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1. Lim sup, Lim inf

Throughout these notes “ lim sup, lim inf ” appear. We realized, as the course went on,
that understanding and use of these elementary notions needed some beefing up, and we
do so retrospectively here, right at the top. If {aj}∞j=1 is any sequence of extended real

numbers (elements of [−∞,∞]) then lim supj→∞ aj and lim infj→∞ aj are defined. This
is in contrast with the plain old “limit,” which may or may not exist, and this flexibility
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saves a lot of fussing around. Moreover, recall that the sequence {aj}∞j=1 converges iff

lim sup
j→∞

aj ≤ lim inf
j→∞

aj

and then the common value is the limit.
There are various equivalent ways to define lim sup, lim inf .

Way 1:

(i) lim sup
j→∞

aj = lim
m→∞

sup {aj : j ≥ m}

(ii) lim inf
j→∞

aj = lim
m→∞

inf {aj : j ≥ m}
(1.1)

The existence of the limits on the right hand sides above is due to monotonicity. For
example, sup {aj : j ≥ m} ≤ sup {aj : j ≥ m + 1} .

Way 2: let us call L ∈ [−∞,∞] a “subsequential limit” of {aj}∞j=1 if there exists a

subsequence {ajl
}∞l=1 for which ajl

→ L as l →∞.

(i) lim sup
j→∞

aj = largest subsequentional limit of {aj}∞j=1 ,

(ii) lim inf
j→∞

aj = smallest subsequentional limit of {aj}∞j=1 .
(1.2)

You should convince yourself that there are largest and smallest subsequential limits; one
way to do this is to verify that (1.1) and (1.2) define the same notions.

There are other definitions. For example, restricting ourselves to lim sup, lim supj→∞ aj =
L ∈ (−∞,∞] iff L is the largest element of (−∞,∞] such that for every M < L

{j : M ≤ aj} is infinite.

This way requires modification to handle L = −∞, but we won’t use it anyway.
Given two sequences {aj}∞j=1 , {bj}∞j=1 , we ask about the validity of the statements

(a) lim inf
j→∞

(aj + bj) ≤ lim inf
j→∞

aj + lim inf
j→∞

bj,

(b) lim inf
j→∞

aj + lim inf
j→∞

bj ≤ lim inf
j→∞

(aj + bj),

(c) lim sup
j→∞

(aj + bj) ≤ lim sup
j→∞

aj + lim sup
j→∞

bj,

(d) lim sup
j→∞

aj + lim sup
j→∞

bj ≤ lim inf
j→∞

(aj + bj),

(e) lim inf
j→∞

(aj + bj) ≤ lim inf
j→∞

aj + lim sup
j→∞

bj,

(f) lim inf
j→∞

(−aj) = − lim sup
j→∞

aj,

(g) lim inf
j→∞

(aj − bj) ≤ lim inf
j→∞

aj − lim sup
j→∞

bj,

(1.3)

as well as others like these.
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This kind of issue, when you meet it, is generally not something you resolve while
reading material in which it appears via “remembering” what is true and what is not.
You figure it out on the spot, based on some experience. I generally use Way 2 myself
to settle the issue in real time. For example, for (a) I think of a subsequence of the
aj + bj which approaches the lim inf on the left - is there any reason the aj and bj should
separately get small enough along this subsequence to bound them by the lim inf’s on the
right? Nope, and counterexamples are easy to come by. On the other hand, re (b), if
ajl

+bjl
→ lim infj→∞(aj +bj), then we may pass to a further subsequence along which the

ajl
AND the bjl

converge, making (b) obvious. Well, there is a problem here in that none
of the statements make sense if the expression ∞−∞ appears anywhere, so we’d have
to rule that out. That is, (b) is true if the aj + bj and the left hand side do not involve
∞−∞. For another example, consider (e). I would choose a subsequence of the aj’s so
that ajl

→ lim infj→∞ aj, and then a further subsequence along which bjl
converges. Than

ajl
+ bjl

converges to something not more than the right hand side of (e) and not less than
the left-hand side of (e) (again, we need to rule out ∞−∞).

Questions for you: decide which of (a)-(f) are always true, and which are true if one of
the sequences {aj} , {bj} actually converges (in all cases, if there are no ∞−∞’s).

2. Conventions and Notations

• If X is a set, then P(X) is the set of subsets of X.
• An outer measure on a set X is a monotone and countably subadditive mapping

µ∗ : P(X) → [0,∞] which satisfies µ∗(∅) = 0. “Monotone” means that µ∗(A) ≤
µ∗(B) whenever A ⊂ B. Note that we always use the “countable” versions of
things! Also note that µ∗ can take the value +∞.

• A σ-algebra M of subsets of a set X is a subset of P(X) with X ∈ M, which is
closed under complements, intersections and countable unions.

• A measurable space is a pair (X,M) where M is a σ-algebra of subsets of X.
• If X is a metric space, (X,B) is the measurable space in which B is the σ-algebra

of Borel subsets of X.
• If X is a set, E ⊂ X, and S ⊂ P(X), then S is a cover of E if E ⊂

⋃
S∈S S.

• A measure µ on a measurable space (X,M) is a countably additive function µ :
M→ [0,∞] which satisfies µ(∅) = 0. Note that µ may take the value ∞.

• A measure space is a triple (X,M, µ) where (X,M) is a measurable space and µ
is a measure on (X,M).

• “SS” means “Stein and Sakarchi,” KF means Kolmogorov and Fomin, “EG” means
“Evans and Gariepy,” authors of “Measure Theory and Fine Properties of Func-
tions” (available on reserve in the library), and Rudin indicates the book “Real
and Complex Analysis” by Rudin (also on reserve).

• Z := W means Z is defined to be W.
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3. Some Review, Some New

3.1. Construction of Outer Measures and Measures. Most of the material below
is found in SS Chapter 6, with a different twist, here or there.

Let X be a set and S ⊂ P(X) such that X is covered by a countable subset of S and
∅ ∈ S. Let ν : S → [0,∞]. Think of A ∈ S as a basic set whose “measure” ν(A) we know,
eg, S could be the set of cubes in IRn. Assume that

ν(∅) = 0.(3.1)

Then for any A ⊂ X we define

(3.2) ν∗(A) := inf

{
∞∑

k=1

ν(Sk) : Sk ∈ S, A ⊂ ∪∞k=1Sk

}
.

By taking all but a finite number of the Sk above to be the empty set, we see that the
infimum above includes the case of finite covers of A as well as countable covers. It is
quite possible that ν∗(A) = ∞ for some A’s.

Proposition 3.1. Under the above assumptions, ν∗ is an outer measure on X.

Proof. All the properties of an outer measure are obvious, except, perhaps, the subad-
ditivity. Let {Aj} ⊂ P(X). For ε > 0 and any j = 1, 2, . . . , there is, by definition, a
sequence of sets Sj,k ∈ S such that

Aj ⊂ ∪∞k=1Sj,k and ν∗ (Aj) +
ε

2j
≥

∞∑
k=1

ν(Sj,k).

Using this, we have

∪∞j=1Aj ⊂ ∪∞j,k=1Sj,k =⇒ ν∗
(
∪∞j=1Aj

)
≤

∞∑
j,k=1

ν (Sj,k) =
∞∑

j=1

(
∞∑

k=1

ν (Sj,k)

)

≤
∞∑

j=1

(
ν∗(Aj) +

ε

2j

)
=

∞∑
j=1

ν∗(Aj) + ε.

�

Remark 3.2. We call ν∗ the “outer measure” generated or defined by ν.

KF (Kolmogorov and Fomin) and SS (Stein and Shakarchi) define Lebesgue outer mea-
sure as the outer measure defined by taking ν to be volume defined on the set of all cubes
(SS) or rectangles (KF); these yield the same outer measure (SS Example 4, pg 12). KF
focuses on the algebraic structure of a “semi-ring,” and therefore cannot restrict attention
to cubes. KF also rules out ν∗(X) = ∞, an important case.

We now think of starting with an “outer measure” ν∗, no matter where it came from.
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If ν∗(X) < ∞, one familiar (KF top of pg 32) way to try to define “measurable sets”
associated with ν∗ is via the equality of “inner” and “outer” measure, where inner-measure
ν∗ might be given by

(3.3) ν∗(E) = ν∗(X)− ν∗(X \ E).

Then measurability of E ⊂ X in the sense ν∗(E) = ν∗(E) just says, if ν∗(X) < ∞,

(3.4) ν∗(X) = ν∗(E) + ν∗(X \ E) = ν∗(X ∩ E) + ν∗(X \ E).

This is Definition 3’, pg 32, of KF with X in place of E and E in place of A (as is consistent
with the notation of SS). However, (3.3) is not defined when ν∗(X) = ν∗(X \ E) = ∞,
and when ν∗(X) = ∞, (3.4) is always satisfied.

Carathéodory discovered that a simple change makes everything sing. Instead of re-
quiring (3.4) only for X, we ask that it hold for every subset A of X. In the case in which
X is the square and ν∗ is Lebesgue outer measure, there is no difference (KF Exercise 4,
pg 15, and SS Exercise 3, pg 312).

Theorem 3.3. Let ν∗ be an outer measure on X. Then the set M of subsets of E of X
which satisfy

(3.5) ν∗(A) = ν∗(A ∩ E) + ν∗(A \ E) for all subsets A of X

is a σ-algebra and ν∗ restricted to M is a countably additive measure.

Definition 3.4. We will call the sets satisfying (3.5) the ν∗ measurable sets.

The short, sweet proof is found in SS, pg 265. It is too much like other things you have
done and are bored with to give in class.

Since all the business about semi-rings and such has disappeared, what was it good for?
Well, for one thing, that discussion contained proofs that a “measure” (measures of any
kind are always countably additive for us) originally given on a semi-ring extended to the
sigma-ring generated by the original ring, and hence to all Borel sets (in the Lebesgue
context). Let us think about this relative to Theorem 3.3.

Suppose ν is in fact a measure on a ring S = R ⊂ P(X). It follows from KF Theorem
2, pg 29 (0r SS Lemma 6.1.4) that for E ∈ R we have ν∗(E) ≥ ν(E). Since ν∗(E) ≤ ν(E),
(E is a cover of E), we have

(3.6) ν∗(E) = ν(E) for E ∈ R.

Moreover, if A ∈ P(X), E ∈ R, and {Aj} ⊂ R is a cover of A such that ν∗(A) + ε ≥∑∞
j=1 ν(Aj), we have

ν∗(A) + ε ≥
∞∑

j=1

ν(Aj) =
∞∑

j=1

(ν(Aj ∩ E) + ν(Aj \ E)))

≥ ν∗(A ∩ E) + ν∗(A \ E).
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The inequality ν∗(A) ≤ ν∗(A ∩ E) + ν∗(A \ E) always holds, so we conclude that R
is contained in the set of ν∗-measurable sets. From this and (3.6), we have that the
restriction of ν∗ to the ν∗-measurable sets is an extension of ν on R.

The following theorem relates measures given by the Carathéodory theorem to topology,
if there is topology to consider.

Theorem 3.5. Let X, d be a metric space and ν∗ be an outer measure on the subsets of
X. Further, assume that ν∗ is a “metric outer measure,” that is, if A, B ⊂ X and

(3.7) dist (A, B) := inf {d(x, y) : x ∈ A, y ∈ B} > 0,

then

(3.8) ν∗(A ∪B) = ν∗(A) + ν∗(B).

Then the Borel sets of X are ν∗ measurable.

See SS Thm 1.2 pg 267. Lebesgue outer measure is a metric outer measure.

3.2. Hausdorff Measures. Let X, d be a metric space. If A ⊂ X, set

(3.9) diam(A) = sup {d(x, y) : x, y ∈ A} ;

diam(A) is the “diameter of A.” We put diam(∅) = 0. Let Dδ be the set of subsets of X
whose diameter is at most δ > 0. Assume that there is a countable subset of Dδ which
covers X. Let α ≥ 0 and take S = Dδ and ν(A) = diam(A)α in Proposition 3.1. The
result is an outer measure Hδ

α. Since Dδ includes fewer sets as δ gets smaller, δ → Hδ
α

increases as δ decreases and the limit

(3.10) H∗
α(A) = lim

δ↓0
Hδ

α(A)

exists (in [0,∞]) for each A ⊂ X. It follows from the next result that H∗
α is an outer

measure (take ν∗j = H1/j
α .)

Proposition 3.6. Let ν∗j , j = 1, 2, 3, . . . , be an increasing sequence of outer measures on
a set X; that is, ν∗j (A) ≤ ν∗j+1(A), for A ⊂ X. Then ν∗(A) := limj→∞ ν∗j (A) defines an
outer measure ν∗ on X.

Proof. It is immediate that ν∗ is monotone and ν∗(∅) = 0. Next suppose that Sk, k =
1, 2, . . . , is a countable cover of A ⊂ X. Then ν∗j ≤ ν∗ implies

ν∗j (A) ≤
∞∑

k=1

ν∗j (Sk) ≤
∞∑

k=1

ν∗(Sk).

Letting j →∞ on the left yields the subadditivity. �

Proposition 3.7. The outer measure H∗
α(A) given by (3.10) is a metric outer measure.
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Proof. Let A, B ⊂ X and dist (A, B) = γ > 0. Let 0 < δ < γ. Then any set S ∈ Dδ

cannot meet both A and B, so any cover of A∪B by sets in Dδ can be reduced to a cover
of B and a disjoint cover of A by throwing out the sets of the cover which do not meet
A ∪B. It follows that

Hδ
α(A ∪B) ≥ Hδ

α(A) +Hδ
α(B),

and then, letting δ ↓ 0,
H∗

α(A ∪B) ≥ H∗
α(A) +H∗

α(B).

The opposite inequality follows from subadditivity. �
It follows from Theorem (3.5) that H∗

α restricted to the Borel sets B of X is a measure
on (X,B).

Theorem 3.8. Suppose A ∈ P(X) and 0 ≤ α < β. If H∗
β(A) > 0, then H∗

α(A) = ∞.

Proof. The assumption H∗
β(A) > 0 and the definitions imply that there are positive

numbers δ0 < 1 and κ such that∑
j=1

diam(Aj)
β ≥ κ whenever {Aj} ⊂ Dδ0 is a cover of A.

But then∑
j=1

diam(Aj)
α =

∑
j=1

diam(Aj)
βdiam(Aj)

α−β ≥
∑
j=1

diam(Aj)
βδα−β ≥ κ

δβ−α

whenever {Aj} ⊂ Dδ is a cover of A and 0 < δ < δ0. The result follows. �

Corollary 3.9. Let A ∈ P(X) and α̂ = sup {α ≥ 0 : H∗
α(A) = ∞} . Then

(3.11) H∗
α(A) =

{∞ for 0 ≤ α < α̂,

0 for α̂ < α.

Proof. Suppose 0 ≤ α < α̂. By the definition of α̂, there is an α′, α < α′ ≤ α̂, such
that H∗

α′(A) = ∞. H∗
α(A) = ∞ now follows from Theorem 3.8. Similarly, if α̂ < α, then

H∗
α(A) > 0 and Theorem 3.8 contradict the definition of α̂. Hence H∗

α(A) = 0. �

Definition 3.10. Let X, d be a metric space and A ∈ P(X). Then the Hausdorff dimen-
sion of A is the number α̂ of Corollary 3.9.

