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Abstract. In [Mas81] Masur proved the existence of a dense geodesic in the
moduli space for a Teichmüller space. We prove an analogue theorem for reduced
Outer Space endowed with the Lipschitz metric. We also prove two results possibly
of independent interest: we show Brun’s unordered algorithm weakly converges and
from this prove that the set of Perron-Frobenius eigenvectors of positive integer
m×m matrices is dense in the positive cone Rm

+ (these matrices will in fact be the
transition matrices of positive automorphisms). We give a proof in the appendix
that not every point in the boundary of Outer Space is the limit of a flow line.

1. Introduction

1.1. Geodesics in Outer Space. One of the richest and most expansive methods
for studying surfaces has been through the ergodic geodesic flow on Teichmüller
space. As an example, it was used by Eskin and Mirzakhani [EM11] to count pseudo-
Anosov conjugacy classes of a bounded length. For this reason, the papers of Masur
[Mas82] and Veech [Vee82] independently proving the ergodicity of the Teichmüller
flow were seminal in the field. The existence of an Out(Fr)-invariant ergodic geodesic
flow on Outer Space may similarly expand the tools for studying Out(Fr). Before
giving the proof of the ergodicity theorem in Teichmüller space, Masur performed
the following a “litmus test” for its plausibility.

Theorem 1.1 ([Mas81]). Given a closed surface Sg of genus g, there exists a Te-
ichmüller geodesic in the Teichmüller space Tg whose projection p : Tg → Tg/MCG(Sg)
to moduli space is dense in both directions.

Our main theorem is an Out(Fr) analogue of the above theorem. Some of the
terms in the theorem are defined directly below its statement.

Theorem A. For each r ≥ 2, there exists a geodesic fold ray in the reduced Outer
Space RX r whose projection to RX r/Out(Fr) is dense.
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Remark 1.2. (1) The reduced Outer Space RX r is a subcomplex of the Outer
Space Xr, which consists of those graphs without separating edges (see Defi-
nition 2.12). It is an equivariant deformation retract of Xr.

(2) The metric on RX r with respect to which the ray in Theorem A is a geodesic
is the Lipschitz metric (see Definition 2.25). It is an asymmetric metric (anal-
ogous to the Thurston metric on Teichmüller space [Thu]) that has proven to
be very useful in the Out(Fr) context, e.g. [Bes11].

(3) Because of the asymmetry of the metric, our geodesics will always be “directed
geodesics,” i.e. maps Γ: [0,∞) → Xr such that d(Γ(t),Γ(t′)) = t′ − t for
t′ > t ≥ 0, but not necessarily for t > t′.

(4) A fold line is a special kind of geodesic in Xr (explicitly described in Definition
3.13) that is analogous to a Teichmüller geodesic.

(5) Comparing between Theorem 1.1 and Theorem A, one may notice that our
theorem declares the existence of a ray in contrast with Masur’s theorem
which declares the existence of a geodesic. We could easily extend our ray to
a bi-infinite geodesic. However, the density of the image of the ray will follow
from techniques that we cannot extend to the backwards direction.

Returning to Remark 1.2(1), we note that for proving algebraic properties of
Out(Fr), one may usually replace Outer Space with RX r. However, on the geo-
metric side, it is not known whether or not RX r is convex in any coarse sense.

We hence pose two questions:

Question 1.3. For each r ≥ 2, does there exist a geodesic fold line in Xr that is
dense in both directions in Xr/Out(Fr)?

Question 1.4. For each r ≥ 2, is the reduced Outer Space RX r coarsely convex?
For example, given points x, y ∈ RX r does there always exist a geodesic from x to y
which is contained in reduced Outer Space?

1.2. The unit tangent bundle. Masur obtained Theorem 1.1 as a corollary of
his study of the geodesic flow on Teichmüller Space. The unit tangent bundle of
Teichmüller space is isomorphic to its unit cotangent bundle Q0, which may be
described explicitly as the space of unit area quadratic differentials on a closed surface
Sg of genus g. The geodesic flow on Teichmüller space is a MCG(Sg) invariant action
of R on Q0. For t ∈ R we denote the flow by Tt : Q0 → Q0. Given a quadratic
differential q ∈ Q0, the set of points {qt}t∈R = {Ttq}t∈R defines a geodesic in the
Teichmüller space Tg.

Theorem 1.5 ([Mas81]). For a closed surface Sg of genus g > 1, there exists a
quadratic differential q ∈ Q0 so that the projection of {qt} for either t > 0 or t < 0
is dense in Q0/MCG(Sg).
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The analogue of Theorem 1.5 is not obvious, as it is unclear what the unit tangent
bundle should be. In Outer Space the analogues of the following facts are false:

(1) If Γ1,Γ2 are two bi-infinite Teichmüller geodesics satisfying that there ex-
ist non-degenerate intervals I, I ′ ⊂ R with Γ1(I) ⊂ Γ2(I ′) then, up to
reparametrization, Γ1 = Γ2.

(2) There exists a compactification Tg of Tg such that for any two points x, y ∈ Tg
there exists a geodesic from x to y.

The failure of (1) is an impediment to a “local” description of the tangent bundle.
This failure is similar to its failure in a simplicial tree. Two geodesics in Outer Space
can meet for a period of time and then diverge from each other (or even alternately
meet and diverge). On the other hand, the failure of (2) is an impediment to a
“global” description in terms of the boundary of Outer Space. One may want to use
equivalence classes of rays emanating from a common base-point. However, we show
in §9 that there are points on the boundary i.e. Xr−Xr that are not ends of geodesic
fold rays. (While this result may be known to the experts, to our knowledge this is
the first time it appears in print). Thus one would first have to identify the visual
boundary as a subset of Xr −Xr and this has yet to be done.

For the purposes of this paper, we propose the following analogue of the unit
tangent bundle. Given a point x ∈ RX r there are finitely many germs [α] of fold
lines α in RX r initiating at x. Define

URX r = {(x, [α]) | x ∈ RX r, α is a fold line with α(0) = x and Im(α) ⊂ RX r}.

Given a geodesic ray γ : [0,∞) → RX r, for t ∈ R we denote by γt the path γt(s) =
γ(t+ s). We may associate to γ a path in the unit tangent bundle γ̃(t) = (γ(t), [γt]).
We prove:

Theorem B. For each r ≥ 2, there exists a Lipschitz geodesic fold ray γ̃ : [0,∞)→
RX r so that the projection of γ̃ to URX r/Out(Fr) is dense.

1.3. Geodesics in other subcomplexes. For each r ≥ 2, we define the theta sub-
complex Tr to be the subspace of RX r consisting of all points in Xr whose underlying
graph is either a rose or a theta graph, see Figure 1. This subcomplex carries the
significance of being the minimal subcomplex containing the image of the Cayley
graph under the natural map. Both as a warm-up, and for its intrinsic significance,
we initially prove Theorem A in Tr.

Theorem C. For each r ≥ 2, there exists a fold line in Tr that projects to a Lipschitz
geodesic fold ray in Tr/Out(Fr).

1.4. Outline. We begin by outlining the proof of Theorem C. After proving Theorem
C, we develop the topological machinery necessary to extend the more combinatorial
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Figure 1. The underlying graphs of the simplices of Tr. The graph
on the left is called a rose and that on the right is called a theta graph.

arguments of the proof of Theorem C to the proof of Theorem B (and Theorem A
as a corollary).

Recall that points in Outer Space are marked metric graphs equivalent up to
homotopy, see Definition 2.2. As described in Definition 2.11, Out(Fr) acts on the
right by changing the marking. To a point x ∈ Tr/Out(Fr), one may associate a
positive vector, the “length vector” recording the graph’s edge lengths. The folding
operation may be translated to a matrix recording the change in edge lengths from
its initial point to its terminal point. In this dictionary, a fold ray in Tr/Out(Fr)
should correspond to an initial vector and a sequence of fold matrices. However,
not every such sequence comes from a fold ray: a particular fold may or may not
be allowed for a specific vector depending on whether its image is again a positive
vector. Our challenge is to construct a sequence of fold matrices {Tk}∞k=1 satisfying
that, for some positive vector w0, if we write wi = Ti · · ·T1(w0) for each i ∈ N then

I. the fold Ti+1 is allowed in wi = Ti · · ·T1(w0) for each integer 1 ≤ i <∞,
II. the set of vectors wi is projectively dense in a simplex and,

III. the corresponding fold ray is a geodesic ray in the Lipschitz metric.

In order to prove item (II) of the list, we prove the following fact:

Theorem D. For each r ≥ 2, let Srl1 be the set of unit vectors according to the l1
metric in Rr+. The set of Perron-Frobenius eigenvectors of matrices arising as the
transition matrices of a positive automorphisms in Aut(Fr) is dense in the Srl1 .

The proof of Theorem D, in §4, uses Brun’s algorithm [Bru57]. We also prove in
§4 that Brun’s (unordered) algorithm converges in angle, a result to our knowledge
previously absent from the literature in dimensions higher than four. (Brun proved
it in [Bru57] for dimensions three and four.)

To construct the sequence {Tk} of fold matrices we enumerate the powers of “Brun
matrices” (see §4): P1, P2, P3, . . . . To each Pi, we can attach the following data:

• a positive Perron-Frobenius eigenvector vi,
• a positive automorphism gi ∈ Aut(Fr), also denoted gvi , so that the transition

matrix of gi is Pi,
• and a decomposition of Pi into fold matrices, arising from the decomposition

of gi into Neilsen generators which correspond to moves in Brun’s algorithm.
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We remark that this method is reminiscent of Masur’s paper, where he proved
the existence of a dense geodesic in Rg = Q0/MCG(Sg) using the fact that closed
loops in Rg are dense. The resemblance stems from the facts that the decomposition
in the third item defines a loop in RX r/Out(Fr) based at vi and that the density,
established by Theorem D, of the set of Perron-Frobenious eigenvectors {vi}’s.

We concatenate the fold sequences associated to the matrices Pi together to form
the sequence {Tk}∞k=1. We address item (I) on the list, i.e. the allowability of the
sequence, in Lemma 5.1. We now have a fold ray through the points {wj}∞j=1.

For density of the geodesic ray we use the automorphisms gi related to the Pi. By
ensuring that arbitrarily high powers of these automorphisms (hence matrices) occur
in the sequence, we ensure that the ray passes through points with length vectors
arbitrarily close to the dense set of eigenvectors.

Finally, property (III) on the list, that the fold line is a Lipschitz geodesic, follows
from the fact that every gi is a positive automorphism (see Corollary 3.18).

To extend our proof of Theorem C to Theorems A and B, we prove that for a generic
point y in reduced Outer Space, there exist roses x, z and a “positive” fold line [x, z]
remaining in reduced Outer Space and so that y ∈ [x, z]. Here by “positive” we mean
that the change of marking from x to z is a positive automorphism. Moreover, if G
is the underlying graph of y and E,E ′ are two adjacent edges in G, then one may
choose [x, z] so that it contains the fold of the turn {E,E ′} immediately after the
point y. This construction is carried out in §6 and elevates the geodesic’s density in
RX r/Out(Fr) to density in Ur. Additionally, the geodesic [x, z] varies continuously
as a function of y, as we prove in §7. Thus, one may adjust the previous argument
to prove Theorems A and B, which we do in §8.
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2. Definitions and background

2.1. Outer Space and the action of Out(Fr). Culler and Vogtmann introduced
Outer Space in [CV86]. Points of Outer Space are “marked metric graphs.”

Definition 2.1 (Graph, positive edges). A graph will mean a connected 1-dimensional
cell complex. V (G) will denote the vertex set and E(G) the set of unoriented edges.
The degree of a vertex v ∈ V (G) will be denoted degG(v), or deg(v) when G is clear.

For each edge e ∈ E(G), one may choose an orientation. Once the orientation
is fixed that oriented edge E will be called positive and the edge with the reverse
orientation E will be called negative. Given an oriented edge E, i(E) will denote its
initial vertex and ter(E) its terminal vertex. A directed graph is a graph G with a
choice of orientation on each edge e ∈ E(G), we call this choice an orientation on G.

Given a free group Fr of rank r ≥ 2, we choose once and for all a free basis
A = {X1, . . . , Xr}. Let Rr = ∨ri=1S1 denote the graph with one vertex and r edges,
we call this graph an r-petaled rose. We choose once and for all an orientation on Rr

and identify each positive edge of Rr with an element of the chosen free basis. Thus,
a cyclically reduced word in the basis corresponds to an immersed loop in Rr.

Definition 2.2 (Marked metric Fr-graph). For each integer r ≥ 2 we define a marked
Fr-graph to be a pair x = (G,m) where:

• G is a graph such that deg(v) ≥ 3 for each vertex v ∈ V (G).
• m : Rr → G is a homotopy equivalence, called a marking.

