each of their
powers is irreducible. Every irreducible outer automorphism can be represented by a special kind
of graph map called a train track map, as defined in [BH92]. In particular, we will require that
vertices map to vertices. Moreover, we can also choose these maps so that they are defined on
graphs with no valence-1 or valence-2 vertices (from the proof of [BH92] Theorem 1.7). We refer
the reader to [BH92] for the definitions of directions, periodic directions, fixed directions, legal paths,
Nielsen paths (denoted NP) and periodic Nielsen paths (PNP).

Definition 2.1 (Principal points). Given a train track map g : Γ → Γ, following [HM11] we call
a point principal that is either the endpoint of a PNP or is a periodic vertex with ≥ 3 periodic
directions. Thus, in the absence of PNPs, a point is principal if and only if it is a periodic vertex
with ≥ 3 periodic directions

2.2. Outer Space CVr and the attracting tree Tϕ+ for a fully irreducible ϕ ∈ Out(Fr). Let
CVr denote the Culler-Vogtmann Outer Space in rank r, as defined in [CV86], with the asymmetric
Lipschitz metric, as defined in [AKB12]. The group Out(Fr) acts naturally on CVr on the right
by homeomorphisms. An element ϕ ∈ CVr sends a point X = (Γ,m, `) ∈ CVr to the point
X · ϕ = (Γ,m ◦ Φ, `) where Φ is a lift in Aut(Fr) of ϕ. Let CVr denote the compactification of
CVr, as defined in [CL95, BF12]. The action of Out(Fr) on CVr extends to an action on CVr by
homeomorphisms.

Definition 2.2 (Attracting tree Tϕ+). Let ϕ ∈ Out(Fr) be a fully irreducible outer automorphism.

Then ϕ acts on CVr with North-South dynamics (see [LL03]). We denote by Tϕ+ the attracting
fixed point of this action and by Tϕ− the repelling fixed point of this action.

2.3. The attracting lamination Λϕ for a fully irreducible outer automorphism. We give
a concrete description of Λ+

ϕ using a particular train track representative g : Γ → Γ. This is the
original definition appearing in [BFH97]. Note that apriori it is not clear that it does not depend
on the train track representative.

Definition 2.3 (Iterating neighborhoods). Let g : Γ → Γ be an affine irreducible train track map
so that, in particular, there has been an identification of each edge e of Γ with an open interval
of its length `(e) determined by the Perron-Frobenius eigenvector. Let λ = λ(ϕ) be its stretch
factor and assume λ > 1. Let x be a periodic point which is not a vertex (such points are dense
in each edge). Let ε > 0 be sufficiently small so that the ε-neighborhood of x, denoted U , is
contained in the interior of an edge. There exists an N > 0 such that x is fixed, U ⊂ gN (U), and
DgN fixes the directions at x. We choose an isometry ` : (−ε, ε)→ U and extend it to the unique
locally isometric immersion ` : R→ Γ so that `(λN t) = gN (`(t)). We then say that ` is obtained by
iterating a neighborhood of x.

Definition 2.4 (Leaf segments, equivalent isometric immersions). We call isometric immersions
γ1 : [a, b] → Γ, γ2 : [c, d] → Γ equivalent when there exists an isometry h : [a, b] → [c, d] so that
γ1 = γ2 ◦ h. Let ` : R→ Γ be an isometric immersion. A leaf segment of ` is the equivalence class
of the restriction to a finite interval of R. Two isometric immersions `, `′ are equivalent if each leaf
segment ` is a leaf segment of `′ and vice versa.
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Definition 2.5 (The realization in Γ of the attracting lamination Λ+
ϕ (Γ)). The attracting lami-

nation realized in Γ, denoted Λ+
ϕ (Γ), is the equivalence class of a line ` obtained by iterating a

periodic point in Γ (as in Definition 2.3). An element of Λ+
ϕ (Γ) is called a leaf. Notice that Λ+

ϕ (Γ)

can be realized as an Fr-invariant set of bi-infinite geodesics in Γ̃, the universal cover of Γ. We

shall denote this set by Λ+
ϕ (Γ̃)

The marking of Γ induces an identification of ∂Γ with ∂Fr. The attracting lamination Λ+
ϕ is the

image of Λ+
ϕ (Γ̃) under this identification. In [BFH97] it is proved that this set is independent of

the choice of g.

Definition 2.6 (The action of Out(Fr) on the set of laminations Λ±ϕ ). Let ψ ∈ Out(Fr), then by
[BFH97, Lemma 3.5],

(1) ψ · (Λ+
ϕ ,Λ

−
ϕ ) = (Λ+

ψϕψ−1 ,Λ
−
ψϕψ−1).

2.4. Whitehead graphs. The following definitions are in [HM11] and [MP13].

Definition 2.7 (Stable Whitehead graphs and local Whitehead graphs). Let g : Γ→ Γ be a train
track map. The local Whitehead graph LW (v; Γ) at a point v ∈ Γ has a vertex for each direction
at v and an edge connecting the vertices corresponding to the pair of directions {d1, d2} if the turn
{d1, d2} is taken by an image of an edge. The stable Whitehead graph SW (v; Γ) at a principal point
v is then the subgraph of LW (v; Γ) obtained by restricting to the periodic direction vertices.