Corollary 3.11. Let X = IRn with the Euclidean metric. If 0 ≤ α < n, then (IRn,B,H∗
α|B)

is not σ-finite.

3.3. Integration Over Sets of Infinite Measure. If (X,M, µ) is a measure space
and µ(X) = ∞, what definition of

(3.12)

∫
X

f dµ

shall we take? The use of “uniform convergence” in defining (3.12) as in KF goes out the
window if µ(X) = ∞. Eg, with Lebesgue measure on the line, the functions fk(x) = 1

k
χ[0,k]

converge uniformly to 0, but
∫

R
fk dx = 1 for all k.



8

We assume that f : X → [0,∞) is measurable. In SS (pgs 27, 274), a simple function
g is a finite sum of the form

(3.13) g(x) =
N∑

j=1

akχEk
(x)

where the ak ∈ IR and the Ek are measurable sets of finite measure. Clearly we want∫
X

g dµ =
∑N

j=1 akµ(Ek). Then the integral (3.12) is defined by SS to be

(3.14)

∫
X

f dµ = sup

{∫
X

g dµ : g simple, g ≤ f

}
.

Now one possibility is thatM = {∅, X} and µ(X) = ∞. Then the only simple functions in
the SS sense are of the form aχ{∅}! Moreover, the only measurable functions are constants,
and the definition (3.14) implies

(3.15)

∫
X

1 dµ = 0 since χ{∅}(x) = 0 ∀x,

while clearly we would prefer
∫

X
1 dµ = µ(X) = ∞.

Thus one needs either a technical condition on (X,M, µ) to guarantee against this sort
of anomally or to modify the definition (3.14). SS uses a condition called “σ-finite” which
reads as follows:

Definition 3.12. The measure space (X,M, µ) is σ-finite if there exists an increasing
sequence of measurable sets Fk of finite measure such that X = ∪∞k=1Fk.

For example, (IRn,B,Ln) is σ-finite, where B is the Borel σ-algebra (we could use the
Lebesgue σ-algebra as well, but don’t have enough symbols at the moment) and Ln is
Lebesgue measure.

We have met important measure spaces which are not σ-finite, namely (IRn,B, H∗
α

∣∣
B)

for 0 ≤ α < n. The quickest and slickest presentation of integration in the general case is
given in Rudin (early pages). Rudin notes “Throughout integration theory, one inevitably
encounters ∞.” For example, the Lebesgue measure of IRn is ∞, and lim supj→∞ fj might
take ∞ as a value even if the individual fj do not. So let’s talk a bit about ±∞.

The fundamental thing is to define the integral (3.12), or, a bit more generally,

(3.16)

∫
E

f dµ

when E is a measurable set and f : X → [0,∞] is measurable. “measurable” will always
mean that f−1(O) is measurable when O is an open subset of the range of f. The open
sets O of [0,∞] are those for which O ∩ [0,∞) is open in [0,∞) and, if ∞ ∈ O, then it
must contain a basic neighborhood of ∞, which is a set of the form (a,∞].

Suppose f = aχE for some measurable E and a ∈ [0,∞]. Clearly we want∫
X

f dµ = aµ(E),
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and we need to interpret this in cases in which a = ∞ and/or µ(E) = ∞. There is no
problem with∞(∞) = ∞, we all agree with that, and there is no problem with a(∞) = ∞
or ∞µ(E) = ∞ if a > 0 and µ(E) > 0, we all agree with that. What about 0(∞) and
∞(0)? Since we all agree that

∫
R

0 dx = 0, we should take 0(∞) = 0. Assigning the right
value to

∫
{0}∞ dx is less obvious, but what turns out to work is ∞(0) = 0, which we need

to make our “multiplication” commute anyway. In another view, if we want to evaluate
∞χE at a point x /∈ E, we get ∞(0), and clearly want this to be 0. Algebra in [−∞,∞]
is obvious once we made the decision that 0(±∞) = ±∞0 = 0, except we don’t know
what to do with ∞−∞ yet - and we never will. We rule out dealing with ∞−∞, it
remains undefined.

For us, a simple function s is any function with a representation as finite sum

(3.17) s =
N∑

j=1

ajχEj

where the Ej are measurable sets, aj ∈ [−∞,∞] and evaluating s(x) does not yield
expressions of the form ∞−∞. Equivalently, s : X → [−∞,∞] is measurable and s(X)
is a finite set - then we have (3.17) with the aj the distinct values of s and the pairwise
disjoint sets Ej = s−1({aj}). For such a simple function s, let us assume the aj are the
distinct values of s, and put

(3.18)

∫
E

s dµ =
N∑

j=1

ajµ(Ej ∩ E)

provided that not both ∞ and −∞ appear in the sum with our algebraic conventions.
When this holds, we say that “

∫
E

s dµ is defined.”
Rudin’s definition of

∫
E

f dµ for f : X → [0,∞] and E ∈M amounts to

(3.19)

∫
E

f dµ = sup

{∫
E

s dµ : s is simple and 0 ≤ s ≤ f

}
.

Let Us Agree: All functions are hereafter assumed to be measurable in what-
ever context they appear, unless otherwise said. Similarly, unless otherwise
said, all sets which appear are to be measurable.

Actually, Rudin requires s above to have finite values. A few clunky exercises to warm
you up to “∞” and (3.19) are given in (4), (5), (6).

For general, not necessarily nonnegative, f Rudin defines

(3.20)

∫
X

f dµ =

∫
X

f+ dµ−
∫

X

f− dµ

where f+ = max(f, 0) and f− = −min(f, 0) are the positive and negative parts of f,
PROVIDED that at least one of

∫
X

f± dµ is finite. Thus
∫

X
f dµ might be +∞ or −∞.
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We also want to integrate complex valued functions. This is done as follows: If u, v :
X → IR, and

f(x) = u(x) + iv(x)

then we define

(3.21)

∫
E

f dµ =

∫
E

u dµ + i

∫
E

v dµ

provided
∫

E
|u| dµ and

∫
E
|v| dµ are both finite. Note that max(|u|, |v|) ≤ |f | ≤ |u| + |v|

implies ∫
X

|u| dµ &

∫
X

|v| dµ < ∞⇐⇒
∫

X

|f | dµ < ∞.

Here is a sequence of results concerning the definition (3.19), in the order Rudin establishes
them. In the background is a measure space (X,M, µ).

• Let f : X → [0,∞]. Then there is a sequence of simple functions sj : X → [0,∞)
such that 0 ≤ s1 ≤ s2, . . . and f(x) = limj→∞ sj(x). (pg 15)

• If 0 ≤ f ≤ g, then
∫

E
f dµ ≤

∫
E

g dµ. (pg 19)
• If A ⊂ B and f ≥ 0, then

∫
A

f dµ ≤
∫

B
f dµ. (pg 19)

• If f ≥ 0 and 0 ≤ c < ∞, then c
∫

E
f dµ =

∫
E

cf dµ. (pg 20)
• Let {fk} be a nondecreasing sequence of nonnegative functions on X such that

fk(x) → f(x) for x ∈ X. Then
∫

X
fk dµ →

∫
X

f dµ (Lebegue’s Monotone Conver-
gence Theorem). (pg 21)

• Let fk : X → [0,∞], k = 1, 2, . . . , and

f(x) =
∞∑

k=1

fk(x).

Then ∫
X

f dµ =
∞∑

k=1

∫
X

fk dµ.

(Pg 22)
• If fk : X → [0,∞] for k = 1, 2, . . . , then∫

X

(
lim inf

k→∞
fk

)
dµ ≤ lim inf

k→∞

∫
X

fk dµ

(Fatou’s Lemma). (pg 23)
• If f, g : X → [0,∞], then

φ(E) :=

∫
E

f dµ (E ∈M)

defines a measure φ on M and∫
X

g dφ =

∫
X

gf dµ.
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(pg 23)
• Let f : X → C and

∫
X
|f | dµ < ∞. Then

|
∫

X

f dµ| ≤
∫

X

|f | dµ.

(Page 26)
• (Lebesgue’s Dominated Convergence Theorem) Let fj, f : X → C, gj, g : X →

[0,∞), |fj| ≤ gj a.e., gj → g a.e. and∫
X

gj dµ →
∫

X

g dµ < ∞.

Then
∫

X
|f − fj| dµ → 0. This is a small variant of Rudin pg 26, and it has the

same proof. Applying Fatou’s Lemma to the sequence gj + g − |f − fj|, which is
nonnegative, yields∫

X

2g dµ =

∫
X

lim inf
j→∞

(gj + g − |f − fj|) dµ

≤ lim inf
j→∞

(∫
X

(gj + g) dµ−
∫

X

(|f − fj|
)

dµ

=

∫
X

2g dµ− lim sup
j→∞

∫
X

|f − fj| dµ,

which implies lim supj→∞
∫

X
|f − fj| dµ = 0.

4. The Lp(µ) Spaces

Let (X,M, µ) be a measure space. If f : X → [−∞,∞], then
∫

X
f dµ is defined ((3.20))

if one of
∫

X
f± dµ is finite. If they are both finite, then

∫
X

f dµ ∈ IR and
∫

X
|f | dµ < ∞.

The “space” L1(µ) is the set of all extended real valued functions with this property:

(4.1) L1(µ) =

{
f : X → [−∞,∞] :

∫
X

|f | dµ < ∞
}

.

Recall that, in the background, we are assuming the modifier “measurable” without
writing it; f above is to be measurable. If f ∈ L1(µ), then the set {x : f(x) = ±∞}
has measure 0 and the function f̃ which agrees with f on {f 6= 0} and for which f̃(x) =
0 if f(x) = ±∞ agrees with f almost everywhere. Moreover, for every set E ∈ M,∫

E
f̃ dµ =

∫
E

f dµ. Sets of measure 0 don’t matter for integration theory (partly because
0∞ = ∞0 = 0). We assume you know this. In particular, if N ∈ M is a “null set” (ie,

µ(N) = 0), and f : X \N → [0,∞], the integrals
∫

E
f dµ can be defined as

∫
E

f̃ dµ where

f̃ is given any value on N. If (X,M, µ) is complete, ie, all subsets of null sets belong to

M, then f̃ can be defined on N in any way at all.
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The set L1(µ) just defined is the “real” version. Similarly, we can consider complex
valued functions, and the spaces Lp(µ), 1 ≤ p < ∞, real or complex, are defined by

(4.2) Lp(µ) :=

{
f :

∫
X

|f |p dµ < ∞
}

.

In general, we put

(4.3) ‖f‖Lp(µ) :=

(∫
X

|f |p dµ

)1/p

,

whether or not ‖f‖Lp(µ) is finite ((∞)1/p = ∞). We’ll see why the definition (4.2) is a
smart idea later. Thus

Lp(µ) =
{
f : ‖f‖Lp(µ) < ∞

}
.

The space L∞(µ) is not defined by integration. The quantity (4.3) is replaced by

(4.4) ‖f‖L∞(µ) = inf {0 ≤ M : |f | ≤ M a.e} .

Lemma 4.1. |f | ≤ ‖f‖L∞(µ) a.e.

Proof. By definition, |f | ≤ ‖f‖L∞(µ) + 1
k

except on a null set Nk. But then |f | ≤ ‖f‖L∞(µ)

except on the null set ∪∞k=1Nk. �

Theorem 4.2. For 1 ≤ p ≤ ∞, the function dp : Lp(µ)× Lp(µ) → [0,∞) given by

dp(f, g) := ‖f − g‖Lp(µ)

satisfies dp(f, g) = dp(g, f) (symmetry) and the triangle inequality

(4.5) dp(f, g) ≤ dp(f, h) + dp(h, g) (f, g, h ∈ Lp(µ)).

Moreover, if {fk} is a sequence in Lp(µ) and

(4.6) lim
j,k→∞

dp(fk, fj) = 0,

then there exists f ∈ Lp(µ) such that

(4.7) lim
k→∞

dp(fk, f) = 0.

We will come back to the proof of this theorem later. Right now we don’t even know
that dp(f, g) < ∞, but we will shortly see this is so.

The function dp has all the properties of a metric, except one. It is possible that
dp(f, g) = 0 even if f 6= g. However, dp(f, g) = 0 only if {f 6= g} is a null set. Suppose X
is any set and d : X ×X → [0,∞) is symmetric and satisfies the triangle inequality, but
it is not necessarily true that d(x, y) = 0 only if x = y. Let us call such a thing a “pseudo
metric.” Then we can form a metric space in the following way: let x ∼ y iff d(x, y) = 0.
Then “∼” is an equivalence relation and the space

(4.8) X/ ∼= {[x] : x ∈ X} where [x] = {y ∈ X : x ∼ y}
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can be equipped with the metric d̃ given by

d̃([x], [y]) = d(x, y).

This metric space is complete iff

lim
j,k→∞

d(xj, xk) = 0 =⇒ ∃x ∈ X 3 lim
j→∞

d(xj, x) = 0.

Why do we call Lp(µ) a “space?” First, it is clear that if c is a scalar, then

‖cf‖Lp(µ) = |c|‖f‖Lp(µ).

so f ∈ Lp(µ) =⇒ cf ∈ Lp(µ). Next, if 1 ≤ p < ∞,

(4.9) |f + g|p ≤ (2 max(|f |, |g|))p ≤ 2p(|f |p + |g|p),
so

f, g ∈ Lp(µ) =⇒ f + g ∈ Lp(µ).

Altogether then, Lp(µ) is a vector space if 1 < p < ∞. It is also a vector space if p = ∞,
because |f + g| ≤ |f |+ |g|.

The inequality (4.9) is crude. The sharp result is Minkowski’s Inequality, which states

(4.10) ‖f + g‖Lp(µ) ≤ ‖f‖Lp(µ) + ‖g‖Lp(µ)

for 1 ≤ p ≤ ∞. The cases p = 1,∞ are obvious. The cases 1 < p < ∞ follow from the
Hölder inequality, which states that if 1 < p < ∞ and q is defined by

(4.11)
1

p
+

1

q
= 1, equivalently, q =

p

p− 1
,

then

(4.12) f ∈ Lp(µ), g ∈ Lq(µ) =⇒ fg ∈ L1(µ) &

∫
X

|fg| dµ ≤ ‖f‖Lp(µ)‖g‖Lq(µ).

The number q is called the Hölder conjugate of p and one writes q = p′. The term
“conjugate” has to do with the fact that (p′)′ = p. One sets 1′ = ∞ and ∞′ = 1, which is
consistent with (4.9).

In the case p = 1, q = ∞, (4.12) is immediate from

|fg| ≤ |f |‖g‖L∞(µ) a.e.

To prove (4.12) for 1 < p < ∞, we recall that if a, b ≥ 0, then

(4.13) ab ≤ ap

p
+

bq

q
.

This is clear if ab = 0. If a, b > 0, divide both sides by ap and note that (ab/ap)q = bq/ap

because of (4.11), to obtain the equivalent form

ξ − ξq

q
≤ 1

p
(ξ = b/ap−1 ≥ 0).
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The maximum of ξ − ξq/q (which is positive for small ξ > 0 and negative for large ξ, so
it has a max) occurs when the derivative vanishes, or 1 = ξq−1, or ξ = 1, where equality
holds above. Since equality holds only at ξ = 1, the inequality (4.13) is strict except when
bq = ap. This Math 3A proof of (4.13) is the one I can find whenever I want it, but it isn’t
elegant. See Rudin pg 64 eqn (5) for a slick proof. Writing

ab =
a

r
(rb) for r > 0,

we also have

(4.14) ab ≤ ap

rpp
+

rqbq

q
.