A marked metric graph is a triple (G,m, `) so that (G,m) is a marked graph and:

• The map ` : E(G)→ R+ is an assignment of lengths to the edges. We require
that

∑
e∈E(G) `(e) = 1. The quantity vol(G) =

∑
e∈E(G) `(e) is called the

volume of G.
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Remark 2.3 (A metric graph as a metric space). The assignment of lengths to the
edges does not quite determine a metric on G, but a homeomorphism class of metrics.
This choice is inconsequential in this paper.

Define an equivalence relation on marked metric Fr-graphs by (G,m, `) ∼ (G′,m′, `′)
when there exists an isometry ϕ : (G, `)→ (G′, `′) so that m′ is homotopic to ϕ ◦m.

Definition 2.4 (Underlying set of Outer space). For each r ≥ 2, as a set, the
(rank-r) Outer Space Xr is the set of equivalence classes of marked metric Fr-graphs.

Remark 2.5. On occasion we may think of graphs with valence-2 vertices as living in
Outer Space by considering them equivalent to the graphs obtained by unsubdividing
at their valence-2 vertices.

Definition 2.6. The simplex σ in Xr corresponding to the marked graph (G,m) is

σ(G,m) = {(G,m, `) ∈ Xr | vol(G) = 1}.
By enumerating the edges of G, we can identify σ(G,m) with the open simplex

S|E| =

−→v ∈ R|E|+

∣∣∣∣∣∣
|E|∑
i=1

vi = 1

 .

Here E = E(G). We denote this identification by n : σ(G,m) → S|E|. We call the open
simplex corresponding to (Rr, id) the base simplex and denote it by σ0.

Outer Space has the structure of a simplicial complex built from open simplices
(see [Vog02]), faces of σ(G,m) arise by letting the edges of a tree in G have length 0.

Definition 2.7 (Simplicial metric). Given a simplex σ(G,m) in Xr, the simplicial

metric on σ(G,m) is defined by ds(`, `
′) =

√∑
e∈E(G)(`(e)− `′(e))2, for `, `′ ∈ σ(G,m).

We also denote by ds the extension of this metric to a path metric on Xr.
Remark 2.8. In §2.4 we define the Lipschitz metric on Xr. The simplicial metric and
Lipschitz metric on Outer Space differ in important ways. However, open balls with
respect to the Lipschitz metric (in either direction, see Remark 2.26) contain open
balls of the simplicial metric). Therefore, a set dense with respect to the simplicial
topology will also be dense with respect to the Lipschitz topology.

Definition 2.9 (Unprojectivized Outer Space). [CV86] The (rank-r) unprojectivized

Outer Space X̂r is the space of metric marked Fr-graphs where vol(G) is not neces-
sarily 1.

There is a map from X̂r to Xr normalizing the graph volume, i.e.

(1)
q : Rm+ → Sm

q(x1, . . . , xm) =
(

x1∑m
i=1 xi

, . . . , xm∑m
i=1 xi

)
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and taking the point (G, µ, `) to the point (G, µ, q(`)).
We call the full preimage under q of a simplex in Xr an unprojectivized simplex.

Definition 2.10 (Topological Outer Space). [CV86] The topological space consist-
ing of the set of equivalence classes of marked metric Fr-graphs, endowed with the
simplicial topology, is called the (rank-r) Outer Space and is also denoted by Xr.

Definition 2.11 (Out(Fr) action). If Φ ∈ Aut(Fr) is an automorphism, let fΦ : Rr →
Rr be a homotopy equivalence corresponding to Φ via the identification of E(Rr) with
the chosen free basis A of Fr. We define a right action of Out(Fr) on Xr. An outer
automorphism [Φ] ∈ Out(Fr) acts by [G,m, `] · [Φ] = [G,m ◦ fΦ, `].

Definition 2.12 (Reduced Outer Space RX r and Mr). For each integer r ≥ 2,
the (rank-r) reduced Outer Space RX r is the subcomplex of Xr consisting of pre-
cisely those simplices σ(G,m) such that G contains no separating edges. This space is
connected and an Out(Fr)-equivariant deformation retract of Xr.

Let Mr denote the quotient space of RX r by the Out(Fr) action. Hence, Mr

contains a quotient of a simplex for each graph (no longer marked). Note that, as
a result of graph symmetries, simplices in Xr do not necessarily project to simplices
in Mr. Thus, Mr is no longer a simplicial complex but a union of cells which are
quotients of simplices in Xr.

2.2. Train track structures. Much of the following definitions and theory can be
found in [BH92] or [Bes12], for example. However, it should be noted that some of
our definitions, including that of an illegal turn, are somewhat nonstandard.

Definition 2.13 (Regular maps). We call a continuous map f : G → H of graphs
regular if for each edge e ∈ E(G), we have that f |int(e) is locally injective and that f
maps vertices to vertices.

Definition 2.14 (Paths and loops). Depending on the context an edge-path in a
graph G will either mean a continuous map [0, n] → G that, for each 1 ≤ i ≤ n,
maps (i − 1, i) homeomorphically to the interior of an edge, or if the graph G is
directed, a sequence of oriented edges e1, . . . , en such that ter(ei) = i(ei+1) for each
1 ≤ i ≤ n − 1. We may on occasion also allow for e1 and en to be partial edges.
Given any path γ = e1 · · · en, we will denote its initial vertex, i.e. i(e1), by i(γ) and
its terminal vertex, i.e. ter(en) by ter(γ).

A loop α in G is the image of an immersion α : S1 → G. We will associate to each
loop an edge-path unique up to cyclic ordering.

In a directed graph G, we will call a path directed that either crosses all edges in
a positive direction (a positive path) or crosses all edges in a negative direction (a
negative path). The operation of path concatenation will be denoted by ∗.
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Definition 2.15 (Illegal turns and gates). Let f : G → H be a regular map. Let
e, e′ ∈ E(G) be oriented edges with the same initial vertex. We call {e, e′} a turn.
We say a turn {e, e′} is an illegal turn for f if the first edge of the edge-path f(e)
equals the first edge of the path f(e′). The property of forming an illegal turn is an
equivalence relation and the equivalence classes are called gates.

Definition 2.16 (Train track structures). Let f : G→ H be a regular map. If every
vertex of G has ≥ 2 gates, then we call the partition of the turns of G into gates
a train track structure and say that f induces a train track structure on G. An
immersed path α : I → G will be considered legal with respect to a given train track
structure if it does not contain a subpath eiej where {ei, ej} is an illegal turn.

Remark 2.17. The image of a legal path will be locally embedded.

Definition 2.18 (Transition matrix). The transition matrix of a regular self-map
f : G→ G is the square |E(G)| × |E(G)| matrix (aij) such that aij, for each i and j,
is the number of times g(ei) passes over ej in either direction.1

We define the transition matrix for an element Φ ∈ Aut(Fr) to be the transition
matrix of fΦ (see Definition 2.11).

2.3. Perron-Frobenius theory. We are particularly interested in positive matrices
(defined below) because of their known properties (due to Perron-Frobenius theory)
of contracting, the positive cone Rd+ = {v ∈ Rd | vi > 0, i = 1, . . . d}.

Definition 2.19 (Positive matrices, Perron-Frobenius eigenvalues and eigenvectors).
We call a matrix A = [aij] positive if each entry of A is strictly positive. By Perron-
Frobenius theory, we know that each such matrix has a unique eigenvalue of maxi-
mal modulus and that this eigenvalue is real. This eigenvalue is called the Perron-
Frobenius (PF) eigenvalue of A. It has an associated eigenvector whose entries are
each strictly positive. We call the eigenvector with strictly positive entries and such
that all entries sum to one the Perron-Frobenius (PF) eigenvector.

Definition 2.20 (Weak convergence). A sequence {Ak}∞k=1 of d × d matrices, re-
stricted to vectors in Rd+, converges weakly if the sequence {Ak(Rd+)}∞k=1 converges
projectively to a point.

Remark 2.21. Perron-Frobenius theory also tells us that, for a positive matrix M ,
the sequence {Mk}∞i=1 weakly converges to the line spanned by the PF eigenvector.

1This matrix is the transpose of the transition matrix as Bestvina and Handel define it in [BH92],
but this definition will have a stronger relationship with the change-of-metric matrix we define later.



10 YAEL ALGOM-KFIR, CATHERINE PFAFF

2.4. The Lipschitz metric.

Definition 2.22 (Difference in markings). Let x = (G,m, `) and y = (G′,m′, `′) be
two points in Xr. Denote by h : G → Rr a homotopy inverse of m. A difference in
markings is a linear map f : G→ G′ homotopic to m′ ◦ h.

Definition 2.23 (Stretch). Let α be a conjugacy class in Fr, equipped with a free
basis A. By abuse of notation we may think of α as an immersed loop α : S1 → Rr

in Rr via the identification of the edges of Rr with A. For x = (G,m, `) ∈ Xr, let αx
denote the unique immersed simplicial loop in G homotopic to m(α).

Given a conjugacy class α in Fr and x ∈ Xr, we define l(α, x) as the length of
αx. (Notice that since αx is a simplicial loop in x, its length does not depend on the
particular metric structure chosen for x, see Remark 2.3). For x, y ∈ Xr define the

stretch of α from x to y as stα(x, y) := l(α,y)
l(α,x)

.

The following theorem is attributed to either White or Thurston. It can be found
in [AK11].

Theorem 2.24. Given a continuous map f of metric spaces, let Lip(f) denote the
Lipschitz constant for f . Then for each pair of points x, y ∈ Xr, we have

(2) inf{Lip(f) | f : x→ y is a difference in marking } = sup{stα(x, y) | α ∈ Fr}.
Moreover, both the infimum and supremum are realized.

Definition 2.25 (Lipschitz metric). The Lipschitz metric d(x, y) is defined as the
log of either of the quantities in Equation 2. This function is not symmetric but
satisfies the other axioms of a metric [Bes12].

A difference in marking that achieves the minimum Lipschitz constant of (2) is
called an optimal map. A loop that achieves the maximum stretch is called a witness.
For each x, y ∈ Xr there exist optimal maps and witnesses.

Remark 2.26. An open ball based at x with radius R is either

B→(x,R) = {y ∈ Xr | d(x, y) < R} or B←(x,R) = {y ∈ Xr | d(y, x) < R}.
In either case, the simplicial topology is finer (or equal) to the Lipschitz topology.

For a given difference of marking f , the subgraph of G where the Lipschitz constant
is achieved is called the tension graph, usually denoted ∆f . Notice that f induces a
train track structure on ∆f . Proposition 2.27 gives one way to identify witnesses.

Proposition 2.27. [BF14] Let x and y be two points in Xr, let f : x→ y be a map,
and let ∆f be the tension graph of f . If ∆f contains a legal loop, then f is an optimal
map and any legal loop in ∆f is a witness. Conversely, if α ⊂ x is a witness, then
it is a legal loop in ∆f .
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Proposition 2.28. Let f : x→ y and g : y → z be difference in markings maps. Let
α be a conjugacy class in Fr satisfying that αx is f -legal and contained in ∆f and
that αy is g-legal and contained in ∆g. Then d(x, z) = d(x, y) + d(y, z).

Proof. Since αx is contained in ∆f , the map f stretches each edge of αx by λf =
Lip(f). Moreover, since αx is f -legal, l(α, y) = λf · l(α, x). Similarly, if λg = Lip(g),
then l(α, z) = λg · l(α, y) = λfλg · l(α, x). Thus, stα(x, z) = λfλg and therefore
d(x, z) ≥ log(λfλg). By Proposition 2.27, αx and αy are both witnesses, hence
d(x, y) = stα(x, y) = log λf and d(y, z) = stα(y, z) = log λg. Thus, we have d(x, z) ≥
log λf + log λg = d(x, y) + d(y, z). The triangle inequality gives us an equality. �

3. Fold paths and geodesics

In this section we introduce fold lines and prove results that will allow us to
construct Lipschitz geodesics from certain infinite sequences of nonnegative matrices
(unfolding matrices).

Definition 3.1 (Unparametrized geodesic). Let I ⊂ R be a generalized interval in
R. An unparametrized geodesic in Xr is a map Γ: I → Xr satisfying that:

(1) for each s < r < t, we have d(Γ(r),Γ(t)) = d(Γ(r),Γ(s)) + d(Γ(s),Γ(t)) and
(2) there exists no nontrivial subinterval I ′ ⊂ I and point x0 ∈ Xr such that

Γ(t) = x0 for each t ∈ I ′.