The map g induces a continuous simplicial map Dg : LW (g, v) → LW (g, g(v)). When g is
rotationless and v a principal vertex, Dg acts as the identity on SW (g, v), when viewed as a
subgraph of LW (g, v), and hence gives an induced surjection Dg : LW (g, v)→ SW (g, v). We recall
that for a train track representative of a fully irreducible outer automorphism the local Whitehead
graph at each vertex is connected. Hence

Lemma 2.8. If g : Γ→ Γ is a train track map representing a fully irreducible outer automorphism
ϕ and v ∈ Γ is a principal vertex, then SW (g, v) is connected.

Lemma 2.9. Let g : Γ→ Γ be a rotationless PNP-free train track representative of an ageometric

fully irreducible ϕ ∈ Out(Fr). Let Γ̃ be the universal cover of Γ and ṽ ∈ Γ̃ a vertex that projects to

a principal vertex v ∈ Γ. Then there exist two leaves `1, `2 of the lamination Λ+
ϕ (Γ̃) so that `1 ∪ `2

is a tripod whose vertex is ṽ.

Proof. Since v is a principal vertex and there are no PNPs, SW (g, v) will have ≥ 3 vertices. Since
SW (g, v) is connected, one of these vertices d1 will belong to at least 2 edges ε1, ε2. Let d2, d3 be
the directions corresponding to the other vertices of these edges. Since g is rotationless, periodic

directions are in fact fixed directions. We may lift g to a map g̃ : Γ̃→ Γ̃ that fixes ṽ. Iterating the
lifts of the edges that correspond to d1, d2, d3 will give us three eigenrays R1, R2, R3 initiating at ṽ.

The 2 edges ε1, ε2 correspond to 2 leaves `1 and `2 of Λ+
ϕ (Γ̃) [HM11]. We have `1∪`2 = R1∪R2∪R3.

Hence, as desired, `1 ∪ `2 is a tripod whose vertex is ṽ. �

2.5. Axis bundles. Three equivalent definitions of the axis bundle Aϕ for a nongeometric fully
irreducible ϕ ∈ Out(Fr) are given in [HM11]. We include only the definition that we use.

Definition 2.10 (Fold lines). A fold line in CVr is a continuous, injective, proper function R→ CVr
defined by
1. a continuous 1-parameter family of marked graphs t→ Γt and
2. a family of homotopy equivalences hts : Γs → Γt defined for s ≤ t ∈ R, each marking-preserving,

satisfying:

Train track property : hts is a local isometry on each edge for all s ≤ t ∈ R.
4



Semiflow property : hut ◦ hts = hus for all s ≤ t ≤ u ∈ R and hss : Γs → Γs is the identity for all
s ∈ R.

Definition 2.11 (Axis Bundle). Aϕ is the union of the images of all fold lines F : R→ CVr such

that F(t) converges in CVr to Tϕ− as t→ −∞ and to Tϕ+ as t→ +∞.

Definition 2.12 (Axes). We call the fold lines in Definition 2.11 the axes of the axis bundle.

2.6. Lone Axis Fully Irreducibles Outer Automorphisms.

Definition 2.13 (Lone axis fully irreducibles). A fully irreducible ϕ ∈ Out(Fr) will be called a
lone axis fully irreducible outer automorphism if Aϕ consists of a single unique axis.

[MP13, Theorem 3.9] gives necessary and sufficient conditions on an ageometric fully irreducible
outer automorphism ϕ ∈ Out(Fr) to ensure that Aϕ consists of a single unique axis. It is also
proved there that, under these conditions, the axis will be the periodic fold line for a (in fact any)
train track representative of ϕ. In particular, as is always true for axis bundles, Aϕ contains each
point in Outer Space on which there exists an affine train track representative of a power of ϕ.

Remark 2.14. It will be important for our purposes that no train track representative of an
ageometric lone axis fully irreducible ϕ has a periodic Nielsen path. This follows from [MP13,
Lemma 4.4], as it shows that each train track representative of each power of ϕ is stable, hence (in
the case of an ageometric fully irreducible outer automorphism) has no Nielsen paths.

The following proposition is a direct consequence of [MP13, Corollary 3.8].

Proposition 2.15 ([MP13]). Let ϕ be an ageometric lone axis fully irreducible outer automorphism,
then there exists a train track representative g : Γ → Γ of some power ϕR of ϕ so that all vertices
of Γ are principal, and fixed, and all but one direction is fixed.

2.7. The stabilizer Stab(Λ+
ϕ ) of the lamination.

Definition 2.16 (Stab(Λ+
ϕ )). Given a fully irreducible ϕ ∈ Out(Fr), we let Stab(Λ+

ϕ ) denote the

subgroup of Out(Fr) fixing Λ+
ϕ setwise, i.e. sending leaves of Λ+

ϕ to leaves of Λ+
ϕ .

In [BFH97], Bestvina, Feighn, and Handel define a homomorphism (related to the expansion
factor)

(2) σ : Stab(Λ+
ϕ )→ (R>0, ·)

that they use to prove the following theorem ([BFH97, Theorem 2.14]):

Theorem 2.17 ([BFH97, Theorem 2.14] or [KL11, Theorem 4.4]). For each fully irreducible ϕ ∈
Out(Fr), we have that Stab(Λ+

ϕ ) is virtually cyclic.