To prove (4.13), we may assume that f, g ≥ 0. Using a = f(x), b = g(x) and integrating
yields ∫

X

fg dµ ≤
‖f‖p

Lp(µ)

rpp
+
‖g‖q

Lq(µ)r
q

q
.

We may assume ‖f‖Lp(µ) > 0, ‖g‖Lq(µ) > 0 (otw, f = 0 or g = 0 ae and then fg = 0 ae).
Minimizing the right hand side over r ≥ 0, we find, using p + q = pq,

r =
‖f‖1/q

Lp(µ)

‖g‖1/p
Lq(µ)

,

and, for this value of r,

‖f‖p
Lp(µ)

rp
= ‖g‖q

Lq(µ)r
q = ‖f‖Lp(µ)‖g‖Lq(µ),

whence the result.
Since |f + g| ≤ |f | + |g|, to prove the Minkowski inequality (4.10), we may assume

f, g ≥ 0. The Minkowski inequality then follows from∫
X

|f + g|p dµ =

∫
X

(f + g)(f + g)p−1 dµ

=

∫
X

f(f + g)p−1 dµ +

∫
X

g(f + g)p−1 dµ

≤ ‖f‖Lp(µ)‖(f + g)p−1‖Lq(µ) + ‖g‖Lp(µ)‖(f + g)p−1‖Lq(µ)

and (f + g)(p−1)q = (f + g)p. Thus the above amounts to

‖f + g‖p
Lp(µ) ≤ (‖f‖Lp(µ) + ‖g‖Lp(µ))‖f + g‖p/q

Lp(µ).

Since p/q = p− 1, we are done.
Proof of Theorem 4.2. The (pseudo) metric dp was defined by dp(f, g) = ‖f − g‖Lp(µ). On
the other hand, the Minkowski inequality tells us that

‖f − g‖Lp(µ) = ‖f − h + (h− g)‖Lp(µ) ≤ ‖f − h‖Lp(µ) + ‖h− g‖Lp(µ) = dp(f, h) + dp(h, g),

which is the triangle inequality for dp.
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In general, a (pseudo) norm ‖ ‖ on a vector space V is a mapping

‖ ‖ : V → [0,∞)

such that

‖0‖ = 0,

‖x + y‖ ≤ ‖x‖+ ‖y‖ (x, y ∈ V )

‖cx‖ = |c|‖x‖ (c a scalar, x ∈ V ).

(4.15)

The “pseudo” refers to the possibility that ‖x‖ = 0 even if x is not the zero vector 0 of V.
If also ‖x‖ = 0 =⇒ x = 0, then ‖ ‖ is a norm on V and (V, ‖ ‖) is a normed vector space.
What we have just seen is that if ‖ ‖ is a pseudo norm on V, then d(x, y) = ‖x− y‖ is a
pseudo metric on V. Then x ∼ y iff ‖x − y‖ = 0 is an equivalence relation on V/ ∼ (see
Exercise 7) and V/ ∼ is a vector space with the addition [x] + [y] = [x + y]. Moreover,
‖[x]‖∼ = ‖x‖ is a norm on V/ ∼ .

In sum, Lp(µ) is a normed vector space, provided one regards its elements as the “cosets”

[f ] = {g : X \N → IR : N is a null set and f = g a.e.} .

where f ∈ Lp(µ). One does this, and then forgets about it, and acts as if the elements of
Lp(µ) are functions, without further pedantry.

We turn to the issue of completeness. Let us recall “convergence in measure.” Consider
a sequence of functions {fj} and another function f. One says that fj → f in measure if

(4.16) ∀ε > 0 lim
j→∞

µ ({x : |fj(x)− f(x)| > ε}) = 0

and that {fj} is Cauchy in measure if

(4.17) ∀ε > 0 lim
j,k→∞

µ ({x : |fj(x)− fk(x)| > ε}) = 0.

Lemma 4.3. Let {fj} be Cauchy in measure. Then there exists a function f and a
subsequence {fjl

} of {fj} such that fjl
→ f a.e.

Proof. Choose Nm so that µ
({

x : |fj(x)− fk(x)| > 1
2m

})
< 1

2m for j, k > Nm and then a
sequence of integers jm such that jm < jm+1 and jm > Nm. Then

µ

({
x : |fjl+1

(x)− fjl
(x)| > 1

2m

})
<

1

2m
for l ≥ m.

Thus

|fjl+r
(x)− fjl

(x)| ≤
r∑

i=1

|fjl+i
(x)− fjl+i−1

(x)| ≤
r∑

i=1

1

2l+i−1
≤ 1

2l−1

except on
r⋃

i=1

{
x : |fjl+i

(x)− fjl+i−1
(x)| > 1

2l+i−1

}
⊂

∞⋃
i=1

{
x : |fjl+i

(x)− fjl+i−1
(x)| > 1

2l+i−1

}
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which has measure at most

µ

(
∞⋃
i=1

{
x : |fjl+i

(x)− fjl+i−1
(x)| > 1

2l+i−1

})
≤

∞∑
i=1

µ

({
x : |fjl+i

(x)− fjl+i−1
(x)| > 1

2l+i−1

})

≤
∞∑
i=1

1

2l+i−1
=

1

2l−1

Thus

(4.18) lim sup
l,r→∞

|fjl+r
(x)− fjl

(x)| = 0

unless

x ∈ El :=
∞⋃
i=1

{
x : |fjl+i

(x)− fjl+i−1
(x)| > 1

2l+i−1

}
io,

where “io” means “infinitely often,” or for infinitely many l’s. This is the same as saying

x ∈ ∪∞l=MEl for all M or x ∈ ∩∞M=1 ∪∞l=M El.

Now ∪∞l=MEl decreases as M increases and

µ (∪∞l=MEl) ≤
∞∑

l=M

µ(El) ≤
∞∑

l=M

1

2l
=

1

2M−1

so
µ (∩∞M=1 ∪∞l=M El) = lim

M→∞
µ (∪∞l=MEl) = 0.

Hence (4.18) holds except on a null set, and {fjl
} is Cauchy except on a set of measure

0. Let f(x) = liml→∞ fjl
(x). � �

How is this related to Lp(µ) convergence? Well, for any ε > 0,

εpµ({|f − g| > ε}) ≤
∫

X

|f − g|p dµ

or

µ({|f − g| > ε}) ≤
‖f − g‖p

Lp(µ)

εp
.

Hence a Cauchy sequence in Lp(µ) is also Cauchy in measure and has a subsequence which
converges a.e. Suppose

lim
j,k→∞

∫
X

|fj − fk|p dµ = 0

while fjl
(x) → f(x) a.e. as l →∞. Suppose∫

X

|fj − fk|p dµ < ε if j, k > Nε.

Then∫
X

|f − fk|p dµ =

∫
X

lim inf
l→∞

|fjl
− fk|p dµ ≤ lim inf

l→∞

∫
X

|fjl
− fk|p dµ ≤ ε if k ≥ Nε
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and therefore fk → f in Lp(µ).
We have shown that Lp(µ) is a normed vector space which is complete in the metric

induced by the norm. Such a thing is called a Banach space.
Let us note the following special cases: a function

(4.19) x : {1, 2, . . . , n} → F

or, with N = {1, 2, . . .} (the set of positive integers),

(4.20) x : N → F ,

or, Z = {. . .− 2,−1, 0, 1, 2, . . .} (the set of integers),

(4.21) x : Z → F

were F is IR or C, depending on our mood, gives a scalar x(i) for each i in the domain of
x. In all cases we will write xi rather than x(i). In this way, the set of functions like (4.19)
is identified with the set of sequences (x1, x2, . . . , xn), that is, IRn. The set of functions like
(4.20) is identified with the set of sequences {xj}∞i=1 , which we think of as the “infinite
dimensional vector” (x1, x2, . . . , ). The set of functions like (4.21) is identified with the set
of doubly infinite sequences {xj}∞i=−∞ , which we think of as the “doubly infinite vector”
(. . . , x−2, x−1, x0, x1, x2, . . . , ).

Let µc be counting measure on {1, 2, . . . , n} or N or Z. The measurable sets are all
subsets of the space. Any point in IRn (respectively, any infinite sequence or doubly
infinite sequence) is measurable and has a Lp(µc) norm.

Both all cases, we will denote Lp(µc) norm by |x|p. In the case of IRn, this is

(4.22) |x|p =

{
(|x1|p + |x2|p + · · ·+ |xn|p)1/p if 1 ≤ p < ∞
max {|x1|, |x2|, . . . , |xn|} if p = ∞.

In the case of N, this is

(4.23) |x|p =


(

∞∑
i=1

|xi|p
)1/p

if 1 ≤ p < ∞

sup {|xi| : i ∈ N} if p = ∞.

In the case of Z, this is

(4.24) |x|p =


(

∞∑
i=−∞

|xi|p
)1/p

if 1 ≤ p < ∞

sup {|xi| : i ∈ Z} if p = ∞.

Definition 4.4. The Banach space (IRn, | · |p) is denoted lpn and the Banach space con-
sisting of all sequences for which (4.23) is finite is denoted by lp and the Banach space
consisting of all doubly infinite sequences for which (4.24) is finite is denoted by lpd.
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Before we turn to more abstract things, we prove the following results (see SS Theorem
2.4 pg 71). The point is that to check some statement concerning a metric space, it can
be enough to demonstrate it’s validity on a dense subspace, and then it is nice to have
subspaces with good properties. We will see how this goes later. Right now, we verify
that certain subspaces of Lp(IRn) are dense.

Theorem 4.5. The following families of functions are dense in Lp(IRn), 1 ≤ p < ∞.

(i) Simple functions of the form
∑N

j=1 ajχEj
where the aj ∈ F and Ln(Ej) < ∞.

(ii) Step functions; that is simple functions of the form (i) in which the Ej are (n-
dimensional) rectangles.

(iii) Continuous functions of compact support.

Proof. We first take p = 1. We assume that f = u+ iv = u+−u− + i(v+− v−) is complex
valued. It suffices to approximate each of the nonnegative functions u+, u−, v+, v− by
functions of the desired form, so we may assume that f ≥ 0. For (i), let k > 0 be an
integer and define

φk(r) =


j − 1

2k
if

j − 1

2k
≤ r <

j

2k
and 1 ≤ j < 22k

2k if 2k ≤ r.

Boardwork shows that φk(r) ↑ r as k ↑ ∞. The function x 7→ φk(f(x)) is of the form
(i) and 0 ≤ φk(f(x)) ≤ f(x). By the monotone convergence theorem (or the dominated
convergence theorem)

‖f − φk(f)‖
L1(IR

n
) =

∫
IRn

(f − φk(f)) dx → 0

as k →∞.
To prove (ii), it suffices to approximate each summand in (i) by a step function as in

(ii). Let us approximate a1χE1 , assuming, as we may, that a1 6= 0. Since Ln(E1) < ∞
(and E1 is measurable), for κ > 0 there is a collection of almost (which means “up to
boundaries”) disjoint rectangles R1, R2, . . . , Rm such that

Ln
(
E1∆ ∪m

j=1 Rj

)
< κ.

(See proof of SS, Theorem 4.2, Chapter 2, as necessary.) Then∫
IRn

|a1χE1 − a1

n∑
j=1

χRj
| dx ≤ |a1|Ln

(
E1∆ ∪m

j=1 Rj

)
≤ |a1|κ

which can be made as small as desired.
Finally, to prove (iii), we now use (ii) to claim that it is only necessary to approximate

χR in L1(IRn) by a continuous function of compact support when R is a rectangle. Since
R =

∏n
j=1[aj, bj] is the product of intervals, we let

gj be the piecewise linear function which is 1 on [aj, bj]
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and runs linearly down to 0 at aj − κ, bj + κ and is 0 thereafter. Let

Rs = [a1 − s, b1 + s]× [a2 − s, b2 + s]× · · · [an − s, bn + s]

which has Lebesgue measure

Ln(Rs) =
n∏

j=1

(bj − aj + 2s).

The integrand in ∫
IRn

|χE(x)−
n∏

j=1

gj(xj)| dx ≤ 2nκn,

is vanishes ae off of Rκ\R0, and the integrand is at most one on this set. Thus the integral
is at most

Ln(Rκ)− Ln(R0),

which is a continuous function of κ (a polynomial) which vanishes at κ = 0. Thus it can
be made as small as desired by choosing κ small.

We turn to Lp(IRn). For f ∈ Lp(IRn) and R > 0, define

(4.25) fR(x) =

{
f(x) if |x| ≤ R & |f(x)| ≤ R,

0 if |f(x)| > R or |x| > R.

Clearly |fR| ≤ R. Moreover, since |f − fR| ≤ |f |,

|f − fR|p ≤ |f |p.

Since also f − fR → 0 a.e. as R →∞, the dominated convergence theorem implies that

‖f − fR‖Lp(IRn
)
→ 0 as R →∞.

Thus it suffices to approximate bounded functions f which vanish off some ball BR =
{x ∈ IRn : |x| ≤ R.} This follows from the L1 results, since, if |f |, |g| ≤ M and both
vanish off the ball of radius 2R,∫

IRn
|f − g|p dx ≤

∫
IRn

|f − g||f − g|p−1 dx ≤ (2M)p−1

∫
BR

|f − g| dx.

�

Remark 4.6. Approximation in Lp(E) where E ⊂ IRn follows upon extending f ∈ Lp(E)

to all of IRn by letting the extension (call it f̃) vanish on IRn \ E. Then∫
E

|f − g|p dx ≤
∫
IRn

|f̃ − g|p dx.
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5. Normed Spaces, Banach Spaces, Linear Operators

Let us review some of the definitions embedded in the above. Below, the field F can
be either IR or C.

Definition 5.1. A norm on a vector space X over F is a mapping ‖ ‖ : V → [0,∞) with
the properties

‖x + y‖ ≤ ‖x‖+ ‖y‖ (x, y ∈ X)

‖cx‖ = |c|‖x‖ (c ∈ F , x ∈ X)

‖x‖ = 0 =⇒ x = 0.

If ‖ ‖ is a norm on X, we call (X, ‖ ‖) a normed vector space. If the normed vector space
(X, ‖ ‖) is complete with the metric d(x, y) = ‖x − y‖, then (X, ‖ ‖) is a Banach space.
If F = IR, we speak of a “real” Banach space and if F = C, we speak of a “complex”
Banach space.

We have shown that Lp(µ) is a Banach space, real or complex, depending on whether
we take its elements to be real or complex valued. Of course, there is the “coset” business
here.

Remark 5.2. A complex normed vector space (X, ‖ ‖) is a real normed vector space!
This seemingly silly remark is to dispel the notion that “complex” is more general than
“real” in this context. Many - but not all - results about real vector spaces apply at once
to complex vector spaces. Examples are Theorems 5.6 and 5.7 below.

Recall that if (X, d) and (Y, ρ) are two metric spaces and f : X → Y, then f is Lipschitz
continuous if there is a constant L such that

(5.1) ρ(f(x), f(y)) ≤ Ld(x, y) (x, y ∈ X).