Remark 3.2. If Γ is an unparametrized geodesic then there exists a generalized
interval I ′ and a homeomorphism h : I ′ → I so that Γ ◦ h is an honest directed
geodesic, i.e. for all s < t, we have that d(Γ ◦ h(s),Γ ◦ h(t)) = t− s.

Again A = {X1, . . . Xr} will denote a fixed free basis of Fr.

Definition 3.3 (Fold automorphism). By a fold automorphism we will mean a “left
Nielsen generator,” i.e. an automorphism of the following form (i 6= j):

(3) Φij(Xk) =

{
XjXk for k = i
Xk for k 6= i.

By notation abuse Φij will also denote the map Rr → Rr that corresponds to the
above automorphism after identifying its positively oriented edges with the basis A.

To a fold automorphism one can associate a matrix.

Definition 3.4 ((Un)folding matrix). Let i 6= j ∈ {1, . . . , r}. Then the (i, j) folding
matrix Tij has entries tkl, where
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(4) tkl =

 1 if k = l
−1 if (k, l) = (i, j)

0 otherwise

Notice that Tij is not the transition matrix of fij, though it will relate to the
change-of-metric matrix coming from a folding operation. The matrix Tij is invertible
and we call Mij := T−1

ij the (i, j) unfolding matrix. Notice that the entries of Mij are
mkl, where

(5) mkl =

{
1 if k = l or (k, l) = (i, j)
0 otherwise.

Notice also that the nonnegative matrix Mij is the transition matrix of Φij. We
hence sometimes write M(Φij) for this matrix.

Definition 3.5 (A combinatorial fold). Let G be a graph whose oriented edges are
numbered. Let (ek, ej) be a pair of distinct oriented edges with i(ek) = i(ej). A
combinatorial fold is a tuple (G, (ek, ej), G

′, f) where G′ is a graph and f : G → G′

is a quotient map that identifies an initial segment of ek with an initial sement of ej.

(1) when f identifies part of ek with all of ej we will call it a proper full fold. We
will call this tuple “folding ek over ej.”

(2) when f identifies all of ek with all of ej we will call it a full fold and say that
“ek and ej are fully folded.”

(3) when f identifies a proper segments of ek and ej we will call it a partial fold
and say that “ek and ej are partially folded.”

Notation We sometimes repress some of the data depending on the contex. We will
denote the combinatorial fold by f , or G ⇀ G′, or (G, (ei, ej)) depending on which
data we want to emphasize.

Definition 3.6 (Direction matching folds). Let G be an oriented graph. A combi-
natorial fold (G, (ei, ej)) is direction matching if e1 and e2 are either both negative
edges (we then call f negative) or both positive edges (we then call f positive).

Observation 3.7. Let G be an oriented graph and f : G ⇀ H a direction matching
combinatorial fold, then f induces an orientation on the edges of H. Moreover, f
maps each positive edge of G to a positive edge-path in H (of simplicial length ≤ 2).

Definition 3.8 (Allowable folds). Let x0 = (G,m, `) be a point in Outer Space.
The full fold (G, (e, e′)) is allowable in x0 if the following two conditions hold:

(1) `(e) ≥ `(e′).
(2) If ter(e) = ter(e′), then `(e) > `(e′). In this case this is a proper full fold.
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Suppose G is a rose with its edges enumerated. Let nτ : σ(G,m) → S|E| be the

induced homeomorphism. The set where Φij is allowable will be denoted by σ
(i,j)
(G,m).

The target graph G′ is also a rose and Φij induces an enumeration of the edges of
G′ by declaring the edge Φij(ek) to be the kth edge for each k 6= i and calling the
remaining edge of G′ the ith edge.

Lemma 3.9. Let σ̂0 be the unprojectivized base simplex, and let Φ be a fold auto-
morphism. Assume that the edges of Rr have been enumerated and let n0 : σ̂0 → Sr
be the induced identification. Φ: σ̂0 → σ̂1 induces a new enumeration of the edges of
the target rose and we get a new identification n1 : σ̂1 → Sr. Then for each x ∈ σ̂1

we have n1(x) = n0(x · Φ−1) (as defined in Definition 2.11).

If a fold (G, (e, e′)) is allowable at a point x0 in Outer Space, one can construct
a path {x̂t}t∈[0,1] in unprojectivized outer space, called a “fold path.” This is done
by identifying initial segments of e and e′ of length t`0(e′), for 0 ≤ t ≤ 1. The
quotient map ft,0 : x0 → xt is a homotopy equivalence, as are the quotient maps ft,s
for 0 ≤ s ≤ t ≤ 1. By projectivizing we get a path {xt} in Outer Space.

Definition 3.10 (Basic fold paths). Given an allowable fold as above, the path
F : [0, 1]→ Xr defined by t 7→ xt is the fold path in Xr starting at x0 and defined by
folding e over e′. The path t→ x̂t will be called the (unprojectivized) basic fold path.
We will not always use the hat notation when discussing unprojectivized paths but
will mention whether the image lies in Xr or X̂r, if it is otherwise unclear.

Definition 3.11 (Change-of-metric matrix). Let G,G′ be graphs and assume we
have numbered their oriented edges. Let Ψ be a linear map from a subset of the
unprojectivized simplex σ̂(G,µ) to the unprojectivized simplex σ̂(G′,µ′). Then Ψ may
be represented by an |E(G′)|×|E(G)| matrix. This matrix will be called the change-
of-metric matrix.

Lemma 3.12. Let Φ be an allowable fold automorphism on the point x0 = (Rr,m, `)
and suppose the edges of Rr have been numbered so that Φ = Φij. Let x1 be the
folded graph and suppose σ̂0 and σ̂1 are unprojectivized open simplices containing
respectively x0 and x1. The change-of-metric matrix for the fold operation from

n0(σ̂
(i,j)
(R,m)) to n1(σ̂(R,Φ◦m)) is the matrix Tij of Definition 3.4.

Definition 3.13 (Fold paths). A fold path F : [0, k]→ Xr is a path in Xr that may
be divided into a sequence of basic fold paths {Fi}ki=1 as in Definition 3.10, so that
Fi(1) = Fi+1(0) for each i. As above, we will denote by xt = (Gt,mt, `t) the points
of the path in Xr. The maps ft,s for s, t ∈ [0, k] will be defined similarly as above.

If F is a fold path from F(0) = x to F(k) = y we sometimes denote it by F : x ⇀ y.
The following Lemma follows from Lemma 3.12 and its proof is left to the reader.
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Lemma 3.14. Let f1, . . . , fk be a sequence of combinatorial proper full folds of the r-
rose, with associated change-of-metric matrices T1, . . . , Tk having respective inverse
matrices M1, . . . ,Mk. Suppose that v ∈ M1 · · ·Mk(Rr+). Then the combinatorial
fold fl is allowable in the metric graph n−1

l (Tl · · ·T1(v)), for each 2 ≤ l ≤ k (and
any marking). Furthermore, applying f1, . . . , fk to x0 ∈ σ0 will result in the point
n−1
k (Tk · · ·T1(n0(x0))) of the simplex σ(Rr,fk◦···◦f1◦m).

Lemma 3.15. Let {Di}∞i=1 denote a sequence of nonnegative invertible matrices such
that, for some N ∈ N, we have that D1 . . . Di is strictly positive for all i ≥ N . Then
there exists a vector w0 ∈ Rr+ so that, if we define wl+1 := D−1

l+1wl, for each l, then
each wl is a positive vector.

Proof. Let Rr+ denote the set of vectors with nonnegative entries, and recall the map
q from Equation 1. Let M = D1 · · ·DN , by the assumption it is a nonnegative
matrix. Consider I =

⋂∞
i=1 D1 . . . Di(Rr+). Note that

I ⊃
∞⋂
i=1

D1 . . . Di(M(Rr+)) ⊃
∞⋂
i=1

q
(
D1 . . . Di

(
M(Rr+)

))
and the latter is nonempty since it is an intersection of nested compact sets. More-
over, I ⊂M(Rr+) ⊂ Rr+. Choose w0 ∈ I. Then w0 ∈ I ⊂ D1 · · ·Dl(Rr+) implies that
wl = D−1

l · · ·D
−1
1 w0 ∈ Rr+ for each 1 ≤ l <∞. �

Corollary 3.16. Let {fi}∞i=0 be a sequence of combinatorial proper full folds of the
r-rose, with associated change-of-metric matrices {Ti}∞i=0 having respective inverse
matrices {Mi}∞i=0. If there exists some N ∈ N, so that for all i > N the matrix
D1 . . . Di is strictly positive, then there exists a vector w0 ∈ Rr+ so that the infinite
fold sequence {fi}∞i=0 is allowable in the rose x0 = n−1

0 (w0).

Proposition 3.17. Let {Fi : xi ⇀ xi+1}ki=0 be a sequence of fold paths with fold maps
{fs,t}s≥t≥0. Suppose there is a conjugacy class α in Fr satisfying that, for each i,
the realization αxi of α in xi is legal with respect to the train track structure induced
by fi+1,i. Then the corresponding fold path Im(F) = {xt}t∈[0,k] is an unparametrized
geodesic, i.e. for each r ≤ s ≤ t in [0, k], we have d(xr, xt) = d(xr, xs) + d(xs, xt).

Proof. The proof uses Propositions 2.27 and 2.28 and is left to the reader. �

Suppose y0 is a graph and f0 : y0 ⇀ y1 is direction matching, then by Observation
3.7, we have that y1 inherits an orientation such that the image of each edge is a
positive edge-path (see Definition 2.14).

Corollary 3.18. Let y0 be a directed metric r-rose graph with length vector v and let
{fi : yi ⇀ yi+1}i=ki=0 be an allowable sequence of proper full folds. Suppose that for each
i = 0, . . . , k − 1 the fold fi+1 is direction matching with respect to the orientation
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of yi+1 inherited by fi. For each 0 ≤ i ≤ k, let {Fi : yi ⇀ yi+1} denote the fold
path determined by {fi}. Then the corresponding fold path Im(F) = {yt}t∈[0,k] is an
unparametrized geodesic.

Proof. Without generality loss we can assume that the marking on Rr is the identity.
Then, by Proposition 3.17, it suffices to show that there exists a conjugacy class α
in Fr satisfying that, for each i, the realization αyi of α in yi is legal with respect
to the train track structure induced by the map fi. We claim that this holds for
the conjugacy class α of a positive generator X1. By induction suppose that αyi is
a positive loop. Since fi maps positive edges to positive edge-paths, αyi+1

is also a
positive loop. Since fi+1 is direction matching, αyi+1

is fi+1-legal and positive. �

4. Brun’s algorithm and density of Perron-Frobenius eigenvectors

We introduce fibered systems so that we can use an algorithm of Brun to prove, in
Theorem 4.14, that the sequence of Brun matrices converge weakly for a full measure
set of points. These matrices are unfolding matrices, which will be significant for
proving Theorems A, B, and C in the next sections.

4.1. Fibered Systems. The following definitions are taken from [Sch00].

Definition 4.1 (Fibered systems). A pair (B, T ) is called a fibered system if B is a
set, T : B → B is a map, and there exists a partition {B(i) | i ∈ I} of B such that
I is countable and T |B(i) is injective. The sets B(i) are called time-1 cylinders.

Definition 4.2 (Time-s cylinder). For each x ∈ B, one can define a sequence Φ(x) =
(i1(x), i2(x), . . . ) ∈ IN by letting is(x) = i ⇐⇒ T s−1x ∈ B(i). In other words, is(x)
tells us which cylinder T s−1x lands in. Then a time-s cylinder is a set of the form

B(i1, . . . , is) = {x ∈ B | i1(x) = i1, . . . , is(x) = is}.
From the definitions we have B(i1, . . . , is+1) = B(i1, . . . , is) ∩ T−sB(is+1).

4.2. The unordered Brun algorithm in the positive cone. The following algo-
rithm (commonly referred to as Brun’s algorithm) was introduced by Brun [Bru57]
as an analogue of the continued fractions expansion of a real number in dimensions
3 and 4. It was later extended to all dimensions by Schweiger in [Sch82].

Definition 4.3 (Brun’s (unordered) algorithm). Brun’s unordered algorithm is the
fibered system (Cn, T ) defined on

Cn = Rn+ = {(x1, . . . , xn) ∈ Rn+ | xi > 0 for all 1 ≤ i ≤ n}
by

T : Cn → Cn

(x1, . . . , xn) 7→ (x1, . . . , xm−1, xm − xs, xm+1, . . . , xn),
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where

m(x) := min

{
i

∣∣∣∣xi = max
1≤j≤n

xj

}
, s(x) := min

{
i 6= m(x)

∣∣∣∣xi = max
1≤j 6=m(x)≤n

xj

}
.