2.8. Commensurators.

Definition 2.18 (Commensurator Comm(〈ϕ〉)). Given a group G and subgroup H ≤ G, the
commensurator or virtual normalizer of H in G is defined as

CommG(H) := {g ∈ G | [H : H ∩ g−1Hg] <∞ and [g−1Hg : H ∩ g−1Hg] <∞}.

Convention 2.19 (〈ϕ〉, Cen(〈ϕ〉), N(〈ϕ〉)). Given an element ϕ ∈ Out(Fr), we let 〈ϕ〉 denote
the cyclic subgroup generated by ϕ, we let Cen(〈ϕ〉) denote its centralizer in Out(Fr), and we let
N(〈ϕ〉) denote its normalizer in Out(Fr).

Remark 2.20. NG(H) ≤ CommG(H).

Lemma 2.21. Let ϕ ∈ Out(Fr) be fully irreducible. Then:
5



(1) Comm(〈ϕ〉) = Stab({Λ+
ϕ ,Λ

−
ϕ}) = Stab({T+

ϕ , T
−
ϕ }).

And, in particular, each element ψ ∈ N(〈ϕ〉) fixes the unordered pair {T+
ϕ , T

−
ϕ } and the

unordered pair {Λ+
ϕ ,Λ

−
ϕ}.

(2) Each element ψ ∈ Cen(〈ϕ〉) fixes the ordered pair (T+
ϕ , T

−
ϕ ) and the ordered pair (Λ+

ϕ ,Λ
−
ϕ ).

In particular, Cen(〈ϕ〉) < Stab(Λ+
ϕ ).

Proof. (1) By the proof of Corollary 5.8 in [KL10],

Comm(〈ϕ〉) ≤ Stab({T+
ϕ , T

−
ϕ }).

Thus, by [BFH97, Lemma 3.5],

Comm(〈ϕ〉) ≤ Stab({Λ+
ϕ ,Λ

−
ϕ}).

Notice that, since 〈ϕ〉 is cyclic,

(3) Comm(〈ϕ〉) := {ψ ∈ Out(Fr) | ∃ m,n ∈ Z so that ψϕnψ−1 = ϕm}.
Now suppose ψ ∈ Stab({Λ+

ϕ ,Λ
−
ϕ}). Then, by Equation 1, we know ψϕψ−1 = ϕn for some n ∈ Z.

So ψ ∈ Comm(〈ϕ〉).
Since N(〈ϕ〉) ≤ Comm(〈ϕ〉), the last statement follows also.
(2) Let ψ ∈ Cen(〈ϕ〉) then by Equation 1 we have ψ · (Λ+

ϕ ,Λ
−
ϕ ) = (Λ+

ϕ ,Λ
−
ϕ ). That ψ fixes the

ordered pair (T+
ϕ , T

−
ϕ ) now follows from [BFH97, Lemma 3.5] or [KL10, Corollary 5.8]. �

3. The normalizer of a fully irreducible outer automorphism

Proposition 3.1. Let ϕ ∈ Out(Fr) be fully irreducible. Then there exists some k ∈ N such that
Stab(Λ+

ϕ ) is a subgroup of index ≤ 2 in N(〈ϕk〉).

Proof. If ν ∈ Stab(Λ+
ϕ ) define ψ = νϕν−1. Then ψ is a fully irreducible element of Stab(Λ+

ϕ ).
Therefore, ψ is exponentially growing and, by [BFH97, Corollary 2.13] or [KL11, Proposition 3.14],
σ(ψ) > 1, where σ is the map from Equation 2. By [BFH97, Corollary 2.15] or [KL11, Theorem
4.4], ϕ and ψ have common nonzero powers, i.e. there exist integers k and m so that ψk = ϕm and
hence ν ◦ ϕk ◦ ν−1 = ϕm.

We denote by ω : Out(Fr)→ Out(Fr) the isomorphism defined by conjugation by ν, i.e.

ω(θ) = ν ◦ θ ◦ ν−1.

Note that ω(Stab(Λ+
ϕ )) = Stab(Λ+

ϕ ). Since Stab(Λ+
ϕ ) is virtually cyclic (Theorem 2.17) and ϕ ∈

Stab(Λ+
ϕ ), we have that 〈ϕ〉 is a finite index subgroup in Stab(Λ+

ϕ ), let n be its index. Then the

index of 〈ϕk〉 in Stab(Λ+
ϕ ) is |k|n. The index of 〈ϕm〉 in Stab(Λ+

ϕ ) is |m|n. On the other hand,

〈ϕm〉 = ω(〈ϕk〉) has index |k|n in ω(Stab(Λ+
ϕ )) = Stab(Λ+

ϕ ). Hence |k| = |m|. This proves that

ν ∈ NOut(Fr)(〈ϕk〉) and hence Stab(Λ+
ϕ ) ≤ NOut(Fr)(〈ϕk〉).