When this holds, we say that L is a Lipschitz constant for f or f is Lipschitz with constant
L. The least such constant,

L0 = inf {L : ρ(f(x), f(y)) ≤ Ld(x, y) for x, y ∈ X}

is called the least Lipschitz constant for f and it is denoted by Lip (f).
In any normed space (X, ‖ ‖), one has

‖x‖ = ‖x− y + y‖ ≤ ‖x− y‖+ ‖y‖

which implies

(5.2) |‖x‖ − ‖y‖| ≤ ‖x− y‖.

In particular, ‖ ‖ is Lipschitz with constant 1.



21

Proposition 5.3. Let (X, ‖ ‖X) and (Y, ‖ ‖Y ) be two normed vector spaces (and therefore
metric spaces) over IR and Λ : X → Y be a linear mapping. Then Λ is continuous iff and
only if it is Lipschitz continuous and then

Lip (Λ) = sup {‖Λx‖Y : x ∈ X and ‖x‖X ≤ 1}
= sup {‖Λx‖Y : x ∈ X and ‖x‖X = 1}

=
1

r
sup {‖Λx‖Y : x ∈ X and ‖x‖X ≤ r} (r > 0)

=
1

r
sup {‖Λx‖Y : x ∈ X and ‖x‖X = r} (r > 0).

(5.3)

Proof. If Lip (Λ) < ∞, then

‖Λx‖Y = ‖Λx− Λ0‖Y ≤ Lip (Λ)‖x− 0‖X = Lip (Λ)‖x‖.
It follows that Lip (Λ) is at least as big as the displayed quantities on the right of (5.3).
OTOH, if L = 1

r
sup {‖Λw‖Y : w ∈ X and ‖w‖X = r} , then for x, x̂ ∈ X, x 6= x̂,

‖Λx− Λx̂‖Y = ‖Λ(x− x̂)‖Y = ‖x− x̂‖X
1

r
‖Λ
(

r(x− x̂)

‖x− x̂‖X

)
‖Y ≤ L‖x− x̂‖X ;

That is, Lip (Λ) ≤ L. All the equalities now follow. Finally, if Λ is continuous, then it is
continuous at 0, and for r sufficently small, the third quantity displayed on the right-hand
side of (5.3) is finite, by continuity. �

Let Br = {x ∈ X : ‖x‖X ≤ r} . By the above, the image of Br under Λ is bounded
iff Λ is Lipschitz continuous. Thus, in this linear case, rather than say “Λ is Lipschitz
continuous” one says “Λ is bounded” or “Λ is continuous.” Let

(5.4) L(X, Y ) = {bounded linear operators Λ : X → Y } .

Define ‖ ‖ : L(X,Y ) → [0,∞) by

(5.5) ‖Λ‖ = Lip (Λ) = sup {‖Λx‖Y : x ∈ X and ‖x‖X ≤ 1} .

Equivalently, ‖Λ‖ is the least number for which

(5.6) ‖Λx‖Y ≤ ‖Λ‖‖x‖X (x ∈ X).

It is straightforward to check that (L(X,Y ), ‖ ‖) is a normed vector space, which is
complete (and hence a Banach space) if Y is a Banach space.

Theorem 5.4. Let (X, ‖ ‖X) and (Y, ‖ ‖Y ) be normed vector spaces. Then L(X, Y ) is a
normed vector space when equipped with the norm (5.5), (5.6). If (Y, ‖ ‖Y ) is a Banach
space, then so is L(X, Y ).

Proof. The set of linear maps from X to Y is a linear space. If Λ, Λ̂ ∈ L(X, Y ) and
c ∈ F , c 6= 0, we clearly have

sup {‖cΛx‖Y : ‖x‖X ≤ 1} = sup {‖Λ(cx)‖Y : ‖x‖ ≤ 1}
= sup {‖Λ(cx)‖Y : ‖cx‖X ≤ |c|} = |c|‖Λ‖
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and

‖(Λ + Λ̂)x‖Y = ‖Λx + Λ̂x‖Y ≤ ‖Λx‖Y + ‖Λ̂x‖Y ≤ (‖Λ‖Y + ‖Λ̂‖Y )‖x‖X .

The first of these relations establishes ‖cΛ‖ = |c|‖Λ‖ and the second shows that

‖Λ + Λ̂‖ ≤ ‖Λ‖+ ‖Λ̂‖Y ;

in particular, cΛ, Λ + Λ̂ ∈ L(X, Y ) and ‖ ‖ is indeed a norm.
Suppose now that Y is complete and {Λj} is a Cauchy sequence in L(X,Y ). Then for

x ∈ X

‖Λjx− Λkx‖Y ≤ ‖Λj − Λk‖‖x‖X

shows that Λjx is Cauchy in Y. Define

Λx := lim
j→∞

Λjx.

Clearly Λ : X → Y is linear. Now, if

‖Λj − Λk‖ < ε for j, k ≥ Nε,

then, by the continuity of norms (see (5.2)), we have

‖Λjx− Λx‖Y = lim
k→∞

‖Λjx− Λkx‖Y ≤ lim sup
k→∞

‖Λj − Λk‖‖x‖X ≤ ε‖x‖X

for j ≥ Nε. It follows that ‖Λj − Λ‖ → 0, and L(X, Y ) is complete. �

Remark 5.5. An important special case arise by taking (Y, ‖ ‖Y ) to be (F , | |), in which
case we are discussing the bounded linear functionals mapping X into its scalar field;
somewhat in contrast to the case of general linear operators, these are more commonly
called the continuous linear functionals. L(X,F) is called the dual space of X. It is
complete, by the above. One often writes X∗ for the dual space of X (with ‖ ‖X now
being “understood.” )

Here follow a few basic theorems we will prove, in the fullness of time.

Theorem 5.6 (Banach Steinhauss Theorem, aka the Uniform Boundedness Principle).
Let (X, ‖ ‖X) be a Banach space and (Y, ‖ ‖Y ) be a normed vector space. Let A be an
index set and Tα ∈ L(X,Y ) for α ∈ A. Then either

sup {‖Tαx‖Y : α ∈ A} = ∞

for all x in a dense Gδ ⊂ X or there exists M < ∞ such that

(5.7) ‖Tα‖ ≤ M (α ∈ A).

Proof. We follow Rudin, pg 98 (with less language). Put

(5.8) Vn =
⋃
α∈A

{x : ‖Tαx‖Y > n} =

{
x : sup

α∈A
‖Tαx‖Y > n

}
(n = 1, 2, . . .)
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By the continuity of x 7→ ‖Tαx‖Y , Vn is open in X. If one of the Vn, say VN , fails to be
dense, then there is an x0 ∈ X and r > 0 such that x0 + x 6∈ VN for ‖x‖X ≤ r. But then
for ‖x‖X ≤ r,

‖Tαx‖Y ≤ ‖Tα(x0 + x)‖Y + ‖Tαx0‖Y ≤ 2N (α ∈ A),

and ‖Tα‖ ≤ 2N/r follows.
On the other hand, if Vn is dense for every n, and we now know that this must be

the case if supα∈A ‖Tα‖ = ∞, then by Baire’s Theorem ∩∞n=1Vn is a dense Gδ in X. Since
supα∈A ‖Tαx‖Y = ∞ for x ∈ ∩∞n=1Vn, we are done. �

Theorem 5.7 (Open Mapping Theorem). Let (X, ‖ ‖X) and (Y, ‖ ‖Y ) be Banach spaces.
Let T ∈ L(X,Y ) and TX = Y (i.e., T is onto Y.) Let U := {x ∈ X : ‖x‖X < 1} ,
V := {y ∈ Y : ‖y‖Y < 1} be the open unit balls of X and Y. Then there exists a δ > 0
such that

TU ⊃ δV.

In consequence, for every open subset O of X, TO is open in Y. Finally, if TX = Y and
T is 1-1, then T−1 is bounded.

Proof. X is the union of the sets kU, k = 1, 2, . . . ,

Y =
∞⋃

k=1

T (kU).

Since Y is complete, by Baire’s Theorem, there is a nonempty open set W which is
contained in the closure of some T (kU).

To simplify writing, let us notice some things. First, we may take k = 1. This is because
T (kU) = kTU and so T (kU) = kTU, where the overline indicates “closure” (see Exercise

15 for this and other remarks we use here). Thus the interior of TU, TU
◦
, is 1

k
T (kU)

◦
,

which is not empty.
U is convex, that is, if x, x̂ ∈ U, then the line segment [x, x̂] joining x and x̂, namely

(5.9) [x, x̂] := {(1− t)x + tx̂ : 0 ≤ t ≤ 1} ,

also lies in U. Since the line segment joining Tx and T x̂ is, by linearity, [Tx, T x̂] = T [x, x̂],
TU is also convex. Moreover, TU is symmetric about the origin, that is, −TU = TU,
since −U = U. Hence if TU contains an open set W, it also contains

1

2
W − 1

2
W,

which is open (Exercise 15) and contains 0. Thus TU contains a ball about the origin of
Y. Let us say

(5.10) TU ⊃ δV where δ > 0.

The for any r > 0

(5.11) rTU = T (rU) ⊃ rδV.
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That is, if ‖y‖Y < rδ and ε > 0, there is x ∈ X satisfying

(5.12) ‖y − Tx‖Y < ε and ‖x‖X < r.

Now we iterate: let {εj} be any sequence of positive numbers. Start with y ∈ δV and
choose x1 such that

(5.13) ‖y − Tx1‖Y < ε1 and ‖x1‖X < 1.

Then choose x2 according to

(5.14) ‖y − (Tx2 + Tx1)‖Y = ‖(y − Tx1)− Tx2‖Y < ε2 and ‖x2‖X <
ε1

δ
;

and, in general,

(5.15) ‖y − (Tx1 + Tx2 + · · ·+ Txn)‖Y < εn and ‖xn‖X <
εn

δ

for n = 1, 2, . . . .
It follows that (more remarks in class) that if

∑∞
j=1 εj < ∞, then

x =
∞∑

j=1

xj = lim
n→∞

n∑
j=1

xj exists

and, by continuity of T and (5.15)

Tx = lim
n→∞

T
n∑

j=1

xj = lim
n→∞

n∑
j=1

Txj

(5.16) ‖x‖X ≤ ‖x1‖X +
∞∑

j=1

‖xj‖X < ‖x1‖X +
1

δ

∞∑
j=1

εj.

If
∑∞

j=1 εj < δ(1− ‖x1‖X), and we can always arrange that, then ‖x‖X < 1 and Tx = y.
Thus TU ⊃ δV.

To see that TO is open if O is open in X, note that if x0 ∈ O, then x0 + µU ⊂ O for
some µ > 0 and

TO ⊃ Tx0 + µTU ⊃ Tx0 + δµV ;

that is, TO contains a ball about any of its points, so it is open.
If T is also 1-1, then for any open set O in X, the inverse image of O under T−1 is

(T−1)−1O = TO, which we just verified is open. Hence T−1 is continuous. �

Theorem 5.8 (Hahn Banach Theorem). Let (X, ‖ ‖) be a normed vector space (real or
complex). Let M be a subspace of X and f ∈ M∗. Then there exists F ∈ X∗ satisfying
F |W = f and ‖F‖ = ‖f‖.

We’ll probably modify this one later, using some notes of Stephen Simons. NOTE: This
has been done, see Section 8 below.
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6. Fourier Series

We will apply Theorems 5.6 and 5.7 to problems arising in the theory of Fourier series.
Partially to warm you up for next quarter, consider the system of ordinary differential
equations

(6.1)
d

dt
X + AX = 0

coupled with the initial conditions

(6.2) X(0) = X0

where now

X =

 X1
...

Xn


is a vector in IRn (or we could take Cn) and A = [aij] is an n× n real (or we could take
complex) matrix and X0 ∈ IRn (respectively, Cn). X(t) is the “state” of the system at
time t which is X0 at t = 0, and which evolves according to the “dynamics” (6.1).

If (λ, v) is an “eigenpair” of A, that is, v 6= 0 and

(6.3) Av = λv,

then

d

dt
(e−λtv) + A(e−λtv) = e−λt (−λv + Av)

= e−λt(−λv + λv) = 0.

That is, e−λtv is a solution of the system (6.1). The ode’s are linear and homogeneous, so
if (λj, v

j) is an eigenpair for j = 1, 2, . . . , k, then

(6.4) X(t) =
k∑

j=1

aje
−λjtvj

is also a solution of (6.1) for any scalars aj. In order that this X satisfy the initial conditions
(6.2) we need

(6.5) X0 =
k∑

j=1

ajv
j.

If j = n and the vj are linearly independent, then (6.5) does hold for exactly one choice
of the aj’s.

The best situation arises if A is self-adjoint. That is,

(6.6) 〈x, Ay〉 = 〈x, Ay〉 for all x, y ∈ Cn,
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where

(6.7) 〈x, y〉 =
n∑

j=1

xjyj for x, y ∈ Cn

is the “inner-product.” Note that

〈x, y〉 = 〈y, x〉,

〈x, x〉 =
n∑

j=1

|xj|2 =: |x|2,

〈λx, y〉 = λ〈x, y〉.

(6.8)

The condition (6.6) amounts to ai,j = aj,i for i, j = 1, . . . , n.
If (λ, v) is an eigenpair for A, taking x = y = v in (6.6) yields

(6.9) λ|v|2 = 〈λv, v〉 = 〈Av, v〉 = 〈v, Av〉 = 〈v, λv〉 = λ̄|v|2.

That is, the eigenvalues of A are real. Moreover, if (λ, v), (λ̂, v̂) are two eigenpairs for A

and λ 6= λ̂, we have

(6.10) λ〈v, v̂〉 = 〈Av, v̂〉 = 〈v, Av̂〉 = 〈v, λ̂v̂〉 = λ̂〈v, v̂〉,

which implies that

(6.11) 〈v, v̂〉 = 0.

Thus eigenvectors of A for different eigenvalues are orthogonal.
Ok, this is all part of the proof that if A is self-adjoint, then there are n-eigenpairs

(λj, v
j), j = 1, 2, . . . , n, with the vj mutually orthogonal, that is,

(6.12) 〈vj, vk〉 = 0 for j 6= k.

Once this “spectral” information has been found, the solution of (6.1), (6.2) is determined
by writing (see (6.5))

(6.13) X0 =
n∑

j=1

ajv
j

where the coefficients aj are determined (using (6.12)) by

(6.14) 〈X0, v
k〉 = 〈

n∑
j=1

ajv
j, vk〉 = ak|vk|2; equivalently, ak =

〈X0, v
k〉

|vk|2

and the solution of (6.1), (6.2) is

(6.15) X(t) =
n∑

j=1

e−λjt 〈X0, v
j〉

|vj|2
vj.
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Suppose now that we seek the temperature in a circular piece of wire. We can identify
the position of points on the wire in the form eix, −π ≤ x ≤ π. Let the temperature at
time t and position eix be u(t, x). Suppose that u satisfies the heat equation,

(6.16)
∂u

∂t
− ∂2u

∂x2
= 0.

We couple this with the initial condition

(6.17) u(0, x) = f(x) for − π < x < π.

Moreover, since x = π and x = −π correspond to the same points of the wire, u has to
be “doing” the same thing at x = π as it is doing at x = −π, which corresponds to the
periodic boundary conditions

(6.18) u(t,−π) = u(t, π),
∂u

∂x
(t,−π) =

∂u

∂x
(t, π) for t > 0.