In other words, for each x = (x1, . . . , xn) ∈ Cn, we have that m(x) is the first index
that achieves the maximum of the coordinates and s(x) is the first index that achieves
the maximum of all of the coordinates except for m(x).

Notice that, letting (i, j) = (m(x), s(x)), the transformation T is just left multipli-
cation by the matrix Ti,j from Definition 3.4. Then, given a vector v0 = (x1, . . . , xn) ∈
Cn with rationally independent coordinates, one obtains an infinite sequence

{vk = (xk1, . . . , x
k
n)}∞k=1 ⊂ Cn,

where vk+1 is recursively defined by vk+1 = Tm(vk),s(vk)vk.

Definition 4.4 (Brun sequence). In light of the above, the sequence for Brun’s
unordered algorithm (which we call the Brun sequence) will consist of the ordered

pairs
−→
ks = (is, js), where (is, js) = (m(vs), s(vs)). Further, the sequence Θ(x) =

{
−→
ks}∞s=1 will determine a sequence of folding matrices, which we denote by {T xs }∞s=1,

where T xs = T−→
ks(x)

. We let {Mx
s }∞s=1 denote the corresponding inverses, i.e. the

unfolding matrices. We denote their finite products by

(6) Axs = Mx
1M

x
2 · · ·Mx

s for each s ∈ N.

Then, as above, for each v0 ∈ Cn, we have a sequence of vectors {vs}∞s=1 ⊂ Cn, where
vs+1 = Tvs = T v0s+1vs. Thus, vs = M v0

s+1vs+1, and hence v0 = Av0s vs. So

(7) v0 ∈
∞⋂
s=1

Av0s (Cn).

This fact will become particularly important in the proof of Theorem 4.5.

Definition 4.5 (Brun matrix). For each vector v0 ∈ Cr, we call each matrix

(8) An = M v0
i1,j1
· · ·M v0

in,jn

a Brun matrix. We let Br denote the set of r x r Brun matrices.

Remark 4.6. When it is clear from the context, we may leave out reference to the
starting vector v0 and simply write As, Ts, Ms, etc.

Proposition 4.7. Let Yr be the set of rationally independent vectors in Cr, then for
each x ∈ Yr there exists an N ∈ N so that Axn is a positive matrix for each n > N .
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Proof. We fix v0 and omit the index v0 from the notation below. We first prove
that, for each i, and for each h ∈ N, there exists some m > h and some j such that−→
km = (i, j). Starting with vh and until (vm)i becomes the largest coordinate, at each
step one subtracts a number ≥ (vm)i = (vh)i from some coordinate ≥ (vm)i. This
can only happen a finite number of times before each coordinate apart from (vm)i
becomes less than (vm)i = (vh)i.

Consider An as in (6). To prove the proposition, it suffices to show that, for each
(i, j), there exists a large enough N so that for all n > N the (i, j)-th entry of An is
positive. In fact, it is enough to show that this entry is positive for some An. Indeed
An+1 is obtained from An by adding one of its columns to another one of its columns,
so that an entry positive in An, will be positive in An+1.

Fix i, j. Let

a = min{ t |
−→
kt = (i, c) for some c}, b = min{ t > a |

−→
kt = (j, d) for some d}.

Let c1 be such that
−→
ka = (i, c1). Observe that, since c1 is the second largest

coordinate in va, in the next vector va+1, either i is still the largest coordinate or c1

becomes the largest coordinate. There is some N1 ≥ 1 and some index c2 so that

Aa+N1 = Aa−1M
N1

(i,c1)M(c1,c2).

We continue in this way, An = Aa−1M
N1

(i,c1)M
N2

(c1,c2)M
N3

(c2,c3) · · ·M
Nt

(ct,ct+1). When n = b,

we have that ct = j. Thus, for n = b− 1, we have

Ab−1 = Aa−1M
N1

(i,c1)M
N2

(c1,c2)M
N3

(c2,c3) · · ·M
Nt

(ct,j)
.

It is elementary to see that the (i, j)-th entry of MN1

(i,c1)M
N2

(c1,c2)M
N3

(c2,c3) · · ·M
Nt

(ct,j)
is

positive. This implies that the (i, j)-th entry of Ab−1 is positive. �

4.3. Other versions of Brun’s algorithm. To use the results of Schweiger’s
books, we must give two other different, but related, versions of Brun’s algorithm.

Definition 4.8 (Brun’s ordered algorithm). Brun’s ordered algorithm is the fibered
system (∆n, T ′) defined on ∆n := {x ∈ Cn | x1 ≥ · · · ≥ xn} by

T ′ : ∆n → ∆n

(x1, . . . , xn) 7→ (x2, . . . , xi−1, x1 − x2, xi, . . . , xn),

where i = i(x) ≥ 2 is the first index so that x1 − x2 ≥ xi and, if there is no such
index, we let i(x) = n. The time-1 cylinders are ∆n(i) = {x | xi−1 > x1 − x2 ≥ xi}.

Notice that the transformation T ′ is just left multiplication by the matrix T1,2,
followed by a permutation matrix that we denote Pi, determined by the cylinder
∆n(i). (We denote PiT1,2 by T ′i and its inverse by M ′

i .) Hence, given a sequence
of indices ω(x) = (i1, i2, . . . ) with 1 ≤ ij ≤ n for each ij, one obtains a sequence
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of matrices {T ′ij}
∞
j=1. Given v0 ∈ ∆n(i1, . . . , im), this gives a sequence of points

v0, . . . , vm ∈ ∆n such that vk+1 = T ′ijvk for each 1 ≤ k ≤ m− 1. The fibered system

sequence here will be ω(x) = (i1, i2, . . . ) when

x ∈
∞⋂
m=1

∆n(i1, i2, . . . , im).

If ω(x) = (i1, i2, . . . ), we define

(9) Axk = M ′
i1
· · ·M ′

ik

for each k ∈ N.

Definition 4.9 (Brun’s homogeneous algorithm). Brun’s homogeneous algorithm is
the fibered system (Bn, T ′) defined on

Bn = {x ∈ Rn | 1 ≥ x1 ≥ x2 ≥ · · · ≥ xn ≥ 0}
and where T ′ : Bn → Bn is such that the following diagram commutes:

∆n+1

p

��

T ′
// ∆n+1

p

��
Bn

T ′
// Bn

where p : ∆n+1 − {0} → Bn is defined by

(10) p(x1, . . . , xn+1) =

(
x2

x1

, . . . ,
xn+1

x1

)
.

We denote the time-1 cylinders by Bn(i).

4.4. Relating the algorithms.

Definition 4.10. Let O : Cn → ∆n be defined by

(x1, . . . , xn) 7→ (xi1 , . . . , xin)

where xi1 ≥ xi2 ≥ · · · ≥ xin . Note that for a particular x, O(x) is a permutation.

Lemma 4.11. For each x ∈ Cn and for each m ∈ N, there exist permutation matrices
Pi1 , Pi2 so that

Axm = Pi1(A
O(x)
m )′Pi2 .

Proof. This follows from the following commutative diagram:

Cr

O
��

T // Cr

O
��

∆r T ′
// ∆r

.
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�

Corollary 4.12. For each x ∈ Cn and for each m ∈ N, we have that Axm is a positive

matrix if and only if (A
O(x)
m )′ is a positive matrix.

Corollary 4.13. For each irrational x ∈ ∆n there exists an N so that (Axn)′ is
positive for all n > N .

Proof. This follows from Proposition 4.7 and Corollary 4.12. �

4.5. Weak convergence and consequences. Recall the definitions of the (r −
1)-dimensional simplex Sr in Definition 2.6 and the projection map q : Cr → Sr
of Equation 1. We will show that for each r ≥ 2, the set of Perron-Frobenius
eigenvectors for the transition matrices of positive automorphisms in Aut(Fr) is dense
in the simplex Sr.

It is proved in [Sch00, Theorem 21, pg. 5] that Brun’s ordered algorithm is ergodic,
conservative, and admits an absolutely continuous invariant measure. The proof uses
Rényi’s condition, which further says that the measure is equivalent to Lebesgue
measure. We are very much indebted to Jon Chaika for pointing out to us that we
could use the ergodicity of Brun’s algorithm to prove the following theorem.

Theorem 4.14. There exists a set K ⊂ Sr of full Lebesgue measure such that for
each x ∈ K

(11)
∞⋂
j=1

Axj (Rr+) = spanR+
{x}.

Remark 4.15. Before proceeding with the proof, we explain what we saw as an
impediment to proving that the PF eigenvectors are dense in a simplex. It is possible
to have a sequence of invertible positive integer d x d matrices {Mi}∞i=1 so that

∞⋂
k=1

M1 · · ·Mk(Rd+)

is more than just a single ray. The existence of such sequences of matrices was proved
in the context of non-uniquely ergodic interval exchange transformations. There are
several papers on the subject (including [KN76], [Kea77], [Vee82], [Mas82]). Because
it may not be straightforward to the reader outside of the field, we briefly explain
how [Kea77] implies the existence of such a sequence.

We consider a sequence of pairs of positive integers {(mk, nk)}∞k=1 satisfying the
conditions of [Kea77, Theorem 5]. We look at

∞⋂
k=1

Am1,n1Am2,n2 · · ·Amk,nk
(Rd+),
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as defined on pg. 191. Keane explains on pg. 191 that the product of any two
successive Ami,ni

is strictly positive and that always det(Amk,nk
) = 1. We let Bk =

Am1,n1Am2,n2 · · ·Amk,nk
. [Kea77] projectivizes Bk to B̃k, so that B̃k is a map of the

3-dimensional simplex S4. By Lemma 4, {B̃k(0, 1, 0, 0)}∞k=1 is a sequence of vectors
converging to a vector whose 2nd entry is at least 1

3
. By Lemma 3 (when Theorem

5(ii) holds), {B̃k(0, 0, 1, 0)}∞k=1 is a sequence of vectors converging to a vector whose
3rd entry is at least 7

10
. But 1

3
+ 7

10
> 1 and we have assumed that we are in S4. So

these limits must be distinct vectors.

Proof of Theorem 4.14. Choose any N -cylinder Ω := ∆r(i1, . . . iN) such that the
corresponding matrix Z := A′N is positive (see Corollary 4.13). Let Ω := p(Ω). Then

µ(Ω) > 0 where µ is the Lebesgue measure on Br. Since T
′
: Br → Br is ergodic with

respect to the Lebesgue measure, by Birkhoff’s Theorem, there exists a set K ⊂ Br

such that µ(K) = 1 and so that for each x̄ ∈ K the following set is infinite:

J(x̄) := {n ∈ N | T ′n(x̄) ∈ Ω}.
We let K ′ := p−1(K). Then for each x′ ∈ K ′ the set I(x′) := {n ∈ N | (T ′)n(x′) ∈ Ω}
is infinite, as n ∈ I(x′) if and only if n ∈ J(p(x′)).

Let K ′′ := O−1(K ′) ⊂ Rr+. If x ∈ K ′′, then O(x) ∈ K ′, and hence for each
n ∈ I(O(x)) we have

(T ′)n(O(x)) ∈ Ω.

Let s ∈ N be arbitrary. Consider the first s integers {j1, . . . , js} in I(O(x)) satisfying
that any difference between two of these numbers is > N (where N came from the
original N -cylinder we started with). Let N1 ≥ js +N + 1. Then, for each m > N1,

(AO(x)
m )′ = D1 · · ·Dj1−1ZDj1+N · · ·Dj2−1 · · ·Djs−1ZDjs+N · · ·Dm,

where Z is the positive matrix that we started with and the Di are the M ′
i ’s of Brun’s

ordered algorithm. The matrix Z appears in this product s times. By Lemma 4.11,
for each x ∈ K ′′ and each m ∈ N, there exist permutation matrices Pi1 , Pi2 so that

Axm = Pi1(A
O(x)
m )′Pi2 .

Hence, for this arbitrary s we have found an N1(s) ∈ N so that for all m > N1,

Axm = P1D1 · · ·Dj1−1ZDj1+N · · ·Dj2−1 · · ·Djs−1ZDjs+N · · ·DmP2,

where Z appears in this product at least s times and the other matrices in this
product are all invertible nonnegative integer matrices. Then, by [Fis09, Corollary
7.9], Equation 11 holds true for each x ∈ K ′′.

Let q : Rr+ → Sr be the projection to the simplex in the positive cone (see (1)) and

let µ′ be the Lebesgue measure on Sr. Denote K = q(K ′′). Then, since µ(K) = 1,
we arrive at µ′(K) = 1, as desired. �
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Definition 4.16. We let Pr be defined as:

Pr := {vPF ∈ Sr | vPF is the PF eigenvector for some positive Brun matrix M ∈ Br}.