Finally, by Lemma 2.21(1), we have
[
NOut(Fr)(〈ϕk〉)

]2 ≤ Stab(Λ+
ϕk) = Stab(Λ+

ϕ ) ≤ NOut(Fr)(〈ϕk〉).
Moreover, the index of

[
NOut(Fr)(〈ϕk〉)

]2
in NOut(Fr)(〈ϕk〉) is 2. This proves the proposition. �

Corollary 3.2. If ν ∈ Stab(Λ+
ϕ ), then ν fixes the ordered pair (T+

ϕ , T
−
ϕ ).

Proof. By Proposition 3.1, we have ν ∈ N(〈ϕk〉) for some k. Hence, by Lemma 2.21(1), we have
ν({T+

ϕ , T
−
ϕ }) = {T+

ϕ , T
−
ϕ }. Since ν(Λ+

ϕ ) = Λ+
ϕ we get that ν(T−ϕ ) = T−ϕ . Thus, ν fixes the ordered

pair (T+
ϕ , T

−
ϕ ). �

Lemma 3.3. If ϕ ∈ Out(Fr) is fully irreducible and Stab(Λ+
ϕ ) is an infinite cyclic group, then

Cen(〈ϕ〉) = Stab(Λ+
ϕ ).
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Proof. Let ψ be the generator of Stab(Λ+
ϕ ) then ϕ = ψm for some m ∈ Z. Thus, ψ ∈ Cen(〈ϕ〉) and

Stab(Λ+
ϕ ) ≤ Cen(〈ϕ〉), but Cen(〈ϕ〉) ≤ Stab(Λ+

ϕ ) by Lemma 2.21(2). �

Proposition 3.4. There exists a number K so that for each j ∈ Z we have

N(〈ϕj〉) < N(〈ϕK〉).

Proof. Define Nm
s := N(〈ϕm〉)∩Stab(Λ+

ϕ ). Then
[
N(〈ϕm〉)

]2
< Nm

s , so Nm
s is a subgroup of index

at most 2 in N(〈ϕm〉).
Let k be as in the Proposition 3.1. Then Stab(Λ+

ϕ ) = Nk
s . Therefore, if it so happens that for

each j ∈ Z we have that N(〈ϕj〉) = N j
s < Stab(Λ+

ϕ ), then N(〈ϕj〉) < N(〈ϕk〉) for all j.
Thus, we assume that there exists a number m so that N(〈ϕm〉) = 〈Nm

s , ψ〉 for some ψ /∈
Stab(Λ+

ϕ ). Let K = km. Since N(〈ϕK〉) ≥ N(〈ϕk〉), N(〈ϕm〉), we have that ψ ∈ N(〈ϕK〉) and

Stab(Λ+
ϕ ) < N(〈ϕK〉). Then, since NK

s is properly contained in 〈Stab(Λ+
ϕ ), ψ〉 < N(〈ϕK〉) and has

at most index 2 in N(〈ϕK〉), we have that N(〈ϕK〉) = 〈Stab(Λ+
ϕ ), ψ〉.

We show that the same K works for an arbitrary j ∈ Z. If N(〈ϕj〉) < Stab(Λ+
ϕ ) < N(〈ϕK〉)

then we are done. So assume that there exists some θ /∈ Stab(Λ+
ϕ ) such that N(〈ϕj〉) = 〈N j

s , θ〉.
As in the previous paragraph, we have 〈Stab(Λ+

ϕ ), ψ〉, 〈Stab(Λ+
ϕ ), θ〉 < N(〈ϕjK〉) and Stab(Λ+

ϕ ) has

index 2 in each of the groups 〈Stab(Λ+
ϕ ), ψ〉, 〈Stab(Λ+

ϕ ), θ〉, N(〈ϕjK〉). This implies that the three

groups are equal and, in particular, N(〈ϕK〉) = 〈Stab(Λ+
ϕ ), ψ〉 = 〈Stab(Λ+

ϕ ), θ〉 = N(〈ϕj〉). �

Example 3.5. We work out an example where the number K of Proposition 3.4 is > 1. To see
this, we recall that Out(F2) ∼= GL(2,Z) via the abelianization map. Thus, it suffices to carry out
the computations in GL(2,Z). In fact we will work with PGL(2,Z). Letting I denote the identity
matrix, SL(2,Z) ∼= PGL(2,Z) × 〈−I〉 and GL(2,Z) ∼= SL(2,Z) o Z2, where the Z2 subgroup is

generated by S =

(
1 0
0 −1

)
(this follows by considering the determinant homomorphism).

By standard facts about Möbius transformations, each matrix A in PGL(2,Z) acts either:

◦ elliptically - fixing a point inside H2 but with no fixed point on ∂H2 = R ∪ {∞}, or
◦ parabolically - with a single fixed point on R ∪ {∞}, or
◦ hyperbolically - with precisely two fixed points on R ∪ {∞}.