Now we change our point of view a bit. The “state” of our wire at time t is the function
x 7→ u(t, x), which gives the temperature at each time t. Let this function be called U(t);
that is, U(t)(x) = u(t, x). For each t, U(t) is a function. Then we think of ∂u

∂t
as the

time derivative of U(t), and we think of −∂2u
∂x2 (which is doing something to the state

at time t) as AU(t), where A is the “operation” of taking the second derivative. That
is, AU(t) = −U(t)′′, where the primes refer to “x derivatives.” Then, formally (meaning
“without rigor”), our equation (6.16) writes up as

(6.19)
d

dt
U + AU = 0,

which looks just like (6.1). The initial condition is

(6.20) U(0) = f,

and the boundary conditions we will “put into A”, that is, A has some domain consisting
of functions of x which have two derivatives and satisfy the periodic boundary conditions.
That is, v ∈ D(A) (the domain of A) requires

(6.21) v(−π) = v(π) and v′(−π) = v′(π).

Now just as in (6.1), if (λ, v) is an eigenpair for A, then u(t, x) = e−λtv(x), equivalently,
U(t)(x) = e−λtv(x), satisfies

∂

∂t

(
e−λtv(x)

)
− ∂2

∂x2

(
e−λtv(x)

)
=

d

dt
e−λtv + Ae−λtv

= −λe−λtv + e−λtAv

= e−λt (−λv + λv) = 0.

(6.22)

We will see that A is (formally) self-adjoint. Our inner-product is now

(6.23) 〈v, w〉 =

∫ π

−π

v(x)w̄(x) dx.
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If v, w are in the domain of A, we have, integrating by parts,

〈Av, w〉 = −
∫ π

−π

v′′(x)w̄(x) dx

= −v′(π)w̄(π) + v′(−π)w̄(−π) +

∫ π

−π

v′(x)w̄′(x) dx

=

∫ π

−π

v′(x)w̄′(x) dx

= v(π)w̄′(π)− v(−π)w̄′(−π)−
∫ π

−π

v(x)w̄′′(x) dx

= 〈v, Aw〉.

(6.24)

The boundary terms disappear at each stage, due to the bundary conditions satisfied by
v, w. It follows that the eigenvalues of A are real, and that eigenfunctions for different
eigenvalues are orthogonal in the inner-product (6.23).

We can see more. Letting v = w in (6.24), and Av = λv, we find from the first
integration by parts that

λ〈v, v〉 = 〈Av, v〉 =

∫ π

−π

|v′(x)|2 dx = 〈v′, v′〉.

Hence, unless 〈v′, v′〉 = 0, λ > 0. But 〈v′, v′〉 = 0 makes v constant, and constants are
indeed eigenfunctions, they satisfy the boundary conditions and A1 = 01 = 0. Thus the
eigenvalues of A are real, and positive, except for the eigenvalue 0, which has 1 as an
eigenfunction.

The other eigenfuctions are easy to come by. Write λ = κ2 for some κ > 0. Then

(6.25) Av = −v′′ = κ2v =⇒ v = a cos(κx) + b sin(κx)

for some a, b. Imposing the boundary conditions on this form of function, we find that the
boundary conditions imply κ ∈ Z, κ = ±n for some integer n and then the eigenvalue is
λ = κ2 = n2.

For elegance sake, we choose the eigenfunctions einx where n = 0,±1,±2, . . . . Recall
that

cos(nx) =
einx + e−inx

2
, sin(nx) =

einx − e−inx

2i
.

These are 2π periodic functions, they satisfy the periodic boundary conditions, and

Aeinx = − d2

dx2
einx = n2einx.

Hence any finite sum

(6.26) u(t, x) =
N∑

n=−N

ane
−n2teinx
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is a solution of the heat equation which satisfies the periodic boundary conditions. Don’t
be troubled by the complex valued looking expression; if an = a−n then u is real-valued.
By the derivation, einx and eimx are orthogonal if n2 6= m2, as they are eigenfunctions for
different eigenvalues and A is (formally) self-adjoint. In fact, they are pairwise orthogonal:

(6.27) 〈eimx, einx〉 =

∫ π

−π

eimxe−inx dx =
1

i(m− n)

∫ π

−π

d

dx

(
ei(m−n)x

)
dx = 0

if m 6= n.
If we seek to satisfy the initial condition (6.17) with the expression (6.26) we must have

(6.28) u(0, x) = f(x) =
N∑

n=−N

ane
inx.

The coefficients an can be computed from f just as before:

(6.29) 〈f, eikx〉 = 〈
N∑

n=−N

ane
inx, eimx〉 = ak〈eikx, eikx〉 = ak

∫ π

−π

1 dx = ak2π

or

(6.30) ak =
1

2π

∫ π

−π

f(x)e−ikx dx.

Initial conditions of the form (6.28), those finite linear combinations, are called “trig-
nometric polynomials;” they are very special. Most functions f are not trigonometric
polynomials.

The formulas (6.29) do not depend on N, the degree of the trig poly. One then asks if
it is possible that fairly general f ’s can be written as infinite sums

(6.31) f(x) =
∞∑

n=−∞

ane
inx

with the coefficients given by (6.29). This is a bold question, with many aspects. Of
course, there are also questions about the u(t, x) given by (6.26) under the same assump-
tions.

However, at this point we leave the heat equation and focus on (6.31) with (6.30).
Moreover, we will now replace x by t (recall, we have dumped the heat equation setting).
Fourier series, the objects above, are even more important in signal processing, and then
there is no “space variable.” The formulas (6.29) make sense if f ∈ L1(−π, π). We now
define, for any f ∈ L1(−π, π),

(6.32) f ∼
∞∑

n=−∞

ane
int
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to mean

(6.33) an =
1

2π

∫ π

−π

f(t)e−int dt for n ∈ Z.

A better notation is this: for f ∈ L1(−π, π) and n ∈ Z, define

(6.34) f̂(n) =
1

2π

∫ π

−π

f(t)e−int dt for n ∈ Z.

Notice that

|f̂(n)| ≤
∣∣ 1

2π

∫ π

−π

f(t)e−int dt
∣∣ ≤ 1

2π

∫ π

−π

|f(t)| dt =
1

2π
‖f‖L1(−π,π).

That is, f 7→ f̂ is a bounded linear operator from L1(−π, π) into the Banach space of
doubly infinite bounded sequences {xn}∞n=−∞ with the supremum norm (see (4.24)); in
fact, we showed that

(6.35) ‖
{

f̂(n)
}
‖∞ ≤ 1

2π

∫ π

−π

|f | dt.

Let us define Ff = f̂ to give this map a name.
One obvious questions is this: is it true that FL1(−π, π) = l∞d ? Is every bounded

doubly infinite sequence the set of Fourier coefficients for some function in L1(−π, π)?
The answer is “no.”

Lemma 6.1 (Riemann-Lebesgue). Let f ∈ L1(−π, π). Then

(6.36) lim
n→±∞

f̂(n) = 0.

Proof. This result follows from an approximation lemma.

Lemma 6.2. Trigonometric polynomials are dense in the space Cp([−π, π]) of continuous
functions g : [−π, π] → C which satisfy g(−π) = g(π) (which carries the norm ‖g‖ =
max[−π,π] |g|). In consequence, the trigonometric polynomials are dense in Lp(−π, π) for
1 ≤ p < ∞.

We defer the proof of this until the next section. Since a trig poly

p(t) =
N∑

n=−N

ane
inx

satisfies p̂(m) = 0 for m > n, the claim of Lemma 6.1 holds for trig polys. Since

|f̂(m)| ≤ | ̂(f − p)(m)|+ |p̂(m)| ≤ 1

2π

∫ π

−π

|f − p| dt + |p̂(m)|

we can choose a poly p such that the first term on the right is at most ε > 0 and then m
so large that p̂(m) = 0. The conclusion is that |f̂(m)| ≤ ε as soon as m is large enough,
and Lemma 6.1 is proved. �
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For the rest of this section, we denote by c0 the space

(6.37) c0 =

{
x ∈ l∞d : lim

n→±∞
|xn| = 0.

}
We won’t ask for it to be turned in, but you should do the exercise of showing that c0 is
a closed subpace of l∞d , hence it is complete, hence it is a Banach space.

Theorem 6.3. The mapping Ff = f̂ is a 1-1 bounded linear transformation of L1(−π, π)
into, but not onto, c0.

Proof. We already showed that F is a bounded linear transformation as claimed.
To show that F is 1-1, we need only show that f̂(n) = 0 for all n implies that f = 0.

If f̂(n) = 0 for all n, then ∫ π

−π

f(t)p(t) dt = 0

for every trig poly p, and then, via Lemma 6.2,∫ π

−π

f(t)g(t) dt = 0

for g ∈ Cp([−π, π]). Given a closed set E ⊂ (−π, π), put

g(t) = gm(t) :=

(
1− dist (t, E)

2π

)m

Clearly |gm| ≤ 1 and gm(t) → 1 if t ∈ E, and gm(t) → 0 if t /∈ E. By LDC, we conclude
that ∫ π

−π

f(t)χE(t) dt = 0

for every closed E ⊂ (−π, π). In general, if F ⊂ [−π, π], then there is an increasing
sequence of closed sets Ej ⊂ Ej+1 ⊂ F ∩ (−π, π), such that L(F \ ∪∞j=1Ej) = 0. Putting
E = Ej above and sending j →∞, LDC yields∫ π

−π

f(t)χF (t) dt = 0.

It follows that f = 0 a.e.
Since F is 1-1, by the Open Mapping Theorem, if it is onto, then F−1 is bounded. This

implies

(6.38) ‖f‖L1(π,π) = ‖F−1Ff‖L1(π,π) ≤ ‖F−1‖‖Ff‖c0 .

Let

(6.39) DN(t) =
N∑

k=−N

eikt (N = 0, 1, 2, . . .).
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For a 2π periodic function f, the N th partial sum of its Fourier series is

sN(f, t) =
N∑

n=−N

f̂(n)eint

=
N∑

n=−N

1

2π

∫ π

−π

f(s)e−ins ds eint

=
1

2π

∫ π

−π

f(s)
N∑

n=−N

ein(t−s) ds

=
1

2π

∫ π

−π

f(s)DN(t− s) ds.

(6.40)

The DN are called the Dirichlet kernels. We have

2i sin

(
t

2

)
DN(t) = eit/2DN(t)− e−it/2DN(t)

=
N∑

k=−N

ei(k+ 1
2
)t −

N∑
k=−N

ei(k− 1
2
)t

=
N∑

k=−N

ei(k+ 1
2
)t −

N−1∑
j=−N−1

ei(j+ 1
2
)t

= ei(N+ 1
2
)t − e−i(N+ 1

2
)t = 2i sin

((
N +

1

2

)
t

)
,

so

(6.41) DN(t) =
sin
((

N + 1
2

)
t
)

sin
(

t
2

) .

According to Exercise 16

(6.42)

∫ π

−π

|DN(t)| dt →∞ as n →∞.

On the other hand, clearly, D̂N(n) is either 1 or 0 for all n. Hence no estimate of the form
(6.38) can hold for all the choices f = DN . It follows from the Open Mapping Theorem
that F is not onto c0. �

Another question is this: suppose we strengthen the assumption on f and require
f ∈ Cp([−π, π]) (see Lemma 6.2). Is it then true that

(6.43) f(t) = lim
N→∞

sN(f, t) = lim
N→∞

N∑
n=−N

f̂(n)eint = lim
N→∞

1

2π

∫ π

−π

f(s)DN(t− s) ds
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for all t ∈ [−π, π]? Does the Fourier series of a continuous (periodic) function converge
everywhere to the function?

The mapping f → sN(f, t) is a linear mapping from Cp([−π, π]) into C for fixed t.
If (6.43) holds, then for fixed f, t, {|sN(f, t)|}∞N=1 is bounded, and then by the Uniform
Boundedness Principle, there will be a constant M such that

(6.44) |sN(f, t)| ≤ M max
s∈[−π,π]

|f(s)| = M‖f‖Cp([−π,π]) (N = 1, 2, . . .).

However, this does not hold. For example,

sN(f, 0) =
1

2π

∫ π

−π

f(s)DN(s) ds.

It follows that the norm of the linear functional TNf := sN(f, 0) is at most
∫ π

−π
|DN(s)| ds/2π

because

(6.45) |TNf | ≤ 1

2π
|
∫ π

−π

f(s)DN(s) ds| ≤ ‖f‖Cp([−π,π])

∫ π

−π

|DN(s)| ds.

In fact,

‖TN‖ =
1

2π

∫ π

−π

|DN(s)| ds.

To see this, choose a sequence gj ∈ Cp([−π, π]) such that |gj| ≤ 1 and gj(s)DN(s) →
|DN(s)| a.e. (construction explained in class). Then

|sN(gj, 0)| = 1

2π

∣∣ ∫ π

−π

gj(s)DN(s) ds
∣∣ ≤ ‖TN‖‖gj‖Cb([−π,π]) ≤ ‖TN‖ and

∣∣ ∫ π

−π

gj(s)DN(s) ds
∣∣→ ∫ π

−π

|DN(s)| ds

establish this claim. Since we have (6.42), it follows that {sN(f, 0)} is unbounded for a
dense Gδ set of f ’s in Cp([−π, π]), and for such an f, sN(f, 0) does not converge to f(0).
See Rudin pg 102 for further implications of this argument.

The above results are negative, showing that properties one might hope for do not hold.
Here is a positive result:

Theorem 6.4. Let f ∈ L2(−π, π). Then

(6.46) lim
N→∞

‖f − sN(f)‖L2(−π,π) = 0

where sN(f) denotes the function t 7→ sN(f, t). That is, the Fourier series of f ∈
L2(−π, π) converges to f in L2(−π, π). Moreover, the mapping

(6.47) f 7→
{√

2πf̂(n)
}∞

n=−∞
,

is an isometry of L2(−π, π) onto l2d (see (4.24) and below).
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Proof. Hereafter we write ‖ ‖2 instead of ‖ ‖L2(−π,π). Using the inner-product (6.23) (see
the Appendix, Section 12), we have

〈f, f〉 =

∫ π

−π

|f(t)|2 dt,

so L2(−π, π) is a Hilbert space when equipped with this inner-product (that is, the norm
is just the norm coming from the inner-product). Now {eint}∞n−∞ is a pairwise orthogonal
system in this Hilbert space, so the Bessel inequality of (12.13) yields

(6.48) ‖f‖2
2 ≥ ‖sN(f)‖2

2 for N = 1, 2, . . . .

It follows that ‖sN‖ ≤ 1. Moreover, for any trigonometric polynomial p, sN(p) = p for N
large enough. Hence for every trigonometric polynomial

‖f − sN(f)‖2 = ‖f − p + p− sN(p) + sn(p)− sN(f)‖2

≤ ‖f − p‖2 + ‖p− sN(p)‖2 + ‖sN(p)− sN(f)‖2

≤ ‖f − p‖2 + ‖p− sN(p)‖2 + ‖sN‖‖p− f‖2

≤ 2‖f − p‖2 + ‖p− sN(p)‖2.

Using Lemma (6.2), if ε > 0, we can choose p so that the first term is at most ε, and then
N so large that the second term is 0. The claim (6.46) follows.