Definition 4.17. Suppose

(12) A = Mi1,j1 · · ·Min,jn ∈ Br.
Then each Mik,jk is an unfolding matrix as in (5) and we can associate to it the fold-
automorphism fikjk (see Definition 3.3). Notice that Mik,jk is in fact the transition
matrix for fikjk . To each A ∈ Br as in (12) we associate the automorphism

(13) gA = fin,jn ◦ · · · ◦ fi1,j1 ,
whose transition matrix is A. We also call this automorphism gv, where v is the PF
eigenvector of A.

Theorem D. For each r ≥ 2, let Srl1 be the set of unit vectors according to the l1
metric in Rr+. The set of Perron-Frobenius eigenvectors of matrices arising as the
transition matrices of a positive automorphisms in Aut(Fr) is dense in the Srl1 .

Proof. It will suffice to shows that Pr is dense. By Theorem 4.14, we know that Brun’s
algorithm converges in angle on a dense set of points K ⊂ Sr. Thus, given any x ∈ Sr
and ε > 0, there exists some x′ ∈ B(x, ε

2
) ∩ K on which Brun’s algorithm weakly

converges. Hence, there exists some N such that, for each n ≥ N , we have that
q(Ax

′
n C

r) ⊂ B(x′, ε
2
). By possibly replacing N with a larger integer, we can further

assume that the Ax
′
n are positive (see Proposition 4.7), so have PF eigenvectors. And

the PF eigenvector vn for each Ax
′
n is contained in Ax

′
n C

r and hence is in B(x′, ε
2
).

Hence, there exists a vi ∈ Pr such that d(vi, x) < ε. �

5. Dense Geodesics in theta complexes

In this section we construct a geodesic ray dense in the theta subcomplex whose
top-dimensional simplex has underlying graph as in the right-hand graph of Figure
1. One could consider this a warm-up to the proof of Theorem B or interesting in its
own right, as this is the minimal subcomplex containing the projection of the Cayley
graph for Out(Fr).

5.1. Construction of the fold ray. We enumerate the vectors in Pr from Defini-
tion 4.16 as {vi}∞i=1. For each i there exists a positive matrix Avi in Br so that vi is
the PF eigenvector of Avi . Further, there exists an automorphism gvi in Ar corre-
sponding to Avi (Equation 13). We also enumerate all possible fold automorphisms,
as in (3), by h1, . . . , hr(r−1).

We construct a sequence that contains each gkvi ◦ hj with i, k, j ∈ N:

(14) gv1 ◦ h1, gv2 ◦ h1, g
2
v1
◦ h2, g

3
v1
◦ h3, g

2
v2
◦ h2, gv3 ◦ h1, gv4 ◦ h1 . . .
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Decompose each gvi in (14) according to (13), to obtain an infinite sequence of
fold automorphisms {Φk}∞k=1 (15). Orienting Rr and identifying its positive edges
with the basis, Φ1 can be represented by the combinatorial fold f1. The new graph
Rr inherits an orientation and an enumeration of edges and thus we may continue
inductively to define the combinatorial fold fk : Gk−1 → Gk. The enumeration of
edges induces a homeomorphism nk : σ̂(Gk,fk◦···◦f1) → Sr.

Lemma 5.1. Let σ0 be the base simplex, then there exists a point x0 ∈ σ0 so that, for
each k ≥ 0, the fold fk+1 is allowable in the folded rose after performing the sequence
of folds f1, . . . , fk. Moreover, this folded rose is xk = n−1

k (Tk ◦ · · · ◦T1(n0(x0))) in the
simplex σ(G,fk◦···◦f1◦m).

Proof. This follows from Corollary 3.16. Note that the positivity condition follows
from the positivity of the matrices Avi . �

Remark 5.2. [Fis09, Corollary 7.9] implies the metric on x0 is unique, as the same
positive matrix occurs in infinitely many of the products Mi1 · · ·Mik .

Definition 5.3 (R). We let R denote the infinite fold ray (Definition 3.13) initiating
at x0 and defined by the sequence of folds {fi} as constructed above.

Theorem C. For each r ≥ 2, there exists a fold line in Tr that projects to a Lipschitz
geodesic fold ray in Tr/Out(Fr).

Proof. We recall R from Definition 5.3. It is clear that R is contained in Tr. R is a
geodesic ray by Corollary 3.18.

First recall that the simplicial and Lipschitz metrics on Xr induce the same topol-
ogy on Xr. Hence, it suffices to prove density in the simplicial metric.

Let ā ∈ Mr and let ε > 0 be arbitrary. Lift ā to a point a ∈ Xr in the interior
of a top dimensional simplex τ . Let y ∈ τ be a point such that ds(a, y) < ε, and so
that its coordinates are rationally independent. The point y lies on a fold line Fi,j
from a point x on one face of τ to a point z in another face. Without generality
loss assume z ∈ σ0, the base simplex. Moreover, without generality loss assume
the combinatorial fold is f1,2. Let e′1, . . . , e

′
r denote the edges of Rr as numbered

in σ0. Enumerate the edges of Gτ , the underlying graph of τ , as e1, . . . er+1, so
that if c : G → R is the map collapsing e2 in G, then c(e1) = e′1 and c(ei) = e′i−1

for each i ≥ 3. We parameterize the path [x, z] as an unfolding path γ̂1,2(z, t) in
unprojectivized Outer Space as follows. Let ζ = n0(z) ∈ Sr, then

nτ (γ̂1,2(z, t)) = (ζ1 + t, t, ζ2 − t, ζ3, . . . , ζr).

We note that z = γ̂1,2(z, 0), x = 1
1−ζ2 γ̂1,2(z, ζ2), and for some 0 < t0 ≤ ζ2 we have

y = 1
1−t0 γ̂1,2(z, t0). Since the function γ1,2(z, t) = 1

1−tγ1,2(z, t) is continuous when t is
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bounded away from 1, there exists an ε′ > 0 so that for each w ∈ B(z, ε′), the path
γ1,2(w, t) passes through B(a, ε).

Now, by the density of PF eigenvectors (Theorem D), there exists a vector vi ∈ Pr
such that vi ∈ n0(B(z, ε′)). Let ε′′ > 0 be such that n0(B(z, ε′)) contains B(vi, ε

′′).
Let K be large enough so that q(Akvi(R

r
+)) ⊂ B(vi, ε

′′) for all k > K.
Let Ψk be the composition of Φ1,Φ2, . . . from (15) up to the first fold automor-

phism in the decomposition of gkvi . Choose k > K so that the last fold automorphism
in Ψk is Φ1,2. Let zk be the rose-point inR directly after performing the fold sequence
of Ψk. Let xk be the rose-point directly before zk.

We claim that R · Ψ−1
k is ε-close to a. To see this recall that directly after zk in

R we perform the folds corresponding to gkvi . Let wk be the rose-point in R directly
after these folds and let ns, nm be the appropriate idenitifications of the simplices
containing zk and wk with Sr. Then ns(zk) = Akvi(nm(wk)). Hence ns(zk) is ε′′-close
to vi. Thus ns(zk) is ε′-close to n0(z).

The point zk is in σ0 ·Ψk. Hence, by Lemma 3.9, n0(zk ·Ψ−1
k ) = ns(zk). Thus the

fold path [xk, zk] · Ψ−1
k , which is a path induced by the fold Φ1,2, satisfies that its

endpoint, zk ·Ψ−1
k , is ε′-close to z. Thus, this fold line intersects B(a, ε), as desired.

�

6. Finding a rose-to-graph fold path terminating at a given point

This section is the first step in our expansion of our methods of Section 5 to obtain
a dense geodesic ray in the full quotient of reduced Outer Space.

In this section and in the next one, we find, for a dense set of points y in reduced
Outer Space, roses x, z so that y ∈ [x, z] and the difference in marking map x→ z is
positive. The path [x, z] will be called a positive rose-to-rose fold line. It will replace
our basic fold lines Fi,j in the proof of Theorem C.

A rose-to-rose fold path will have two parts: a rose-to-graph part [x, y] and a
graph-to-rose part [y, z]. We begin in (Subsection 6.1) with decomposing the graph
of y into a union of positive loops (Lemma 6.6). This allows us to find the rose x.

6.1. Decomposing a top graph into a union of directed loops.

Definition 6.1 (Paths and distance in trees). Let T be a tree. Then for each pair
of points p, q in T there is a unique (up to parametrization) path from p to q. We
denote its image by [p, q]T and, when there is no chance for confusion, we drop the
subscript T . Given a tree T , let dT (�, �) denote the distance in T .

Definition 6.2 (Rooted trees). A rooted tree is a tree T with a preferred vertex v0

called a root. A rooted tree can be thought of as a finite set with a partial order
that has a minimal element - which is the root. We will refer to the partial ordering
induced by the pair (T, v0) as ≤T , i.e. w ≤T w′ =⇒ w ∈ [v0, w

′]T .
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Remark 6.3. In the figures to follow the root will always appear at the bottom.

We use special spanning trees to guide us in finding the loop decomposition of G:

Definition 6.4 (Good tree). Let T be a rooted tree in G and e = (v, w) an edge.
We call e bad if v �T w and w �T v. Let B(T ) be the number of bad edges in G with
respect to T . When B(T ) = 0 we call T good (sometimes elsewhere called normal).

We prove a somewhat stronger version of [Die05, Proposition 1.5.6].

Proposition 6.5. For each G ∈ Xr, and for each E ∈ E(G) that is not a loop,
there exists a rooted spanning tree (T, v0) so that B(T ) = 0 and E ∈ E(T ) and
v0 = ter(E). Moreover, when G is trivalent with no separating edges, T can be
chosen so that degT (v0) = 1.

Proof. For an edge e = (v, w) in G, the union [v0, v]T∪[v0, w]T forms a tripod. Denote
the middle vertex of this tripod by qe, i.e. qe satisfies [v0, qe]T = [v0, v]T ∩ [v0, w]T .
Let d(e) = d(v0, qe). We define the complexity C(T ) = (n(T ),m(T )) of T by defining
n(T ) and m(T ) as follows:

n(T ) =

{
−min{d(e) | e is bad} if B(T ) 6= 0
−∞ otherwise

and let

m(T ) = #{e ∈ G | e is bad and d(e) = −n(T )}.
In particular, m(T ) = 0 if there are no bad edges, so that, if there are no bad edges,
C(T ) = (−∞, 0).

The complexity is ordered by the lexicographical ordering of the pairs. Note that
for T bad, the complexity is bounded from below. Indeed, when G ∈ Xr, we have
|V (G)| ≤ 2r − 2, so n(T ) ≥ 2− 2r, hence C(T ) ≥ (2− 2r, 1). We will show that we
can always decrease the complexity, so that T can no longer have a bad edge.

Given an edge E in G, we let v0 = ter(E). Let G1, . . . , GN denote the com-
ponents of G − {v0} with {v0} added back to each component separately. Thus
G = ∪Ni=1Gi/{v0}. We will construct a good tree Ti (rooted at v0) in each Gi. Then
T = ∪Ni=1Ti will also be a good tree rooted at v0, since all edges e ∈ E(G− T ) have
endpoints inside some Gi.

Let G1 be the component containing the edge E. For i 6= 1 we choose a spanning
tree Ti in Gi arbitrarily. For i = 1 we construct a spanning tree T1 in G1 such that
deg(v0)T1 = 1: Denote by v1 the endpoint of E distinct from v0. We define T1 to be
the union of E with a spanning tree in G1 − E.

We will modify each Ti separately to make it a good tree in Gi. Suppose e = (v, w)
is a bad edge in Gi realizing the minimal distance −n(Ti). Let e1 be the first edge
of [v, qe]Ti , and let e2 be the last edge of [v, qe]Ti . Let T ′i = Ti ∪ {e} \ {e2}. We
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claim that e2 6= E. If Gi 6= G1, then this is obvious. Otherwise, degT1(v0) = 1 and
deg(qe) ≥ 2, so that v0 6= qe and hence e2 6= E. Therefore, E ∈ E(T ′1) after the move
and still degT ′

1
(v0) = 1. Next, notice that some bad edges of Ti have become good in

T ′i , for example e is no longer bad, as is any edge from a vertex in [v, qe]Ti to a vertex
in [qe, w]Ti . Some bad edges remain bad. But the only edges that were good and
became bad are edges with one endpoint in [v, qe]Ti and one endpoint in a component
of Ti \ {v} that does not contain e1 or w. For such an edge f , we have that qf = v,
so d(f) = d(v, v0)T ′

i
> d(qe, v0)T ′

i
= d(e) and the complexity has decreased.