Let A ∈ GL(2,Z) be a matrix such that its projectivization Ā ∈ PGL(2,Z) acts hyperbolically
on H2 and fixes the points λ, 1

λ ∈ R. We have seen in the introduction that the stablizer in

PGL(2,Z) of the ordered pair (λ, 1
λ), denoted StabPGL(2,Z)(λ,

1
λ), is isomorphic to Z and is equal to

CenPGL(2,Z)(〈Ā〉). Let C ∈ SL(2,Z) be such that C̄ is the generator of CenPGL(2,Z)(〈Ā〉). Note that
−I is in the center of SL(2,Z), thus CenSL(2,Z)(〈A〉) = 〈C,−I〉. Moreover, S only commutes with
diagonal matrices. Thus, if A ∈ GL(2,Z) is not diagonal, CenGL(2,Z)(〈A〉) = CenSL(2,Z)(〈A〉) =
〈C,−I〉 ∼= Z×Z2. This gives us an example where the centralizer is not isomorphic to Z (in contrast
to the conclusion of our theorem).

Moreover, note that for all m ∈ Z, we have CenGL(2,Z)(〈Am〉) = CenGL(2,Z)(〈A〉) since both A

and Am fix the same points on ∂H2.
Consider

A =

(
0 1
1 1

)
∈ GL(2,Z), B = A2 =

(
1 1
1 2

)
∈ SL(2,Z), P =

(
0 1
−1 0

)
.

We have CenGL(2,Z)(〈A〉) = CenGL(2,Z)(〈B〉). A direct calculation shows that A is not a power of

any matrix in PGL(2,Z). Therefore, StabPGL(2,Z)(λ,
1
λ) = 〈A〉. Hence, CenGL(2,Z)(〈A〉) = 〈A,−I〉.

One can check directly that P ∈ NGL(2,Z)(〈B〉) and P /∈ NGL(2,Z)(〈A〉). This gives us an example
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where NGL(2,Z)(〈B〉) strictly contains CenGL(2,Z)(〈B〉). Moreover, we see that NGL(2,Z)(〈A〉) 6=
NGL(2,Z)(〈A2〉). Thus K 6= 1.

We can in fact compute NGL(2,Z)(〈A〉) and NGL(2,Z)(〈B〉). We have

NPGL(2,Z)(〈B̄〉) > 〈StabPGL(2,Z)(λ,
1
λ), P 〉.

The subgroup StabPGL(2,Z)(λ,
1
λ) ofNPGL(2,Z)(〈B̄〉) has index≤ 2 (since for each ψ ∈ NPGL(2,Z)(〈B̄〉),

we have that ψ preserves {λ, 1
λ}). Hence NPGL(2,Z)(〈B̄〉) = 〈StabPGL(2,Z)(λ,

1
λ), P 〉. The image

of NGL(2,Z)(〈B〉) under the homomorphism GL(2,Z) → PGL(2,Z) is NPGL(2,Z)(〈B̄〉). Therefore,
NGL(2,Z)(〈B〉) = 〈A,−I, P 〉. Moreover, we have 〈A,−I〉 < NGL(2,Z)(〈A〉) < NGL(2,Z)(〈B〉) =

〈A,−I, P 〉, we have P 2 = −I, and we have P /∈ NGL(2,Z)(〈A〉). Thus, NGL(2,Z)(〈A〉) = 〈A,−I〉. In
conclusion,

NGL(2,Z)(〈A〉) = CenGL(2,Z)(〈A〉) = CenGL(2,Z)(〈A2〉) = 〈A,−I〉 ∼= Z× Z2 and
NGL(2,Z)(〈A2〉) = 〈A,P,−I〉 ∼= (Z o Z2)× Z2.

4. Proof of Main Theorems

Before we prove the main theorems, we give an example revealing the necessity of the “lone axis”
condition in the main theorems.

Example 4.1. We show that there exists an ageometric fully irreducible outer automorphism ϕ
such that Cen(〈ϕ〉) � Z, and moreover Cen(〈ϕ〉) � Z × Z2 (as in Out(F2), whose center is Z2).
Consider F3 = 〈a, b, c〉. Let R3 be the 3 petaled rose and define

Ψ : a→ b→ c→ ab.

It is straight-forward (see [Pfa13, Proposition 4.1]) to check that this map represents an ageometric
fully irreducible outer automorphism. Denote by ∆ the 3-fold cover corresponding to the subgroup

〈b, c, a3, abA, acA, a2bA2, a2cA2〉.

We claim that Ψ13 lifts to ∆. Indeed, let A be the transition matrix of Ψ, then

A13 =

 7 9 12
12 16 21
9 12 16

 .

In particular both Ψ(b) and Ψ(c) cross a a multiple of three times. Thus Ψ13 lifts to ∆. Denote
the vertices of ∆ by v1, v2, v3. We denote by g : ∆ → ∆ the lift of Ψ13 that sends v1 to itself.
Let T : ∆ → ∆ denote the deck transformation sending v1 to v2. The action of T on H1(∆,Z) is
nontrivial, so T does not represent an inner automorphism. Moreover, we claim that g ◦T = T ◦ g.
First note that both of the maps g ◦ T, T ◦ g are lifts of Ψ13. Moreover, since a appears in Ψ13(a)
7 times (see the matrix A13) then g(v2) = v2. Therefore,

g ◦ T (v1) = g(v2) = v2 = T (v1) = T ◦ g(v1).