In view of ‖eint‖2
2 = 2π, and (6.46), it follows from Proposition 12.4 that

(6.49) ‖f‖2
2 = 2π

∞∑
n=−∞

|f̂(n)|2 = ‖
{√

2πf̂(n)
}∞

n=−∞
‖2

l2d
.

That is, the mapping (6.47) is indeed an isometry.
It remains to see that this mapping is onto. However, we see from Proposition 12.5

that

(6.50)
∞∑

j=−∞

xne
int converges in L2(−π, π)

iff and only if x = (· · · , x−1, x0, x1, · · · ) ∈ l2d. Thus, when x ∈ l2d, we have

f :=
∞∑

j=−∞

xne
int ∈ L2(−π, π) and f̂(n) = xn, (n ∈ Z).

Thus the mapping is onto.
�
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7. Convolutions and Approximations

Below, we discuss three types of mappings T : IRn → IRn, translations, dilations and
reflections. These are given by

(7.1) Tx =


τhx := x + h (translation by h ∈ IRn),

Dδx := δx (dilation by δ > 0),

Rx = −x (reflection).

Notice that, in general, if T : IRn → IRn is continuous and invertible (1-1 and onto),
then

(7.2) χTE(x) = 1 ⇐⇒ x ∈ TE ⇐⇒ T−1x ∈ E ⇐⇒ χE(T−1x) = 1.

Using this, if Ln(TE) = λLn(E) for some constant λ and all E, the following then holds
for all characteristic functions, hence all simple functions, and hence all f ∈ L1 (IRn) :

(7.3)

∫
IRn

f(T−1x) dx = λ

∫
IRn

f(x) dx.

This includes the claim that if f ∈ L1 (IRn) , then so is x 7→ f(T−1x).
Since λ = 1 for translations and reflections, while λ = δn for Dδ, we conclude that∫

IRn
f(x− h) dx =

∫
IRn

f(x) dx,∫
IRn

f(x/δ) dx = δn

∫
IRn

f(x) dx,∫
IRn

f(−x) dx =

∫
IRn

f(x) dx.

(7.4)

Let us also note the following about dilations: for r > 0∫
{r≤|x|}

f
(x

δ

)
dx =

∫
IRn

χ{y:r≤|y|}(x)f
(x

δ

)
dx

=

∫
IRn

χ{y:r/δ≤|y|}

(x

δ

)
f
(x

δ

)
dx

= δn

∫
IRn

χ{y:r/δ≤|y|} (x) f (x) dx

= δn

∫
{r/δ≤|x|}

f (x) dx.

(7.5)

The convolution f ∗ g of two functions f, g on IRn is the function defined by

(7.6) f ∗ g(x) =

∫
IRn

f(x− y)g(y) dy

for those x’s for which y 7→ f(x− y)g(y) is in L1 (IRn) .
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Using (7.4) several times, we have∫
IRn

f(x− y)g(y) dy =

∫
IRn

f(x− (y + x))g(y + x) dy

=

∫
IRn

f(−y)g(y + x) dy∫
IRn

f(y)g(x− y) dy.

(7.7)

That is, f ∗ g = g ∗ f ; the convolution “product” is commutative.

Theorem 7.1. Let f ∈ L1 (IRn) and g ∈ Lp (IRn) where 1 ≤ p ≤ ∞. Then f ∗g is defined
ae, measurable, and

(7.8) ‖f ∗ g‖
Lp(IR

n
) ≤ ‖f‖

L1(IR
n
)‖g‖Lp(IR

n
).

Proof. It suffices to assume that f, g ≥ 0. The integral on the right of (7.6) is then defined
for every x, although it may be infinite. The first issue is the measurability of the right-
hand side of (7.6). However, there are Borel measurable functions f0, g0 such that f = f0,
g = g0 a.e. (See Exercise 21.) The maps

IRn × IRn 3 (x, y) → x− y ∈ IRn

IRn × IRn 3 (x, y) → y ∈ IRn

are continuous and hence Borel Measurable, so (x, y) → f0(x− y) and (x, y) → g0(y) are
Borel measurable on IRn × IRn. By the proof of Fubini,

x 7→
∫
IRn

f0(x− y)g0(y) dy =

∫
IRn

f(x− y)g(y) dy

is Borel measurable.
The case p = ∞ is immediate. For p = 1 we have, via Fubini,

‖f ∗ g‖
L1(IR

n
) =

∫
IRn

(∫
IRn

f(x− y)g(y) dy

)
dx

=

∫
IRn

(∫
IRn

f(x− y)g(y) dx

)
dy

= ‖f‖
L1(IR

n
)

∫
IRn

g(y) dy

= ‖f‖
L1(IR

n
)‖g‖L1(IR

n
).

(7.9)
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Assume that 1 < p < ∞. Now, using Hölder, p′ = p/(p − 1), Fubini, and the identity
above,∫
IRn

(∫
IRn

f(x− y)g(y) dy

)p

dy =

∫
IRn

(∫
IRn

f(x− y)
p−1

p f(x− y)
1
p g(y) dy

)p

dx

≤
∫
IRn

((∫
IRn

f(x− y) dy

)p−1 ∫
IRn

f(x− y)g(y)p dy

)
dx

= ‖f‖p−1

L1(IR
n
)
‖f ∗ gp‖

L1(IR
n
) = ‖f‖p

L1(IR
n
)
‖g‖p

Lp(IR
n
)
.

�

7.1. Approximate Identities. The function

(7.10) Ht(x) =
1

(4πt)n/2
e−|x|

2/4t

solves the heat equation

(7.11)
∂u

∂t
−∆u =

∂u

∂t
−
(

∂2u

∂x2
1

+ · · ·+ ∂2u

∂x2
n

)
= 0

on IRn × (0,∞). A solution u of the heat equation which satisfies the initial condition
u(0, x) = f(x) is given by

(7.12) u(t, x) =

∫
IRn

Ht(x− y)f(y) dy; equivalently, u(t, x) = (Ht ∗ f)(x).

Ht is called the heat kernel.
Clearly Ht(·) belongs to every Lp (IRn) , 1 ≤ p ≤ ∞. Exercise 24 indicates why this u

solves the heat equation for, for example, f ∈ L1 (IRn) . Derivatives may be calculated
under the integral sign.

We examine a sense in which u satisfies the initial condition u(0, x) = f(x). We do
this more generally. Ht is a special case of the following situation. Take a function
ρ ∈ L1(IRn), ρ ≥ 0, which satisfies

(7.13)

∫
IRn

ρ dx = 1.

For ε > 0 define

(7.14) ρε(x) =
1

εn
ρ
(x

ε

)
Note that, using (7.5),

(7.15)

∫
IRn

ρε(x) dx =
1

εn

∫
IRn

ρ
(x

ε

)
dx = 1.
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With this notation, and a bit of notational abuse, if ρ(x) = H1(x), then ρ√t = Ht and
(7.13) is satisfied:

(7.16)

∫
IRn

ρ dx =

∫
IRn

H1(x) dx = 1;

we assume that you know the last equality - it follows from
∫∞
−∞ e−x2

dx =
√

π, a Math
5 calculation, and Fubini. It then follows from the next theorem that if f ∈ Lp (IRn) ,
1 ≤ p < ∞, then Ht ∗ f → f in Lp (IRn) as t ↓ 0. Later we will see that this convergence
also holds almost everywhere.

Theorem 7.2. Let ρ ∈ L1 (IRn) , ρ ≥ 0, satisfy (7.13). Let f ∈ Lp (IRn) and 1 ≤ p < ∞.
Then

(7.17) lim
ε↓0
‖f − ρε ∗ f‖

Lp(IRn
)
= 0.

Proof. Since ρ ∈ L1 (IRn) , for every δ > 0 there exists Rδ such that

(7.18)

∫
{|x|>Rδ}

ρ(x) dx < δ if R ≥ Rδ.

Hence

(7.19)

∫
{|x|>R}

ρε(x) dx =
1

εn

∫
{|x|>R}

ρ
(x

ε

)
dx =

∫
{|y|>R/ε}

ρ(y) dy < δ if
R

ε
≥ Rδ.

Hence

(7.20) lim
ε↓0

∫
{R≤|x|}

ρε(x) dx = 0 for R > 0.

Let f ∈ Cc(IR
n) (the continuous functions on IRn with compact support). We first

claim that

(7.21) lim
ε↓0

ρε ∗ f(x) = f(x) unformly for x ∈ IRn.

To see this, note that

ρε ∗ f(x)− f(x) =
1

εn

∫
IRn

ρ

(
x− y

ε

)
(f(y)− f(x)) dy

=
1

εn

∫
{|x−y|≤R}

ρ

(
x− y

ε

)
(f((y)− f(x)) dy

+
1

εn

∫
{|x−y|≥R}

ρ

(
x− y

ε

)
(f(y)− f(x)) dy.

(7.22)
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The first term of the rightmost expression is estimated by∣∣ 1

εn

∫
{|x−y|≤R}

ρ

(
x− y

ε

)
(f(y)− f(x)) dy

∣∣
≤ 1

εn

∫
{|x−y|≤R}

ρ

(
x− y

ε

)
dy max

|x−y|≤R
|f(y)− f(x)|

≤ max
{|x−y|≤R}

|f(y)− f(x)|.

(7.23)

Since f is uniformly continuous, given κ > 0, we may choose R sufficiently small (even
if “R” does not look small) to guarantee that this quantity is at most κ. Fix this κ and
then R.

The second term of the rightmost expression is estimated by∣∣ 1

εn

∫
{|x−y|≥R}

ρ

(
x− y

ε

)
(f(y)− f(x)) dy

∣∣
≤
(

1

εn

∫
{|x−y|≥R}

ρ

(
x− y

ε

)
dy

)
2 max

IRn
|f |.

(7.24)

By (7.18), for all ε sufficiently small this at most κ; therefore |ρε ∗ f − f | ≤ 2κ as soon as
ε is sufficiently small, and (7.21) is proved.

Still taking f ∈ Cc(IR
n), we claim that ρε ∗ f → f in L1(IRn). Indeed, as ε ↓ 0,

|ρε ∗ f | ≤ ρε ∗ |f | → |f | everywhere

while, using Fubini, (we did this before, (7.9)),∫
IRn

ρε ∗ |f | dx =

∫
IRn

(
1

εn

∫
IRn

ρ

(
x− y

ε

)
|f(y)| dy

)
dx =

∫
IRn

|f(y)| dy.

It follows from the LDC theorem, in the form we have it on page 8 (or thereabouts), that
ρε ∗ f → f in L1 (IRn) . From this and

|ρε ∗ f(x)− f(x)| ≤ 2 max
IRn

|f |

we deduce, for 1 ≤ p < ∞, that

(7.25)

∫
IRn

|ρε ∗ f(x)− f(x)|p dx ≤
(

2 max
IRn

|f |
)p−1

‖ρε ∗ f − f‖
L1(IR

n
) → 0

as ε ↓ 0. Since Cc(IR
n) is dense in Lp (IRn) , and the norm of the linear mapping f 7→ ρε∗f

as an element of L(Lp (IRn) , Lp (IRn)) is at most 1 (Lemma 7.1), we are done (Exercise
18). �
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7.2. Proof of Theorem 6.2. At last, we indicate the proof of Lemma 6.2. Set

(7.26) Qk(t) = ck

(
1 + cos t

2

)k

(k = 1, 2, . . .)

where ck is choosen so that

(7.27)

∫ π

−π

Qk(t) dt = 1.

Let f ∈ Cp([−π, π]), and put

(7.28) fk(t) =

∫ π

−π

Qk(t− s)f(s) ds;

we then have

(7.29) fk(t)− f(t) =

∫ π

−π

Qk(t− s)(f(s)− f(t)) ds.

Clearly fk is a trigonometric polynomial. The key facts about Qk are related to those for
the ρε above: Qk ≥ 0, (7.27), and

(7.30) lim
k→∞

max
δ≤|t|≤π

Qk(t) = 0 for δ > 0.

To see this, we use that Qk(t) is even in t and (7.27) to conclude that

1 = 2ck

∫ π

0

(
1 + cos t

2

)k

dt ≥ 2ck

∫ π

0

(
1 + cos t

2

)k

sin t dt =
4ck

(k + 1)
,

so ck ≤ (k + 1)/4, and

max
δ≤|t|≤π

Qk(t) ≤
k + 1

4

(
1 + cos δ

2

)k

→ 0 as k →∞.

Now break up the integral in (7.29) into a the pieces where |t−s| < δ and where |t−s| ≥ δ
and mimic (7.23) and (7.24), using (7.30) in place of (7.20); it follows that fk − f → 0
uniformly.

Finally, to show the density of trig polynomials in Lp(−π, π), 1 ≤ p < ∞, we use the
density of continuous functions on [−π, π] in these spaces (Theorem 4.5) and a bit of hand
waving in class to show that this guarantees the density of Cp([−π, π]), and once we know
that, for f ∈ Lp(−π, π) and g ∈ Cp([−π, π]), we have, for every trig poly P (t),

‖f − P‖p ≤ ‖f − g‖p + ‖g − P‖p ≤ ‖f − g‖p + (2π)1/p‖g − P‖Cp([−π,π]),

whence the result (choose g to make the first term on the right as small as desired, then
P to make the second term as small as desired).

Remark 7.3. It matters how one adds things up. We showed that the Fourier series of
a continuous periodic function f does not neccesarily converge at 0 to f(0), and this was
so for a dense Gδ bunch of functions. You showed that the Fourier series of an integrable
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function does not converge to the function in L1 (Exercise 17). However, if one adds
things up differently, these irritating facts go away. That is, it is true that

f = lim
N→∞

s0(f) + s1(f) + · · ·+ sN(f)

N + 1
,

with uniform convergence if f ∈ Cp([−π, π]), and with Lp(−π, π) convergence if f ∈
Lp(−π, π), 1 ≤ p < ∞. This is because the kernel

KN :=
D0 + D1 + · · ·+ DN

N + 1

has properties like the ones we used in this section. This method of summing a possibly
divergent series, using the sequence of averages, is called the method of Cesáro means.
The kernels KN are called the Fejér kernels. Read about Fourier series on Wikipedia for
more info. The subject is infinite.

8. Mazur-Orlicz, Hahn-Banach, Minimax, and —

The presentation of the material in this section is adapted to our taste from slides for
seminars given this year by Professor Stephen Simons. These slides, now modified, are
available at

www.math.ucsb.edu/˜ simons/SOAFA.html

together with a preprint of a related paper, The Hahn-Banach-Lagrange Theorem, found
via Simons main web page (click through available via the above site), which just appeared
in the journal Optimization.

As a source for the results in the section title, I think the current notes, which uses
ideas of Simons, are as slick as it gets.

8.1. Preliminaries. We need a few concepts and elementary facts about them. Let E
be a real vector space. A function P : E → IR is sublinear if

(i) P (λx) = λP (x) (x ∈ E, 0 ≤ λ),

(ii) P (x + y) ≤ P (x) + P (y) (x, y ∈ E).
(8.1)

When P satisfies (8.1) (i), it is called positively homogeneous, and when P satisfies (8.1)
(ii) it is called subadditive. The conditions (8.1) look familiar, they are satisfied by any
norm on E. However, a norm has the additional property ‖ − x‖ = ‖x‖, which is not
satisfied by general subadditive functions; for example, linear functionals are sublinear.
Conversely, if P is sublinear and P (x) = P (−x), then it is what we once called a “pseudo
norm” (“semi-norm” is more common); it then has all the properties of a norm except
that P (x) = 0 only for x = 0 does not necessarily hold.