If G is trivalent with no separating edges, then no edge is a loop. This implies
that there are three edges E,E ′, E ′′ incident at v0. If the tripod E ∪ E ′ ∪ E ′′, was
separating then each of its edges would be separating - a contradiction. Therefore,
G = G1 in this case and the proof is complete. �

Lemma 6.6. If G is a trivalent graph with no separating edges and {E,E ′} is a turn
at the vertex v0, then there exists an orientation on the edges of G so that,

(1) G = ∪ri=1αi where each αi is a positive embedded loop,
(2) αi ∩ (∪i−1

j=1αj) is a connected arc containing v0 for each i, and
(3) v0 is the terminal point of both E and E ′.

To prove Lemma 6.6, we use Proposition 6.5 to find a good tree (T, v0) containing
E and so that v0 has valence 1 in T . Denote by e1 the third edge at v0 distinct from
E,E ′. Since E ∈ E(T ), we have E ′, e1 /∈ E(T ). Lemma 6.6 now follows from:

Lemma 6.7. Let G be a trivalent graph with no separating edges and let (T, v0) be
a good spanning tree in G. Let e1 ∈ E(G − T ) so that i(e1) = v0. Then one can
enumerate E(G− T )− {e1} as e2, . . . , er and orient all of the edges of G so that

(1) there exist positive embedded loops α1, . . . , αr ⊂ G,
(2) for each i, we have that i is the smallest index such that αi contains ei, and
(3) for each i, we have that αi ∩ (∪i−1

j=1αj) is a connected arc containing e1.

We will need the following definitions in our proof of Lemma 6.7.

Definition 6.8 (v−(e) and v+(e)). Let T be a good tree in G. Given an edge
e ∈ E(G), one of its endpoints is closer (in T ) to v0 than the other. We denote by
v−(e) the vertex closer to v0 and by v+(e) the vertex further from v0.

Definition 6.9. Let α be an embedded oriented path in the graph G and let x, y be
two points in the image of α, i.e x = α(s) and y = α(t), for some s, t. If s < t, then
we denote by [x, y]α the image of the subpath of α initiating at x and terminating
at y, i.e. α([s, t]).

Definition 6.10 (Left-right splitting). Let v0 be a vertex of a graph G and let α be
an embedded directed loop based at v0. Let e be an edge of α, and m the midpoint
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of e. Then the left-right splitting of α at e is

Leα = [v0,m]α, Re
α = [m, v0]α.

Definition 6.11 (Aligned edges). Let G be a graph and (T, v0) a spanning good
tree in G. Suppose f1, f2 ∈ E(T ) satisfy that the vertices {v+(f1), v+(f2), v0} span a
line in T . Then we call f1, f2 aligned. If v+(f1) < v+(f2) we say f1 lies below f2.

Definition 6.12 (Highlighted subpaths). Let G be a graph and (T, v0) a spanning
good tree in G. Let f1, f2 be aligned edges in T such that f1 lies below f2. For each
i, let αfi be an embedded loop containing fi and v0. We define Hf1,f2

f1
and Hf1,f2

f2
, the

highlighted subpaths of αf1 and αf2 , respectively, as follows:

Hf1,f2
f1

= Lf1αf1
and Hf1,f2

f2
= Rf2

αf2
when i(f1) <T ter(f1)(16)

Hf1,f2
f1

= Rf1
αf1

and Hf1,f2
f2

= Lf2αf2
when i(f1) >T ter(f1)(17)

Proof of Lemma 6.7. Enumerate E(G−T )−{e1} so that k < j implies that v−(ek) �
v−(ej). We prove this lemma by induction on i for 1 ≤ i ≤ r. We will define a loop
αi and orient its previously unoriented edges so that items (1), (2), and (3) of the
lemma hold and moreover the following items (4) and (5) hold. Denote by αe the
first loop that contains e (for example when e = ej /∈ E(T ) then αe = αj).

(4) If f ∈ E(T ) and f ′ ∈ E(G) are such that v+(f) ≤ v+(f ′) and f ′ is oriented,
then f is oriented.

(5) Let f1, f2 ∈ E(T ) be aligned and Hf1,f2
f1

, Hf1,f2
f2

the corresponding highlighted

paths with respect to αf1 , αf2 , then Hf1,f2
f1
∩Hf1,f2

f2
contains no half-edges.

We include (5) to ensure that the loop in the induction step is embedded.

The base case: We begin the base of the induction with the edge e1 ∈ E(G−T ),
which is adjacent with v0. Define the directed circle αe1 = e1 ∗ [t(e1), v0]T , this is
clearly an embedded loop. We orient the edges of αe1 accordingly, i.e. e1 is directed
away from v0, and the edges f ∈ [t(e1), v0]T are directed toward v0. Clearly items
(1)-(4) hold at this stage, i.e. in the subgraph consisting of precisely α1.

The induction hypothesis: We now assume that we have oriented some subset
of G so that: for each j ≤ i− 1 we have that ej is oriented. We call G′ = ∪i−1

j=1αj the
oriented subgraph. We let e := ei and note that e /∈ G′.

The induction step: Let I = [v−(e), v+(e)]T . Let t1 be the edge of I adjacent at
v−(e). We claim as follows that t1 is oriented, see Figure 2. Indeed, if v−(t1) = v0 this
follows from the base case. Otherwise, there is an edge t3 ∈ E(T ) adjacent to v−(t1).
Since t3 is nonseparating, there is an edge e′ ∈ E(G − T ) so that v−(e′) ≤ v−(t3)
and v+(e′) ≥ v+(t3). But since the graph is trivalent, v+(e′) ≥ v+(t1). Now, since
v−(e′) < v−(e), we have that e′ is oriented. Hence, by item (4) in the induction
hypothesis, t1 is oriented.
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(A) (B) (C) (D)

t1 t1 t1 t1

t2 t2 t2 t2
e e e e

Figure 2. The green line indicates the path αe takes near e. The
edge t1 is the first edge in I and t2 is the last oriented edge in I.

Let t2 be the last oriented edge of I. Denote J = [v+(t2), v+(e)]T . Note that we
allow t1 = t2 and leave the adjustments of this case, from cases A and C of Figure 2,
to the reader. The loop αe is constructed as in Figure 2 from the following segments
by adding or removing a half-edge of t2 or removing a half-edge of t1 or t2

(18) H t1,t2
t2 , J, e, H t2,t1

t1 .

The orientation of αe is chosen according to the direction of t1. When i(t1) >T t(t1),
cases (A) and (B) of Figure 2, we orient αe so that H t1,t2

t2 is the left (first) segment and

when i(t1) <T t(t1), cases (C) and (D), we orient so that H t2,t1
t1 is the first segment.

We observe that αe is indeed embedded as follows. The paths H t1,t2
t2 , H t2,t1

t1 ⊂ G′

while J, e ⊂ G−G′, hence they are edge-disjoint. Moreover, by item (5) for G′, the
paths H t1,t2

t2 , H t2,t1
t1 are half-edge disjoint so that even if we add t1 or t2 they remain

edge disjoint. Therefore the path αe does not self-intersect in an edge. It cannot
self-intersect at a vertex since the graph is trivalent. This proves item (1).

Note that αe is contained in G′ ∪ T ∪ {e}, hence it does not contain ej for j > i.
This proves item (2). Item (3) is also clear. Item (4) is satisfied since for f ′ = e and
for all f ∈ E(T ) so that v+(f) ≤ v+(e) we have that f is oriented.

We are left with proving item (5) for each pair of aligned edges f1, f2 ∈ E(T ) such
that at least one of them is oriented in the ith step, i.e. αf = αi. It is less difficult to
check that the claim holds when both edges are newly oriented. We leave this case
to the reader and check the case where f1 ⊂ G′ ∩ T and f2 ⊂ T is newly oriented,
i.e. f2 ⊂ J . We illustrate the different cases in Figure 3.

Suppose f1 /∈ I (Case I in Figure 3), then for each f ∈ {f2, t1, t2}, we have f1 <T f .

Thus, Hf1,f
f1

= Hf1,f ′

f1
for f, f ′ ∈ {f2, t1, t2}.
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v+(e)

f2

t2

f1

t1

f2

f1

t1

(I) (IIa) (IIb) (III)

t2

v+(e) v+(e) v+(e)

f2

f1

t1

t2

f2

f1

t1

t2

Figure 3. Checking Claim 5 for f1, f2 depending on their location.
In Case I, f1 lies below t1, and in the other cases t1 lies below f1. In
Cases IIa, IIb, f1 is pointing down and in Case III, f1 is pointing up.

Moreover, by our construction of αf2 = αe, we have Hf1,f2
f2
⊂ Hf1,tk

tk
∪ J ∪ {t2} for

either k = 1 or k = 2. Thus, for the same k we have (see Figure 2) :

Hf1,f2
f1

= Hf1,tk
f1

and Hf1,f2
f2
⊂ Hf1,tk

tk
∪ {e} ∪ J ∪ {t2}.

Since J is newly oriented, Hf1,tk
f1

and J are edge-disjoint. By the induction hypothesis,

Hf1,tk
f1
∩Hf1,tk

tk
contains no edges or half-edges. Moreover, if Hf1,f2

f2
6⊂ Hf1,tk

tk
∪ J ∪{e}

then k = 2 and a half of t2 must be in Hf1,t2
t2 . Since Hf1,tk

f1
∩ Hf1,tk

tk
contains no

half-edges, then t2 is not contained in Hf1,tk
f1

. This implies that Hf1,f2
f1
∩Hf1,f2

f2
.

If f1 ∈ I, then there are two classes of cases: i(f1) ≥T ter(f1) (Cases IIa, IIb of
Figure 3) and i(f1) ≤T ter(f1) (Case III). We will prove Case IIa and leave the others

to the reader. If f1 is pointing down, then Hf1,f2
f1

= Rf1
αf1

, Hf1,f2
f2

= Lf2αf2
. There are

two subcases: f2 is pointing down (Case IIa) or up (Case IIb). If f2 is pointing down,
then t1 is pointing up (see Figure 2), thus Lf2αe

⊂ Lt1αt1
∪ e ∪ J . In this configuration,

Hf1,t1
f1

= Rf1
αf1

Hf1,t1
t1 = Lt1αt1

Hf1,f2
f1

= Rf1
αf1

Hf1,f2
f2

= Lf2αe
⊂ Lt1αt1

∪ {e} ∪ J

Hence, the fact that Hf1,t1
f1
∩Hf1,t1

t1 contains no half-edges implies that Hf1,f2
f1
∩Hf1,f2

f2
contains no half-edges. The other cases are similar. �

6.2. Rose-to-graph fold line. Given a point x whose underlying graph is trivalent
with no separating edges, we wish to find a rose-point x0 and a line in Xr from x0 to
x. This is done by simultaneous folding as defined below.
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Definition 6.13 (Rose-to-graph fold line F(x0, {sij})). Let x0 = (R, µ, `0) be a

point in X̂r whose underlying graph is a rose with r petals. There are K = r(r − 1)
turns and we enumerate them in any way {τi}Ki=1. Let −→s ∈ RK be a nonnegative
vector so that si is no greater than the length of each edge in the turn τi. Given the
data (x0,

−→s ) we construct a continuous family of graphs {xt} for 0 ≤ t ≤ T =
∑
si,

and maps ft,0 : x0 → xt as follows. In the ith step let τi = {ej, em} and fold initial
segments of length si in ft,0(ej) and ft,0(em). We caution that these ft,0 are not
always homotopy equivalences. However, if fT,0 is a homotopy equivalence, then for
each t < T the map ft,0 is a homotopy equivalence. In this case we get a path

F(x0,
−→s ) : [0, T ] → X̂r
F(x0,

−→s )(t) = xt.

We denote its projectivization by F = q(F).

Lemma 6.14. Let G be a trivalent graph such that π1(G) ∼= Fr. Then for each

x ∈ X̂r with underlying graph G, there exists a point x0 whose underlying graph is a
rose and there exists a nonnegative vector −→s in RK, where K = r(r − 1), so that

x = F(x0,
−→s )(T ).

Additionally, x0,
−→s are linear functions of the lengths of E(G) as they vary through-

out the unprojectivized simplex. (As above, T =
∑
si.)

Proof. Let E1, . . . E3r−3 be the edges in G. Lemma 6.6 provides a decomposition
of G as G = ∪ri=1αi. Let R = tri=1αi/{v0}, then R is an r-petaled rose. Let
e1, . . . er be the edges of R. Let `R(ei) = `G(αi). We write αi as a sequence of edges
αi = Em(i,1) · · ·Em(i,ki). Then

(19) `R(ei) = `G(αi) =

ki∑
j=1

`G(Em(i,j)).