Therefore, g ◦ T = T ◦ g. Let ϕ ∈ Out(F7) be the outer automorphism represented by g, and θ the
outer automorphism represented by T . An elementary computation shows that g is an irreducible
train track map and that each local Whitehead graph is connected. Moreover, a PNP for g would
descend to a PNP for Ψ. Since Ψ contains no such paths, then there are no PNPs for g. Thus the
outer automorphism ϕ is ageometric fully irreducible (see [Pfa13, Proposition 4.1]). In conclusion,
θ is an order-3 element in CenOut(F7)(〈ϕ〉) in contrast to the conclusion of our theorem for a lone
axis ageometric fully irreducible outer automorphism.
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Lemma 4.2. Let ϕ ∈ Out(Fr) be an ageometric lone axis fully irreducible outer automorphism. If
ψ ∈ Out(Fr) is an outer automorphism fixing the pair (T+

ϕ , T
−
ϕ ), then ψ fixes Aϕ as a set, and also

preserves its orientation.

Proof. Aϕ consists precisely of all fold lines F : R → CVr such that F(t) converges in CVr to Tϕ−
as t → −∞ and to Tϕ+ as t → +∞. Further, since ϕ ∈ Out(Fr) is a lone axis fully irreducible
outer automorphism, there is only one such fold line. Hence, since ψ fixes (T+

ϕ , T
−
ϕ ), it suffices to

show that the image of the single fold line Aϕ under ψ is a fold line. Indeed given the fold line
t→ Γt with the semi-flow family {hts}, the new fold line is just t→ Γt · ψ with the same family of
homotopy equivalences {hts}. Hence the properties of Definition 2.10 still hold. �

Recall that Aϕ is a directed geodesic and suppose that the map t → Γt is a parametrization of
Aϕ according to arc-length with respect to the Lipschitz metric, i.e.

(4) d(Γt,Γt′) = t′ − t for t′ > t.

Lemma 4.3. Let ϕ ∈ Out(Fr) be an ageometric lone axis fully irreducible outer automorphism and
ψ ∈ N(〈ϕ〉), then there exists a number ρ(ψ) ∈ R so that for all t ∈ R, we have ψ(Γt) = Γρ(ψ)+t.

Proof. By Lemma 4.2, ψ(Aϕ) = Aϕ and ψ preserves the direction of the fold line. Therefore,
there exists a strictly monotonically increasing surjective function f : R→ R so that ψ(Γt) = Γf(t).
Moreover, since ψ is an isometry with respect to the Lipschitz metric, for t < t′, since f(t) < f(t′),
Equation (4) implies

f(t′)− f(t) = d(Γf(t),Γf(t′)) = d(ψ(Γt), ψ(Γt′)) = d(Γt,Γt′) = t′ − t.

Hence f(t′) = f(t) + t′ − t. This implies that for all s ∈ R, f(s) = f(0) + s. Define ρ(ψ) = f(0),
then

ψ(Γt) = Γf(t) = Γf(0)+t = Γρ(ψ)+t. �

Lemma 4.4. Let ϕ ∈ Out(Fr) be an ageometric lone axis fully irreducible outer automorphism,
then the map ρ : Stab(Λ+

ϕ )→ (R,+) is a homomorphism.

Proof. For each t ∈ R,

Γt = ψ−1ψ(Γt) = ψ−1(Γρ(ψ)+t) = Γρ(ψ−1)+ρ(ψ)+t.

Thus, t = ρ(ψ−1) + ρ(ψ) + t, i.e. ρ(ψ−1) = −ρ(ψ). Moreover, let ψ, ν ∈ Stab(Λ+
ϕ ), then

Γρ(ψ◦ν)+t = ψ ◦ ν(Γt) = ψ(ν(Γt)) = ψ(Γρ(ν)+t) = Γρ(ψ)+ρ(ν)+t.

Thus, ρ(ψ ◦ ν) = ρ(ψ) + ρ(ν). We therefore obtain that ρ is a homomorphism. �

Since Stab(Λ+
ϕ ) is virtually cyclic and ρ(ϕ) 6= 0, the image of Stab(Λ+

ϕ ) under ρ is infinite cyclic.
Thus it gives rise to a surjective homomorphism

(5) τ : Stab(Λ+
ϕ )→ Z

with finite kernel. Note that the kernel consists precisely of those elements of Out(Fr) that, when
acting on CVr, fix the axis Aϕ pointwise. We show in Corollary 4.7 that ker(τ) = id.

Proposition 4.5. Let ϕ ∈ Out(Fr) be an ageometric lone axis fully irreducible outer automorphism
and let ψ ∈ Stab(Λ+

ϕ ) be an outer automorphism that fixes Aϕ pointwise. Let f : Γ→ Γ be an affine

train track representative of some power ϕR of ϕ such that all vertices of Γ are principal (guaranteed
by Proposition 2.15) and let h : Γ→ Γ be any isometry representing ψ. Then h permutes the f -fixed
directions and hence fixes the (unique) nonfixed direction.
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Proof. ψ fixes the points Γ and Γϕ. Thus there exist isometries h : Γ → Γ and h′ : Γϕ → Γϕ that
represent an automorphism Ψ in the outer automorphism class of ψ, i.e. the following diagrams
commute