The example P : IRn → IR given by

(8.2) P (x) =
n∨

j=1

xj := max {xj : j = 1, . . . , n}



42

is sublinear and will pop up later. It is clear that this P is positively homogeneous. It is
also clear that it is subadditive, or

n∨
j=1

(xj + yj) ≤
n∨

j=1

xj +
n∨

j=1

yj,

since the biggest xj + yj is certainly at most the biggest of the xj plus the biggest of the
yj. A similar observation is:

Finally, we note that if P is sublinear, then

(8.3) P (0) = 0, and P (0) = P (x− x) ≤ P (x) + P (−x) =⇒ −P (−x) ≤ P (x).

8.2. The Mazur-Orlicz Lemma. Everywhere below, E is a nonzero real vector space
and P is a sublinear functional on E.

Theorem 8.1 (Mazur-Orlicz Lemma). Let D be a convex subset of E. Then there is a
linear functional L on E such that

(8.4) L ≤ P on E and inf
D

L = inf
D

P.

Remark 8.2. Simons calls Theorem 8.1 with D = {0} the Hahn-Banach Theorem. Other
people think of Theorem 8.5 below as the Hahn-Banach Theorem. Simons’ slides first
present Theorem 8.1 with D = {0} (when the result reduces to L ≤ P ) and then derive
the general case. We do the same, with the D = {0} case being Lemma 8.4 - we just
don’t give it a name.

The following lemma is a key ingredient in the proof of Theorem 8.1.

Lemma 8.3. Let D be a convex subset of E and κ := infD P > −∞. Then

(8.5) PD(x) := inf
y∈D, 0<λ

(P (x + λy)− λκ)

is a sublinear functional on E which satisfies PD ≤ P.

Proof. Clearly PD ≤ P. If y ∈ D, we have

λκ ≤ P (λy) = P (x + λy − x) ≤ P (x + λy) + P (−x)

and therefore

(8.6) −P (−x) ≤ P (x + λy)− λκ =⇒ −P (−x) ≤ PD(x)

the import being that −∞ < PD everywhere.
Moreover, if x1, x2 ∈ E, 0 < λ1, λ2, and y1, y2 ∈ D, then

PD(x1 + x2) ≤ P

(
x1 + x2 + (λ1 + λ2)

(
λ1

λ1 + λ2

y1 +
λ2

λ1 + λ2

y2

))
− (λ1 + λ2)κ

= P (x1 + λ1y1 + x2 + λ2y2)− (λ1 + λ2)κ

≤ P (x1 + λ1y1)− λ1κ + P (x2 + λ2y2)− λ2κ,

so PD is subadditive; it is also trivially positive homogeneous. �
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Lemma 8.4. There is a sublinear functional Q on E such that Q ≤ P and if Q̂ is another
sublinear functional satisfying Q̂ ≤ P ∧Q, then Q = Q̂. Moreover, any such Q is linear.

Proof. Consider the set

Q = {T : E → IR; T is sublinear and T ≤ P}
of sublinear functions which are less or equal to P. It is naturally partially ordered by “≤ ”,
that is≤ defines a reflexive, antisymmetric, transitive relation onQ. Here “antisymmetric”
means that T ≤ T̂ and T̂ ≤ T only if T = T̂ . A “chain” C in Q is a nonempty “totally
ordered subset” of Q. This means that if T, T̂ ∈ C, then either T ≤ T̂ or T̂ ≤ T. According
to Zorn’s Lemma, which is equivalent to the axiom of choice, if we can show that for any
chain C in Q there is a Q ∈ Q such that Q ≤ T for T ∈ C, (i.e., Q is a lower bound for

C), then there is a minimal element Q of Q. Here Q is “minimal” means that if Q̂ ∈ Q
and Q̂ ≤ Q, then Q̂ = Q.

The proof proceeds by showing that any chain has a lower bound, and then that any
minimal element of Q is necessarily linear.

To see that a chain C has a lower bound, define

Q(x) = inf
T∈C

T (x).

If we show that Q is sublinear, we have produced a lower bound for C. First we note that
−P ≤ −T implies that −P (−x) ≤ −T (−x) ≤ T (x) by (8.3). Hence −P (−x) ≤ Q(x),

and Q is finite everywhere. Now suppose that T̂ , T ∈ C. As T̂ ∧ T := min
{

T̂ , T
}
≥ Q,

and T̂ ∧ T is either T̂ or T (since Q is a chain) we have, for x̂, x ∈ E,

Q(x̂ + x) ≤ T̂ (x̂ + x) ∧ T (x̂ + x)

≤ (T̂ (x̂) + T̂ (x)) ∧ (T (x̂) + T (x)) ≤ T̂ (x̂) + T (x),

so
Q(x̂ + x) ≤ T̂ (x̂) + T (x).

Infing over T̂ and then T, we conclude that Q is subadditive. The infimum of positively
homogeneous functions is clearly positively homogeneous, and Q thus contains a minimal
element Q.

Now fix y ∈ E and put D = {y} and P = Q in Lemma 8.3, producing Q{y} ≤ Q. By
minimality of Q, Q = Q{y}; in particular

Q(x) = Q{y}(x) ≤ Q(x + λy)− λQ(y)

for 0 < λ, x ∈ E and y ∈ E. Since also Q(x + λy) ≤ Q(x) + λQ(y), we have equality,

Q(x + λy) = Q(x) + λQ(y).

Therefore linearity of Q will follow if we show that Q(−z) = −Q(z) for z ∈ E. Put
x = −2z, y = z and λ = 1 above to find

Q(−z) = Q(−2z) + Q(z) = 2Q(−z) + Q(z) =⇒ Q(−z) = −Q(z).
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�

Proof of Theorem 8.1 First, we may assume that κ := infD P > −∞. Indeed, if infD P =
−∞, we may replace D by {0}, and then the inequality of (8.4) implies the equality in
(8.4) with the original D. Apply Lemma 8.4 to PD in place of P, obtaining a minimal
subadditive function L, which will be linear, satisfying L ≤ PD. For y ∈ D,

−L(y) = L(−y) ≤ PD(−y) ≤ P (−y + λŷ)− λκ

for ŷ ∈ D, λ > 0. Choosing λ = 1, ŷ = y yields −L(y) ≤ −κ. Thus infD L ≥ κ = infD P ;
the opposite inequality follows from L ≤ PD ≤ P. �

8.3. Consequences of the Mazur-Orlicz Lemma. In the results immediately below,
we sometimes use the notation 〈x∗, x〉 to denote the value of a continuous linear functional
x∗ at a vector x in its domain and E∗, F ∗ are the spaces of continuous linear functionals
on E and F, respectively.

Theorem 8.5 (Hahn-Banach Extension Theorem). Let E be a real normed space, F
be a subspace of E and y∗ ∈ F ∗. Then there exists x∗ ∈ E∗ such that x∗|F = y∗ and
‖x∗‖E∗ = ‖y∗‖F ∗ .

Proof. Define P : E × F → IR by

P (x, y) = ‖y∗‖F ∗‖x‖ − 〈y∗, y〉.

Let D = {(y, y) : y ∈ F} . Notice that P (y, y) ≥ 0 for y ∈ F and P (0, 0) = 0 to conclude
that

inf
D

P = inf
y∈F

P (y, y) = 0.

Apply Theorem 8.1 to conclude that there exists a linear L : E × F → IR such that

(i) L(x, y) ≤ ‖y∗‖F ∗‖x‖ − 〈y∗, y〉 for x ∈ E, y ∈ F.

(ii) inf
y∈F

L(y, y) = 0.

Choosing x = 0 in (i) yields L(0, y) = −〈y∗, y〉 (if two linear functionals are ordered,
they are equal, or, as they say in Spain, a plane below a plane, is the plane :)). Choosing
y = 0 in (i) we see that L(x, 0) ≤ ‖y∗‖F ∗‖x‖, which implies (upon replacing x by −x)
that |L(x, 0)| ≤ ‖y∗‖F ∗‖x‖. In particular, the map x 7→ L(x, 0) is continuous on E; let us
call it x∗ ∈ E∗, and ‖x∗‖E∗ ≤ ‖y∗‖. In view of

L(y, y) = L(y, 0) + L(0, y) = 〈x∗, y〉 − 〈y∗, y〉 (y ∈ F ),

(ii) becomes 〈x∗, y〉 ≥ 〈y∗, y〉 for y ∈ F, which forces x∗
∣∣
F

= y∗. �

Corollary 8.6 (complex Hahn-Banach). Let E be a complex normed space, F be a sub-
space of E and y∗ ∈ F ∗. Then there exists x∗ ∈ E∗ such that x∗|F = y∗ and ‖x∗‖E∗ =
‖y∗‖F ∗ .
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Proof. Given y∗ ∈ F ∗, consider the real linear functional z∗ on F defined by

〈z∗, y〉 := <〈y∗, y〉.
Let w∗ be a real norm-preserving extension of z∗ to E as provided by Theorem 8.5. Then

〈x∗, x〉 := 〈w∗, x〉 − i〈w∗, ix〉
is a complex linear extension of y∗ to E. Clearly x∗ is real linear, and the full complex
linearity follows from 〈x∗, ix〉 = i〈x∗, x〉, a consequence of the definition of x∗. Then one
checks that the real and imaginary parts of x∗ agree with the real and imaginary parts of
y∗ on F. To verify the norm preserving property, ‖x∗‖E∗ = ‖y∗‖F ∗ , given x ∈ E, choose
α ∈ C, |α| = 1, such that α〈x∗, x〉 = |〈x∗, x〉| and then

|〈x∗, x〉| = |〈x∗, αx〉| = 〈w∗, αx〉 ≤ ‖w∗‖(real)E∗‖x‖ = ‖z∗‖(real)F ∗‖x‖ ≤ ‖y∗‖F ∗‖x‖.
�

Remark 8.7. While the above deduction of Corollary 8.6 from Theorem 8.5 seems in-
evitable - what else could one do? - and transparent, very good mathematicians, including
Banach, could not find it for a time after Theorem 8.5 was proved. See the comments
about this in Rudin, page 105. Question: What is the moral of this story?

Corollary 8.8. Let F be a closed linear subspace of the normed space E and x0 /∈ F. Then
there exists x∗ ∈ E∗ such that ‖x∗‖ ≤ 1, and 〈x∗, x0〉 = dist (x0, F ) and 〈x∗, F 〉 = {0} . In
consequence, if F is not necessarily closed, then

F̄ = {x ∈ E : x∗ ∈ E∗ and 〈x∗, F 〉 = {0} =⇒ 〈x∗, x〉 = 0} .

Proof. By assumption, dist (x0, F ) > 0. Define y∗ on the linear span of F and x0 by

〈y∗, y + λx0〉 = λ dist (x0, F ).

Since

‖y + λx0‖ = |λ|
∥∥∥y

λ
+ x0

∥∥∥ ≥ |λ|dist (x0, F ) (λ 6= 0, y ∈ F ),

we have ‖y∗‖F ∗ ≤ 1. We are done upon applying Corollary 8.6. �

Remark 8.9. Taking F = {0} , we learn that if x0 6= 0, then there exists x∗ ∈ E∗,
‖x∗‖ ≤ 1, such that 〈x∗, x0〉 = ‖x0‖ (and so ‖x∗‖ = 1). See the remarks in Rudin, page
108.

For convenience, we will call a vector λ = (λ1, . . . , λm) ∈ Rm a probability vector if

(8.7) 0 ≤ λ1, . . . , λm and λ1 + · · ·+ λm = 1.

Lemma 8.10 (Lemma on m Convex Functions). Let C be a nonempty convex subset of E
and f1, . . . , fm be m convex real-valued functions on C. Then there is a probability vector
λ ∈ IRm such that

(8.8) inf
C

(λ1f1 + · · ·+ λmfm) = inf
C

[f1 ∨ · · · ∨ fm].
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Proof. Define P : IRm → IR and D ⊂ IRm by

P (x1, . . . , xm) =
m∨

j=1

xj := x1 ∨ · · · ∨ xm, x = (x1, . . . , xm) ∈ IRm,

D = {(d1, . . . , dm) : ∃ c ∈ C such that fj(c) ≤ dj, j = 1, . . . ,m} .

P is sublinear and D is convex, so by Theorem 8.1 there exists λ = (λ1, λ2, . . . , λm) ∈ IRm

such that

(i) 〈λ, x〉 = λ1x1 + λ2x2 + · · ·+ λmxm ≤
m∨

j=1

xj for x ∈ IRm,

(ii) inf
D
〈λ, x〉 = inf

D

(
m∨

j=1

xj

)
.

(8.9)

Putting x = (−1, 0, . . . , 0) in (8.9) (i) we find

−λ1 ≤ 0 =⇒ 0 ≤ λ1; similarly, 0 ≤ λj, j = 1, . . . ,m.

Putting x = (−1,−1, . . . ,−1) and then x = (1, 1, . . . ,−1) in (8.9) (i) yields

1 ≤ λ1 + · · ·+ λm ≤ 1 or λ1 + · · ·+ λm = 1.

In view of the definition of D, (8.9) (ii) just amounts to the second relation of (8.8). �
If C is a convex subset of a real vector space E, then k : C →]−∞,∞] is convex if

(8.10) k((1− t)x + ty) ≤ (1− t)k(x) + tk(y) (0 ≤ t ≤ 1, x, y ∈ C).

Similarly, k is concave if −k is convex, or

(8.11) (1− t)k(x) + tk(y) ≤ k((1− t)x + ty) (0 ≤ t ≤ 1, x, y ∈ C).

Theorem 8.11 (Minimax). Let A be a nonempty convex subset of a vector space, B be
a nonempty convex subset of a (possibly different) vector space and B also be a compact
space. Let h : A× B → IR be concave on A and convex and lower-semicontinuous on B.
Then

(8.12) sup
a∈A

min
b∈B

h(a, b) = min
b∈B

sup
a∈A

h(a, b).

Remark 8.12. If A, B are any sets and h : A×B → IR, then

sup
a∈A

inf
b∈B

h(a, b) ≤ inf
b∈B

sup
a∈A

h(a, b).

The inequality can be strict. For example, take A = B = {0, 1} and define h(0, 1) =
h(1, 0) = 0 and h(0, 0) = h(1, 1) = 1.
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Remark 8.13. (von Neumann Minimax Theorem) The first result of this kind was due
to von Neumann; it is important in a number of fields, in particular, it is a keystone of
game theory. In his original work, von Neumann considered the case in which A is the
set of probability vectors in IRn, B is the set of probability vectors in IRm and

h(a, b) = 〈b, Ma〉
where M is an m× n real matrix. As h is linear in each argument, this is a very special
case of Theorem 8.11.

Proof. Let

(8.13) β := sup
a∈A

min
b∈B

h(a, b).

Assuming that β < minb∈B supa∈A h(a, b), we derive a contradiction, proving the theo-
rem. With this assumption, we have

∪a∈A {b ∈ B : h(a, b) > β} = B.