Let x0 denote R with these edge lengths. There is a natural map θ : x0 → x defined
by the inclusion of αi in G. This is a quotient map and, moreover, θ|ei is an isometry.

Recall that the intersection of αi and αj is an arc containing v0. Let a, b be the
endpoints of the arc. For τk = (ei, ej) and τm = (ei, ej) we define

(20) sk = lG([v0, a]αi
) and sm = lG([b, v0]αi

).

Consider the folding line F(x0,
−→s ). By the definitions, θ is precisely the map

fT,0 : x0 → xT , since the points identified by θ are precisely those that are iden-
tified in the folds. Therefore, xT equals the point x that we started with.
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Moreover, θ is a homotopy equivalence by Lemma 6.7(2). Therefore, F(x0,
−→s ) is

a path in unprojectivized Outer Space. Equations 19, 20 show that the dependence
of li and sk on edge lengths in x is linear. �

Lemma 6.15. Suppose that x = F(x0,
−→s )(T ). Then there exists a neighborhood of

(x0,
−→s ) so that for each (y0,

−→u ) in this neighborhood, the endpoint y := F(y0,
−→u )(T ′)

of the fold line F(y0,
−→u ) lies in the same unprojectivized open simplex in X̂r as x.

Additionally, the edge lengths of y are linear combinations of the edge lengths of
y0 and −→u .

Proof. Consider the positive edges E1, . . . Em in G and let G = ∪ri=1αi be the de-
composition guaranteed by Lemma 6.6. The edge Ei is contained in a loop αj(i).
Since G is a trivalent graph, at each endpoint {v, w} of Ei there is an edge, Ek, Ed
resp., not contained in αi. The edges Ek, Ed are contained in αj(k), αj(d) resp. Now
v0, v ∈ αj(i) ∩ αj(k). Thus, by Lemma 6.6(3), either [v0, v]αj(i)

⊆ αj(i) ∩ αj(k) or

[v, v0]αj(i)
⊆ αj(i) ∩ αj(k). This situation is similar for v0, w. Therefore,

(21)

`G(Ei) =


sm − sn when τm = (ej(d), ej(i)) and τn = (ej(k), ej(i))

sn − sm when τm = (ej(d), ej(i)) and τn = (ej(k), ej(i))

|`(αj(i))− (sn + sm)| otherwise

Note this dependence of the `G(Ei) on the variables sm will be the same for all points
in the same unprojectivized simplex since they only depend on the loop decompo-
sition. We also get that the dependence of `G(Ei) on sij and `(ei) is linear. Let

U be the open subset of the unprojectivized rose simplex cross Rr(r−1)
+ so that each

expression in the right-hand side of (21) is positive for each i. This is an open set
containing (x0,

−→s ). For any point y in the unprojectivized simplex of x one can
use (19) and (20) to get y0 and −→u so that y = F(y0,

−→u ). Thus (y0,
−→u ) solves the

equations in (21) for the edge lengths of y, hence (y0,
−→u ) ∈ U . Thus, there exists a

solution of (21) in U for each choice of edge lengths of G. We see that the dependence
of the edge lengths lG(Ei) on −→s and `(ei) is linear. �

6.3. Folding a transitive graph to a rose.

Definition 6.16. A transitive graph G is a directed graph G with the following
property: for any two vertices w,w′ there exists a directed path from w to w′.

Note that it is enough to check that for any choice of preferred vertex v, there
exists a directed path to and from each other vertex v′.

The proof of the following is left to the reader.

Observation 6.17. Let G be a directed graph and let f : G → G′ be a direction
matching fold of two oriented edges e1, e2 in G, starting at a common vertex v. Then:
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(1) If G is transitive, then G′ is transitive.
(2) If the lengths of the edges of G are rationally independent, then the lengths

of the edges of G′ are rationally independent.

Lemma 6.18. Let G be any transitive graph with rationally independent edge lengths
and let {E,E ′} be either a positive or negative turn. Then there exists a fold sequence
f1, . . . , fk containing only direction matching folds and satisfying that fk ◦ · · · ◦ f1(G)
is a rose. Further, assuming G is trivalent, we may choose f1 so that it folds the
turn {E,E ′}.
Proof. We perform the following steps:

Step 1: Let c(G) be the number of directed embedded paths in G between (dis-
tinct) vertices. For each pair of vertices w,w′ there exists a directed path from w to
w′, thus it follows that there exists an embedded directed path from w to w′. We
decrease c(G) by folding two directed embedded paths α, β so that i(α) = i(β) and
ter(α) = ter(β) and α ∩ β = {i(α), ter(α)}. Note that the edges in α and β are
distinct and thus we are consecutively performing regular Stallings folds. Also, if
G is trivalent and we choose a decomposition as in Lemma 6.6, then we can choose
the first α to contain E and the first β to contain E ′ and fold α, β so that the first
combinatorial fold folds the turn {E,E ′}. Denote the new graph by G′. Then, by
Observation 6.17, G′ is transitive and has rationally independent edge lengths. The
complexity has decreased, i.e. c(G′) < c(G).

At the end of this step we may assume that we have a connected graph G so that
G =

∐n
i=1 γi/ ∼, where γi is a circle and for each i 6= j: γi ∩ γj is either empty or a

single point (see Figure 4). We call such a graph a gear graph. Notice that given a
gear graph, such a decomposition into circles is unique up to reindexing

Figure 4. This graph is an example of a gear graph.

Step 2: For a gear graph, we define a new complexity. Let V be the set of vertices
(of valence > 2) and let m = max{val(w) | v0 6= w ∈ V }. Define the complexity:

c(G) = (|V |,m).

Let w be a vertex that realizes the valence m and let γ1, γ2 be circles so that
w = γ1 ∩ γ2 and suppose that v 6= w is a vertex on γ2 (see Figure 4). Let γ2 = αβ
where i(α) = v = ter(β) and ter(α) = w = i(β). By folding, wrap β over γ1 until v
is on the image of γ1 (we may have to wrap β multiple times over γ1). Now there
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are two paths from v to w: α and γ′1, the remaining part of γ1. Fold α over γ′1. G′ is
a gear graph. Moreover, the valence of the image of w decreases (w may now even
have valence 2). Thus c(G′) < c(G). When all vertices other than v0 have valence 2
we can no longer decrease the complexity, and G will be a rose.

�

w

v

γ2
γ1

w

v

γ2
γ1

α

β

w

v

γ2

α

β′

γ′1

Figure 5. Step 2 (β′ is the remaining portion of β, after it is wrapped
around γ1)

7. Existence and continuity of rose-to-rose fold lines

In Subsection 6.2 we defined a rose-to-graph fold line [x0, x] = F(x0,
−→s ), given a

point x and a loop decomposition of its underlying graph. We also had two continuity
statements: (1) x0,

−→s vary continuously as a function of x by Lemma 6.14 and (2)
F(x0,

−→s ) vary continuously as a function of x0,
−→s by Lemma 6.15. We need similar

existence and continuity statements for the full rose-to-rose fold line.

Proposition 7.1. Let x be any point of X̂r satisfying that q(x) is in a top-dimensional
simplex of reduced Outer Space with rationally independent edge lengths. Let {E,E ′}
be a pair of adjacent edges in the underlying graph of x. Then there exists a positive
rose-to-rose fold line, which we denote by R(x0,

−→s ) : [0, L] → Xr, containing x and
containing the fold of {E,E ′}.
Proof. By Lemma 6.14 there exists a rose point x0 and a vector −→s so that the rose-to-
graph fold segment F(x0,

−→s ) terminates at the point x. We consider the orientation
on x given by the loop decomposition in Lemma 6.6. We may apply Lemma 6.18 to
obtain a fold sequence f1, . . . , fk which terminates in a rose z′ with some valence-2
vertices and so that f1 folds the turn {E,E ′}. Removing the valence-2 vertices gives
a rose, which we denote by z. The line just described will be denoted R(x0,

−→s ). It
satisfies the statement in the theorem. �

Notation: Let x0 be a rose, let−→s ∈ Rr(r−1), and letR(x0,
−→s ) be the fold line defined

by these parameters. (We call such a fold line a rose-to-rose fold line.) We will
denote by x the trivalent metric graph at the end of the rose-to-graph fold segment,
i.e. x = R(x0,

−→s )(
∑
si), by z the end-point of the rose-to-rose fold segment, and by

z′ the point in the graph-to-rose fold segment from which z is obtained by removing
the valence-2 vertices.
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Definition 7.2 (Proper fold line). Let R(x0,
−→s ) be a rose-to-rose fold line and let

f1, . . . , fk be the sequence of combinatorial folds from x to z′. If for each l the fold
fl is a proper full fold, then we will say that R(x0,

−→s ) is a proper fold line.

For example, for each x as in Proposition 7.1, the fold line constructed in the
proposition is a proper fold line since the edge lengths in x are rationally independent.

Proposition 7.3. For each proper rose-to-rose fold line R(x0,
−→s ) and ε > 0, there

exists a neighborhood U of (x0,
−→s ) so that for any point (y0,

−→u ) ∈ U :

(1) The endpoints of the rose-to-graph fold segments

y := F(y0,
−→u )(T ′), x := F(x0,

−→s )(T )

lie in the same unprojectivized open simplex and are ε-close.
(2) The sequence of combinatorial folds from x to z′ appearing in the graph-to-

rose fold segment is allowable in y.
(3) Let R(y0,

−→u ) be the fold line defined by concatenating F(y0,
−→u ) with the fold

segments from (2), then the terminal points w := R(y0,
−→u )(L′) and z :=

R(x0,
−→s )(L) are ε-close.

Proof. By Lemma 6.15 there exists a neighborhood U of (x0,
−→s ) so that for each

(y0,
−→u ) ∈ U the fold line F(y0,

−→u ) terminates at some point y lying in the same
unprojectivized top-dimensional simplex as x. Since the edge lengths of y vary
continuously with the edge lengths of y0 and −→s , we can make U smaller, if necessary,
to ensure that y and x are ε-close. This proves (1).

Let f1, . . . , fk be the combinatorial fold sequence from x to z′, as described in
Lemma 6.18. For each combinatorial proper full fold folding ei over ej, there corre-
sponds a square m ×m folding matrix (here m > r), which we denote T ′ij = (akl),
so that akl = 1 for k = l and aij = −1, but otherwise akl = 0 when k 6= l (compare
with Definition 3.4). Let T ′1, . . . , T

′
k be the fold matrices corresponding to f1, . . . , fk.

Then just as in Lemma 3.14, the combinatorial fold sequence f1, . . . , fk is allowable
in the point y if and only if for each l the vector T ′l · · ·T ′1(`(y)) is positive for each
1 ≤ l ≤ k. This defines an open neighborhood of x where item (2) holds. Item (3)
follows from the fact that matrix multiplication is continuous. �

Lemma 7.4. Let h : x0 → z be a homotopy equivalence representing the map from
the initial rose x0 to the terminal rose z in a rose-to-rose fold line. Let H be a
matrix representing the change-of-metric from the rose z to the rose x0. Then H is
a nonnegative invertible integer matrix and it equals the transition matrix of h.

Proof. Let x0 be the initial rose with edges e1, . . . , er and let z be the terminal rose
with edges e′1, . . . , e

′
r. Let z′ be the graph on the fold line just before z, i.e. z is

obtained from z′ by unsubdividing at all of the valence-2 vertices. Let h : x0 → z
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and g : x0 → z′ be the relevant homotopy equivalences. Since g is a subdivision
followed by folding maps, each of which is a positive map, we have for each i that
g|ei is a local isometry. Thus, h|ei is a local isometry. Moreover, h maps the unique
vertex of x0 to the unique vertex of z. Suppose h(ei) contains a part of an edge e′i,
then h(ei) contains a full appearance of e′i (since there is no backtracking and the
vertex maps to the vertex). Therefore, h|ei is an edge-path in z. Thus, we may write

(22) l(ei) =
∑
j

m(i, j)l(e′j),

where the m(i, j) are the nonnegative integer entries of the transition matrix of h. By
Equation 22, the change-of-metric matrix from z to x0 coincides with the transition
matrix of the homotopy equivalence h. Therefore, H is nonnegative, and integer.
Moreover, since all the folds in a rose-to-rose fold line are direction matching, h is
a positive map. Thus, H is equal to Ab(h), the map induced by h (viewed as an
automorphism) by abelianization. Therefore, H is invertible. �

Lemma 7.5. For each ε > 0 and proper fold line R(x0,
−→s ), there exists a neigh-

borhood U of the terminal rose z such that, for each w ∈ U , there exists a proper
rose-to-rose fold line R(y0,

−→u ) terminating at w satisfying that

(1) the top graphs x, y are ε-close,
(2) the combinatorial fold sequence corresponding to the graph-to-rose segments

are the same in both lines, and
(3) the change-of-metric matrix for both fold lines is the same.