Rr

m
��

Ψ // Rr

m
��

Γ
h // Γ

Rr

f◦m
��

Ψ // Rr

f◦m
��

Γ
h′ // Γ

Therefore, the following diagram commutes up to homotopy

Γ

f
��

h // Γ

f
��

Γ
h′ // Γ

We will show that this diagram commutes and in fact that h′ = h. Let H : Γ × I → Γ be the

homotopy so that H(x, 0) = f ◦ h(x) and H(x, 1) = h′ ◦ f(x). Choose a lift f̃ of f and a lift h̃ of h

to Γ̃. Note that f̃◦h̃ is a lift of f◦h. Let H̃ be a lift of H that starts with the lift f̃◦h̃. Then H̃(x, 1) is

a lift of h′◦f , which we denote by h̃′ ◦ f . This in turn determines a lift h̃′ of h′ so that h̃′ ◦ f = h̃′◦f̃ .

There exists a constant M so that for all x ∈ Γ̃, we have d(f̃ ◦ h̃(x), h̃′ ◦ f̃(x)) ≤M , hence f̃ ◦ h̃(x)

and h̃′◦f̃(x) induce the same homeomorphism on ∂Γ̃. Let v ∈ Γ̃ be any vertex. By Lemma 2.9 there

exist leaves `1, `2 of Λ+(Γ̃) that form a tripod whose vertex is v. Then f̃ ◦ h̃(`1), f̃ ◦ h̃(`2), f̃ ◦ h̃(`3)

are embedded lines forming a tripod, as are h̃′ ◦ f̃(`1), h̃′ ◦ f̃(`2), h̃′ ◦ f̃(`3). Moreover, the ends of

the two tripods coincide. Thus, f̃ ◦ h̃(v) = h̃′ ◦ f̃(v). Since v was arbitrary and the maps are linear,

we have f̃ ◦ h̃ = h̃′ ◦ f̃ and f ◦ h = h′ ◦ f .
We now show that h′ = h. Let e1 be the oriented edge representing the nonfixed direction of Df .

For all i 6= 1, Df(ei) = ei. Let k be such that h(ek) = e1. We have Dh′ ◦Df = Df ◦Dh. Thus for
i 6= 1, k we have Dh′(ei) = Dh(ei). Since h and h′ are isometries, this implies that h′(ei) = h(ei)
for i 6= 1, k. If k = 1 then h and h′ agree on all but one oriented edge and therefore coincide, so we
assume k 6= 1. If e1 6= ēk then h(ēi) = h′(ēi) for both i = 1 and i = k, hence h′ = h. Therefore we
may assume that ē1 = ek. We have h(ek) = e1, hence h(e1) = ek. So h′({e1, ek}) = {e1, ek}, hence
we assume h′(ek) = ek and h′(e1) = e1. Notice that the edge of e1 must be a loop, since h and h′

coincide on all other edges. Further, the orientation of the loop is preserved by h′ and flipped by
h. Now let j 6= 1 be so that Df(e1) = ej and let u be an edge path so that f(e1) = ejue1. Thus,

f(ek) = f(e1) = ekūēj . We have

ekūēj = f(ek) = f(h(e1)) = h′(f(e1)) = h′(ej)h
′(u)h′(e1).

Thus h′(ej) = ek, so j = k. Hence Df(e1) = ek = Df(ek). So the unique illegal turn of f is
{e1, ē1}. But this is impossible since f is a homotopy equivalence and must fold to the identity.
Thus, h = h′ and so, since we have from the previous paragraph that f ◦ h = h′ ◦ f , we know that
the following diagram commutes

Γ

f
��

h // Γ

f
��

Γ
h // Γ

Let e be an edge so that the direction defined by e is fixed by Df . We have Dh(e) = Dh(Df(e)) =
Df(Dh(e)), therefore Dh(e) is also a fixed direction. Thus h(e) defines a fixed direction, hence the
f -fixed directions are permuted by h. �

Proposition 4.6. Under the conditions of Proposition 4.5, h is the identity on Γ.
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Proof. Let e be the oriented edge of Γ representing the unique direction that is not f -fixed (or f -
periodic). By Proposition 4.5, we know that h(e) = e. Let p be an f -periodic point in the interior
of e. We can switch to a power of f fixing p. Let ` ∈ Λ+

ϕ (Γ) be the leaf of the lamination obtained

by iterating a neighborhood of p (see Definition 2.3). Denote by Γ̃ the universal cover of Γ and let

p̃ be a lift of p and ẽ and ˜̀ be the corresponding lifts of e and `. Let h̃ and f̃ be the respective

lifts of h and f fixing the point p̃. The lift f̃ fixes ˜̀, since this leaf is generated by f̃ -iterating a
neighborhood of p̃ contained in ẽ.

We first claim f̃ fixes only one leaf of Λ̃+
ϕ (Γ). Indeed, if ˜̀′ is another such leaf, both ends of ˜̀′ are

f̃ -attracting, so there exists an f̃ -fixed point q̃ ∈ ˜̀′ 3. If q̃ 6= p̃, then the segment between them is
an NP, contradicting the fact that f has no PNPs (see Remark 2.14). Thus q̃ = p̃. The intersection˜̀′ ∩ ˜̀ contains p̃ but since p̃ is not a branch point, it must also contain ẽ, i.e. the edge containing

p̃. But since ˜̀ and ˜̀′ are both f̃ -fixed they must both contain f̃k(e) for each k. Thus ˜̀= ˜̀′.
We now claim that h̃(˜̀) = ˜̀. By the previous paragraph, it suffices to show that f̃(h̃(˜̀)) = h̃(˜̀).