Proof. We prove (1) and (2). By Lemma 7.4, the change-of-metric matrix H from z
to x0 is nonnegative. Thus, for any w in the same unprojectivized simplex as z, we
have that H`(w) is also positive. By Proposition 7.3, there exists a neighborhood V
of x0 so that for each y0 ∈ V there exists a vector −→u so that if y is the top graph of the
fold line F(y0,

−→u ), then x and y are ε-close and their combinatorial fold sequences
are the same. The neighborhood U can be taken in H−1(V ). This proves (1) and
(2). Since the combinatorial folds are the same, the transition matrix y0 → w is the
same as the transition matrix x0 → z. (3) follows from Lemma 7.4. �

Definition 7.6 (Rational rose-to-rose fold lines). A rose-to-rose fold lineR(x0,
−→s ) is

called rational if for each edge e in G and for each loop αi in the loop decomposition

of the underlying graph of x, the quotient l(e,x)
l(αi,x)

is rational.

Proposition 7.7. For each ε > 0 and for each x in an unprojectivized top-dimensional
simplex of reduced Outer Space, with rationally independent edge-lengths, there ex-
ists a rational proper rose-to-rose fold line passing through some x′ in the same open
unprojectivized simplex as x, satisfying that d(x′, x) < ε.
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Proof. Let x be a point in an unprojectivized top-dimensional simplex and having
rationally independent edges. Let R(x0,

−→s ) be a proper rose-to-rose fold line con-
taining x. Let V be a neighborhood of (x0,

−→s ) guaranteed by Proposition 7.3. Let U
be a neighborhood of x in the same top-dimensional simplex and such that for each
y ∈ U there exists some (y0,

−→u ) ∈ V with y the terminal point of F(y0,
−→u ). This is

possible by Lemma 6.14. Let x′ be a point in U which is ε-close to x and such that

the ratios l(e′,x′)
l(αi,x′)

are rational. Then the resulting fold line through x′ will have the

required properties. �

8. Constructing the fold ray

Enumerate Pr by {vi}∞i=1 (see §4). For each i there are countably many rational
proper rose-to-rose fold lines. Thus there are countably many rational proper rose-to-
rose fold lines terminating at a rose with length-vector vi. For each such fold line Rij,
let Fij denote its fold matrix and Hij its inverse - an invertible nonnegative matrix.
Let Uij denote the neighborhood of vi from Lemma 7.5 (for ε = 1 will suffice), i.e.
for each w ∈ Uij there exists a proper fold line terminating at w, passing through
the same simplices as Rij and satisfying that their fold matrices are the same.

Since each Ai = Avi is a positive matrix, for each i, j there exists an integer n(i, j)
satisfying that for each n > n(i, j) we have Ani (Rr+) ⊂ Uij.

Recall that gvi has a decomposition into fold automorphisms obtained from Brun’s
algorithm, this induces a decomposition of Ai to unfolding matrices and A−1

i into
folding matrices. We then create a sequence of pairs denoted {ak} which satisfies:

(1) If ak = (i, j) for an odd k then there exists some n such that n > n(i, j) so
that ak+1 = (i, n).

(2) For each i, N ∈ N there exists an n > N and an even k so that (i, n) = ak,
(3) For each i, j ∈ N, there exist infinitely many odd k’s so that ak = (i, j),

To each ak in this sequence we attach an (unfolding) matrix or sequence of matrices
and automorphisms: if k is odd and ak = (i, j) we attach the matrix Hij related to
the rose-to-rose fold lineRij and define fk to be its change-of-marking automorphism.
And if k is even and ak = (i, n) we attach a sequence of unfolding matrices according
to a Brun’s algorithm decomposition Ani = (M i

1 . . .M
i
k)
n and a sequence of fold

automromphisms. We get a sequence of matrices, which we denote by {Dl}∞l=1. For
each l, either Dl = Hij or Dl = M i

j for some i, j. We emphasize that we have
not decomposed Hij. Moreoverm we get a sequence of automorphisms {fl}∞l=1. Let
{Zl}∞l=1 denote the sequence of folding matrices, i.e. Zl = D−1

l for each l.

Definition 8.1 (Ray R). We construct as follows the geodesic fold ray R that we
later prove is dense. Let x0 be a rose in the unprojectivized base simplex (i.e. having
the identity marking) with the length vector w0 provided by Lemma 3.15 for the
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matrix sequence {Dl} that we defined in the paragraph above. For each k let xk
be the rose with length vector inductively defined as wk = Zkwk−1 and with the
marking fk ◦ · · · ◦ f1. For each l, if Zl is a single fold matrix coming from the matrix
decomposition of Ani , then let the line from xl to xl+1 be the single proper full fold
fold line corresponding to the matrix Zl. This fold is allowable since Zlwl = wl+1 is
positive. If Zl = Hi,j for some i, j coming from ak = (i, j), then ak+1 = (i, n) for
n > n(i, j). Hence there is a number s so that the following s matrices {Dd}l+sd=l+1 are
the matrices of the decomposition of Ani . Therefore, wl+1 = Ani (wl+s) for n > n(i, j).
Thus xk+1 ∈ Uij, so the fold line corresponding to Rij is allowable in xk = Hij(xk+1).
We insert this fold line between such xk and xk+1. This defines a fold ray connecting
the xk’s.

Theorem B. For each r ≥ 2, there exists a geodesic ray γ̃ : [0,∞) → RX r so that
the projection of γ̃ to URX r/Out(Fr) is dense.

Proof. We will show that, for each r ≥ 2, the fold ray R of Definition 8.1 is contained
in URX r and projects densely into Ur. The ray is geodesic by Corollary 3.18.

To prove that R never leaves RX r, i.e. contains no graph with a separating edge,
it will suffice to show that at each point x ∈ R, the underlying graph can be directed
so that it is a transitive graph. This clearly holds for each proper full fold of a rose,
hence for the fold sequences coming from the decompositions of the gkvi . Moreover,
for each i, j Rij consists of transitive graphs since all folds are direction matching,
see Observation 6.17(2).

Let x be a point in an unprojectivized top-dimensional simplex with rationally
independent edge lengths. Let G be its underlying graph and {E,E ′} a turn. By
Theorem 7.1 we can construct a proper positive rose-to-rose fold line R = R(x0,

−→s )
containing x and the combinatorial fold f1 of {E,E ′} directly after x. We may assume
that the terminal point of this rose-to-rose fold line z lies in σ0. For each ε > 0, by
Lemma 7.7, there exists a proper rational rose-to-rose fold line R′ containing a point
x′ in the same unprojectivized open simplex as x, so that x, x′ are ε-close, and so
that the fold f1 is the fold following x′. Let H be the unfolding matrix corresponding
to R′.

For each ε > 0, there exists, as in Lemma 7.4, an open neighborhood U of the
terminal point of R′ so that for each w ∈ U , there exists a proper rose-to-rose
fold line R′(y0,

−→u ), terminating at w, such that the top graphs x′, y are ε-close,
the combinatorial fold sequence in the graph-to-rose segments are the same, and the
change-of-metric matrix forR′(y0,

−→u ) is H. Since the set of PF eigenvectors is dense,
there exists an i so that the PF eigenvector vi ∈ U . Hence, there exists a rose-to-rose
fold line Rij passing through the same unprojectivized simplices as R′ and having
the same change-of-metric matrix Hij = H. Moreover, there exists a point x′′ij ∈ Rij

in the same unprojectivized top-dimensional simplex as x′ and ε-close to x′. By
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Definition 8.1, there exist infinitely many k’s so that the fold line between xk and
xk+1 is the one passing through the same unprojectivized simplices as Rij (hence
R′). In fact, these occur before arbitrarily high powers of gvi , so that they terminate
arbitrarily close to a rose with length vector vi. Let k be such a number and let Ψk

be the composition of the automorphisms f1, f2, . . . up to xk. Thus, by Lemma 7.4,
there exists a point ξ ∈ [xk−1, xk] ·Ψ−1

k in the same unprojectivized top-dimensional
simplex as x′′ij and ε-close to x′′ij. Hence, ξ is the point on the ray defined in Definition
8.1 that is 3ε-close to our original point x and the fold immediately after ξ is the one
folding the turn {E,E ′}. �

Theorem A. For each r ≥ 2, there exists a geodesic fold ray in the reduced Outer
Space RX r whose projection to RX r/Out(Fr) is dense.

Proof. This is an immediate corollary of Theorem B. �

9. Appendix: Limits of fold geodesics.

In many cases, as in the case of the geodesic that we construct in this paper, a
concatenation of fold segments {γi : [i, i + 1] → X̂r}∞i=1 that glue together to a ray

γ : [0,∞) → X̂r, projecting under q to a Lipschitz geodesic, satisfies the properties
of a semi-flow line below.

Definition 9.1 (Semi-flow line). ([HM11, pg. 3], definition of a “fold line”) A semi-
flow line in unprojectivized Outer Space is a continuous, injective, proper function
R → X̂r defined by a continuous 1-parameter family of marked graphs t → Gt for
which there exists a family of homotopy equivalences hts : Gs → Gt defined for
s ≤ t ∈ R, each of which preserves marking, such that the following hold:

(1) Train track property: For all s ≤ t ∈ R, the restriction of hts to the interior
of each edge of Gs is locally an isometric embedding.

(2) Semiflow property: hut ◦ hts = hus for all s ≤ t ≤ u ∈ R and hss : Gs → Gs is
the identity for all s ∈ R.

Handel and Mosher ([HM11, §7.3]) prove each flow line converges (in the axes or
Gromov-Haussdorff topologies) to a point T∞ in Xr, the direct limit of the system.

Theorem 9.2. For any flow line, its direct limit T∞ is an Fr-tree that has trivial arc
stabilizers. Hence, in particular, not every point in the boundary is the direct limit
of a flow line.

Proof. We lift the maps to a direct system on trees {fts : Ts → Tt} that are Fr-
equivariant, restrict to isometric embeddings on edges, and form a direct system. In
[HM11, §7.3] it is shown that the maps f∞s : Ts → T∞ that are given by the direct
limit construction are also edge-isometries and Fr-equivariant.
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Assume x, y ∈ T∞ are such that γ ∈ Stab[x, y]. Without generality loss, assume
d(x, y) = 1 in T∞. We will show this leads to a contradiction. For each t ∈ [a,∞), we
denote by At(γ) the axis of γ in Tt. Letting ε = 1

5
, there exists some s ≥ a so that:

f∞s(xs) = x, f∞s(ys) = y, and d(xs, γxs) < ε, d(ys, γys) < ε, and |d(xs, ys)−1| < ε.
Since fts is distance non-increasing for all t, s, we have for all t ≥ s that

1 ≤ d(fts(xs), fts(ys)) ≤ 1 + ε.

Note that for all fts(xs) and fts(ys), they are at most a distance of ε
2

from At(γ).
Otherwise, for example, d(fts(xs), γfts(xs)) ≥ ε, which contradicts the fact that the
maps are distance non-increasing.

Thus, for each t ≥ s there exist zt, wt such that [zt, wt] ⊂ At(γ)∩ [fts(xs)), fts(ys))],
and d(zt, fts(xs)) <

ε
2

and d(wt, fts(ys)) <
ε
2
. Hence, d(zt, wt) ≥ 1− ε.

Let N be the number of f∞s-illegal turns in the path [xs, ys]. Thus, the number
of f∞t-illegal turns in the path [fts(xs)), fts(ys))] is ≤ N . Hence, the number of f∞t-
illegal turns in the path [zt, wt] is ≤ N . Let us denote the points of [zt, wt] where the
illegal turns occur by a1

t , . . . a
N
t , and we also denote a0

t := zt and aN+1
t := wt.

However, for sufficiently large t, the translation length of γ in Tt is < 1−ε
3(N+1)

.

Note that since [zt, wt] is on A(γ), we have that [zt, wt] ∩ γ[zt, wt] is equal to [zt, wt]
with (possibly) segments of lengths ≤ 1−ε

3(N+1)
cut from either end. Since there are

≤ N+1 segments (ait, a
i+1
t ) in [zt, wt], one of them has length ≥ 1−ε

N+1
. Thus, for some

i = 0, 1, . . . , N , we have γ(ait) ∈ (ait, a
i+1
t ) or γ−1(ait) ∈ (ai−1

t , ait), which are both
legal segments. Without generality loss suppose the former. Thus, the turn taken by
[zt, wt] at ait is illegal, but the turn taken by γ[zt, wt] at γ(ait) is legal, since it equals
the turn taken by [zt, wt] at γ(ait). This is a contradiction to the equivariance. �
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