We have h̃(˜̀) = h̃ ◦ f̃(˜̀) = f̃ ◦ h̃(˜̀) = f̃(h̃(˜̀)), and our claim is proved.

Recall from before that h̃(ẽ) = ẽ. Since h̃ is an isometry, it restricts to the identity on ˜̀.
Projecting to Γ, since ` covers all of Γ, we get that h equals the identity on Γ. �

Corollary 4.7. Let ϕ ∈ Out(Fr) be an ageometric fully irreducible outer automorphism such that
the axis bundle Aϕ consists of a single unique axis, then Ker(τ) = {id}.

Recall the surjective homomorphism τ from Equation 5.

Theorem A. Let ϕ ∈ Out(Fr) be an ageometric fully irreducible outer automorphism such that
the axis bundle Aϕ consists of a single unique axis, then Cen(〈ϕ〉) = Stab(Λ+

ϕ ) ∼= Z.

Proof. We showed in Corollary 4.7 that Ker(τ) = id. It then follows from Equation 5 that
Stab(Λ+

ϕ ) ∼= Z. �

Theorem B. Let ϕ ∈ Out(Fr) be an ageometric fully irreducible outer automorphism such that
the axis bundle Aϕ consists of a single unique axis, then either

(1) Comm(〈ϕ〉) ∼= Z and Comm(〈ϕ〉) = Cen(〈ϕ〉) or
(2) Comm(〈ϕ〉) ∼= Z2 ∗ Z2 and Comm(〈ϕ〉) = N(〈ϕ〉).

In particular, N(〈ϕ〉) ∼= Z or N(〈ϕ〉) ∼= Z2 ∗ Z2.
Further, in the case where Comm(〈ϕ〉) ∼= Z2 ∗ Z2, we have that ϕ−1 is also an ageometric fully

irreducible outer automorphism such that the axis bundle Aϕ−1 consists of a single unique axis.

Proof. Let Cs := Stab(Λ+
ϕ ) ∩ Comm(〈ϕ〉). By Lemma 2.21, Cs is a subgroup in Comm(〈ϕ〉) of

index ≤ 2. Thus, either Comm(〈ϕ〉) = Cs ∼= Z or there is a short exact sequence

(6) 1→ Cs → Comm(〈ϕ〉)→ Z2 → 1.

We assume we are in the latter case, i.e. Comm(〈ϕ〉) 6= Cs, since the other case is already part
of the theorem. There are two homomorphisms Z2 → Aut(Cs). We call the one whose image is
the identity in Aut(Cs) the trivial action and we call the one mapping the identity in Z2 to the
automorphism in Aut(Cs) taking a generator to its inverse the nontrivial action. First suppose
Z2 acts trivially. Let ψ ∈ Comm(〈ϕ〉) be any outer automorphism mapping to 1 ∈ Z2, then
ψ /∈ Cs and ψϕψ−1 = ϕ (because the action is trivial). Thus ψ ∈ Cen(〈ϕ〉) < Cs, which is a
contradiction. If Z2 acts nontrivially, then H2(Z2,Z) ∼= {0} classifies the possible group extensions
in the short exact sequence (6) (see [Ben91, Proposition 3.7.3]). Hence, the only possible extension
is Comm(〈ϕ〉) ∼= Cs o Z2

∼= Z o Z2
∼= Z2 ∗ Z2.

3There exists an interval on the leaf whose f̃n image contains this interval.
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Comm(〈ϕ〉) ≥ Cen(〈ϕ〉). Suppose Comm(〈ϕ〉) ∼= Z. Given any η ∈ Comm(〈ϕ〉), since ϕ ∈
Comm(〈ϕ〉) and Comm(〈ϕ〉) is an abelian group, η commutes with ϕ. So Comm(〈ϕ〉) = Cen(〈ϕ〉).

Now suppose Comm(〈ϕ〉) ∼= Z2 ∗Z2, and recall Comm(〈ϕ〉) ≥ N(〈ϕ〉). As in the first paragraph
of the proof, the identity ψ ∈ Z2 acts by conjugation on Cs ∼= Z sending each element of Z to its
inverse. Since ϕ ∈ Cs, we have ψϕψ−1 = ϕ−1. Hence ψ ∈ N(〈ϕ〉) also and Comm(〈ϕ〉) ∼= N(〈ϕ〉).

We now prove the last part of the theorem. If Comm(〈ϕ〉) ∼= Z2 ∗Z2, then it contains an element
ψ mapping to the nonzero element in Z2 (as before) so that ψϕψ−1 = ϕ−1. In other words, ϕ−1

is in the conjugacy class of ϕ. Hence, it has the same index list and ideal Whitehead graph as ϕ
(and is also ageometric fully irreducible). In particular, ϕ−1 satisfies the conditions to be a lone
axis fully irreducible outer automorphism [MP13, Theorem 4.6] �
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