Since h is lower-semicontinuous on B, the sets {b ∈ B : h(a, b) > β} are open, and since
B is compact, it is covered by finitely many of these sets. Let a1, a2, . . . , am ∈ A be such
that

{b ∈ B : h(a1, b) > β} ∪ · · · ∪ {b ∈ B : h(am, b) > β} = B.

That is,

min
b∈B

(
m∨

j=1

h(aj, b)

)
> β.

From the Lemma on m convex functions, with fj(b) = h(aj, b), there exists

0 ≤ λj, λ1 + · · ·+ λm = 1,

such that

min
b∈B

(λ1h(a1, b) + · · ·+ λmh(am, b)) ≥ β.

By concavity of h on A, this implies

h(λ1a1 + · · ·+ λmam, b) > β,

which contradicts the definition (8.13) of β. �

Theorem 8.14 (Hahn-Banach-Lagrange-Simons). Let C be a nonempty convex subset of
some vector space F, k : C →]−∞,∞] be convex and k 6≡ ∞, and j : C → E satisfy

P (j(α1y1 + α2y2)− (α1j(y1) + α2j(y2))) ≤ 0

for y1, y2 ∈ C, 0 < α1, α2, α1 + α2 = 1.
(8.14)

Then there exists a linear functional L on E such that

(8.15) L ≤ P on E and inf
y∈C

(L(j(y)) + k(y)) = inf
y∈C

(P (j(y)) + k(y)).
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Proof. Define the sublinear functional P̂ → E × IR by

P̂ (x, λ) = P (x) + λ

and D ⊂ E × IR by

(8.16) D := {(z, λ) ∈ E × IR : ∃ y ∈ C such that P (j(y)− z) ≤ 0, k(y) ≤ λ} .

Note that

(8.17) (j(ŷ), k(ŷ)) ∈ D for ŷ ∈ C

because we may choose y = ŷ, λ = k(ŷ) in (8.16). We show that D is convex; this is where
(8.14) is needed. Suppose that (zj, λj) ∈ D for j = 1, 2 and 0 < α1, α2, α1 + α2 = 1. We
want to show that

(8.18) (α1z1 + α2z2, α1λ1 + α2λ2) ∈ D.

By the definition of D, there exists yj ∈ C such that

(8.19) P (j(yj)− zj) ≤ 0, k(yj) ≤ λj, j = 1, 2.

Then, by the convexity of k,

k(α1y1 + α2y2) ≤ α1k(y1) + α2k(y2) ≤ α1λ1 + α2λ2.

Moreover, using (8.14) and then subadditivity and (8.19),

P (j(α1y1 + α2y2)− (α1z1 + α2z2)

≤ P (j(α1y1 + α2y2)− (α1j(y1) + α2j(y2))) + P (α1j(y1) + α2j(y2)− (α1z1 + α2z2))

≤ P (α1j(y1) + α2j(y2)− (α1z1 + α2z2))

≤ α1P (j(y1)− z1) + α2P (j(y2)− z2) ≤ 0.

Hence D is convex.
Let L̂ be a linear functional (provided by Theorem 8.1) which satisfies

L̂ ≤ P̂ on E × IR and inf
(z,λ)∈D

L̂(z, λ) = inf
(z,λ)∈D

(P (z) + λ).

Writing L̂(x, λ) = 〈x∗, x〉+ γλ for some x∗ ∈ E∗, γ ∈ IR, this translates into

(8.20) 〈x∗, x〉+ γλ ≤ P (x) + λ (x ∈ E, λ ∈ IR)

and

(8.21) inf
(z,λ)∈D

(〈x∗, z〉+ γλ) = inf
(z,λ)∈D

(P (z) + λ).

From (8.20) with x = 0, we have γ = 1 and 〈x∗, x〉 ≤ P (x). Now, using (8.17),

inf
(z,λ)∈D

(〈x∗, z〉+ λ) ≤ 〈x∗, j(y)〉+ k(y) for y ∈ C.(8.22)

Conversely, if (z, λ) ∈ D and y ∈ C, P (j(y) − z) ≤ 0, k(y) ≤ λ, then 〈x∗, j(y) − z〉 ≤
P (j(y)− z) ≤ 0, so if (z, λ) ∈ D,

(8.23) ∃ y ∈ C such that 〈x∗, j(y)〉+ k(y) ≤ 〈x∗, z〉+ λ;
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from these last two relations we see that

inf
(z,λ)∈D

(〈x∗, z〉+ λ) = inf
y∈C

(〈x∗, j(y)〉+ k(y)).

Just as in (8.22),

inf
(z,λ)∈D

(P (z) + λ) ≤ P (y) + k(y) for y ∈ C

and, this time using that P (j(y)− z) ≤ 0 implies

P (j(y)) ≤ P (z) + P (j(y)− z) ≤ P (z),

we have the analogue of (8.23): if (z, λ) ∈ D, then

∃ y ∈ C such that P (j(y)) + k(y) ≤ P (z) + λ.

This completes the proof. �

9. Decompositions of Measures

We will be taking much of this material from Rudin, Chapter 6.
In this section (X,M) is a fixed measurable space. We consider the following varia-

tions of the notion of a “measure” on M. Recall that a measure is a countably additive
set function which takes values in [0,∞]. To distinguish these among the other types to
follow, we will use the term “nonnegative measure.” If we want to insist on finite nonneg-
ative values, we will say “nonnegative real measure.” The following notions still ask for
countable additivity, but the values are taken in other sets.

For convenience in discourse, we will use the term “partition of E ∈ M” to mean a
sequence of pairwise disjoint sets {Ej} ⊂ M such that E = ∪∞j=1Ej.

Definition 9.1. (a) A function µ : M→ IR such that

(9.1) µ(E) =
∞∑

j=1

µ(Ej) for every partition of E ∈M

is called a signed measure on M.
(b) A function µ : M→ C such that (9.1) holds is called a complex measure on M.

A signed measure might have nonnegative values, but it cannot take the value∞. Signed
measures are complex measures, but complex measures can take complex values. If λ, ν
are nonnegative real measures on M (again, the same thing as a plain old “measure”
which does not take the value ∞), then

(9.2) µ(E) := λ(E)− ν(E) defines a signed measure on M,

and if λ, ν are signed measures on M, then

(9.3) µ(E) := λ(E) + iν(E) defines a complex measure on M.
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Remark 9.2. In fact, (9.3) is general; the real and imaginary parts of a complex measure
are clearly signed measures. However, the positive and negative parts of a signed measure
are not, in general, measures, as is easy to see (Exercise 9.2). Dealing with signed or
complex measures, we lose two things which we are very much used to: 0 ≤ µ(E) and
A ⊂ B =⇒ µ(A) ≤ µ(B).

In another view, if ν is a plain old measure, and f is in L1(ν), then

(9.4) µ(E) :=

∫
E

f dν defines a complex measure on M.

If f is real-valued, f = f+ − f−, then

(9.5) µ(E) :=

∫
E

f dν =

∫
E

f+ dν −
∫

E

f− dν

writes µ as the difference of two nonnegative real measures. Moreover, taking E+ =
{f ≥ 0} , E− = {f < 0} , (9.5) tells us that

(9.6) µ(E) = µ(E ∩ E+)− µ(E ∩ E−).

The measures E 7→ µ(E ∩E+), µ(E ∩E−) are “concentrated” (defined precisely later) on
the disjoint sets E+, E−.

We will see below that these examples are pretty general.

9.1. An Overview of Main Results. We outline the main results of interest and then
prove some of them.

Theorem 9.3. Let µ be a complex measure on M. Then

(9.7) |µ|(E) := sup

{
∞∑

j=1

|µ(Ej)| : {Ej} is a partition of E

}

defines a measure |µ| on M for which |µ|(E) ≥ |µ(E)| for E ∈ M. Moreover, if λ is
another measure for which λ(E) ≥ |µ(E)|, for E ∈M, then λ ≥ |µ|.

Proof. For F ∈M let P (F ) = {partitions of F} . We need to show that

{Fj} ∈ P (F ) =⇒ |µ|(F ) =
∞∑

j=1

|µ|(Fj).

To this end, notice that {Ek}∞k=1 ∈ P (F ) implies {Ek ∩ Fj}∞k=1 ∈ P (Fj) for j = 1, 2, . . . ,
and {Ek ∩ Fj}∞j,k=1 ∈ P (F ). Moreover, if {Ej,k}∞k=1 ∈ P (Fj), j = 1, 2, . . . , then {Ej,k}∞j,k=1 ∈
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P (F ). Thus

|µ|(F ) = sup

{
∞∑

k=1

|µ(Ek)| : {Ek}∞k=1 ∈ P (F )

}

= sup

{
∞∑

k=1

|µ(∪∞j=1(Fj ∩ Ek))| : {Ek}∞k=1 ∈ P (F )

}

≤ sup

{
∞∑

k=1

∞∑
j=1

|µ(Fj ∩ Ek)| : {Ek}∞k=1 ∈ P (F )

}

≤ sup

{
∞∑

j,k=1

|µ(Ej,k)| : {Ej,k}∞k=1 ∈ P (Fj), j = 1, 2, . . .

}

= sup

{
∞∑

j=1

∞∑
k=1

|µ(Ej,k)| : {Ej,k}∞k=1 ∈ P (Fj), j = 1, 2, . . .

}

=
∞∑

j=1

|µ|(Fj).

The first inequality followed from µ(∪∞j=1(Fj ∩ Ek)) =
∑∞

j=1 µ(Fj ∩ Ek), the second
inequality arises because one sup is over a larger set, and the final equality is due to the
fact that the sum over k′s in the preceding expression is at most |µ|(Fj), but can be made
arbitrarily close (your basic ε/2j close) to |µ|(Fj). Finally, the fourth (equivalently, the
fifth) expression on the right is at most |µ|(F ) by definition of |µ|, so all the inequalities
are equalities.

Finally, |µ| is, by its very definition, the smallest measure λ for which λ(E) ≥ |µ(E)|
for E ∈M. Indeed, if λ is any such measure and {Ej}∞j=1 ∈ P (E), then

λ(E) =
∞∑

j=1

λ(Ej) ≥
∞∑

j=1

|µ(Ej)|

�

Definition 9.4. The measure |µ| is called the total variation measure of µ.

Caution: The notation is a tad dangerous. We would usually use the notation |f | for the
function x 7→ |f(x)|. The use of |µ| above is in conflict with this. |µ| is not the function
E 7→ |µ(E)|.

Remark 9.5. Let µ be a complex measure on (X,M). The natural question arises as to
how ∫

X

f dµ
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should be defined. It is a consequence of the Radon-Nikodym Theorem below that there
is a measurable function h which satisfies |h| = 1 everywhere, such that

(9.8) µ(E) =

∫
E

h d|µ| (E ∈M).

Then one can define

(9.9)

∫
X

f dµ :=

∫
X

fh d|µ| (fh ∈ L1(|µ|)).

This is what will be done; the notion so defined is “consistent” in that then∫
X

χE dµ =

∫
X

χEh d|µ| =
∫

E

h d|µ| = µ(E).

Theorem 9.6. If µ is a complex measure on (X,M), then |µ|(X) < ∞.

Remark 9.7. If you have a complex measure µ “in your hands,” that is, you have a
concrete description of how to compute its values, you should be able to quickly see that
|µ|(X) < ∞ without using any theorems. This theorem is of the sort that provides general
information which is evident in particular cases. This doesn’t make it useless, it does help
to organize knowledge, but it isn’t serious from the point of view of applications. There
are lots of such math results.

Proof. Since µ = λ+iν where λ, ν are the real and imaginary parts of µ, and |µ| ≤ |λ|+|ν|
(because |µ(E)| ≤ |λ(E)| + |ν(E)|), it suffices to assume that µ is a signed measure.
Suppose that |µ|(X) = ∞. We claim that then there is a partition A, B of X such that

(9.10) µ(A) > 1, µ(B) < −1.

Since then |µ|(X) = |µ|(A)+ |µ|(B), at least one of |µ|(A), |µ|(B) is infinity. Say |µ|(A) =
∞; applying the claim again, A has a partition A1, B1 such that (9.10) holds with A1, B1

in place of A, B. Continuing in this manner, we would produce a sequence of pairwise
disjoint sets {Ej} such that |µ(Ej)| > 1. This is a contradiction, for

µ
(
∪∞j=1Ej

)
=

∞∑
j=1

µ (Ej)

requires |µ(Ej)| → 0.
It remains to produce the splitting A, B of X satisfying (9.10). Since |µ|(X) = ∞,

there is a partition {Fj} of X such that
∞∑

j=1

|µ(Fj)| =
∑

{j:µ(Fj)≥0}

µ(Fj)−
∑

{j:µ(Fj)<0}

µ(Fj)

= µ
(
∪{j:µ(Fj)≥0}Fj

)
− µ

(
∪{j:µ(Fj)<0}Fj

)
> 2 + |µ(X)|.

(9.11)

Put A = ∪{j:µ(Fj)≥0}Fj, B = ∪{j:µ(Fj)<0}Fj and a = µ(A), b = µ(B). Since

µ(X) = µ(A) + µ(B) = a + b
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and (9.11) tells us |a− b| = a− b ≥ 2 + |µ(X)|, the result follows from

|a|, |b| ≥ |a− b| − |a + b|
2

,

which is valid for a, b ∈ IR. �

Definition 9.8. Let µ is a signed measure on M and |µ| be its total variation measure.
Then the nonnegative measures

µ+ :=
1

2
(|µ|+ µ), µ− :=

1

2
(|µ| − µ),(9.12)

are, respectively, the positive and negative variations of µ.

Remark 9.9. Note that µ = µ+ − µ−, |µ| = µ+ + µ−. In particular, any signed measure
can be written as the difference of nonnegative measures, as in (9.2). This particular
“decomposition” µ = µ+ − µ− into the difference of two measures is called the Jordan
decomposition of µ.

Definition 9.10. Let µ be a nonnegative measure on M (so µ can take the value ∞),
and λ be either a nonnegative or a complex measure on M.

(a) If λ(E) = 0 for every µ-null set E (ie, µ(E) = 0), then λ is absolutely continuous
with respect to µ, and we write λ � µ.

(b) If there is a set A ∈ M such that λ(E) = λ(E ∩ A) for E ∈ M, we say that λ is
concentrated on A.

(c) If λ1, λ2 are nonnegative or complex measures on M, and there are disjoint sets
A, B ∈ M such that λ1 is concentrated on A and λ2 is concentrated on B, then
λ1, λ2 are mutually singular, and we write λ1 ⊥ λ2. This description is symmetrical,
but one can say it this nonsymmetrical way: λ1 is concentrated on a λ2 null set.

Theorem 9.11 (Lebesgue-Radon-Nikodym). Let µ be a nonnegative σ-finite measure on
M and let λ be a complex measure on M.

(a) Then there is a unique pair of complex measures on M such that

(9.13) λ = λa + λs, λa � µ, λs ⊥ µ.

If λ is nonnegative and finite, then so are λa and λb.
(b) There is a unique h ∈ L1(µ) such that

(9.14) λa(E) =

∫
E

h dµ (E ∈M).

Definition 9.12. The pair (λa, λs) of (9.13) is called the Lebesgue decomposition of λ wrt
µ.

Definition 9.13. Suppose the assumptions of Theorem 9.11 are satisfied and, in addition,
λ � µ. Then (clearly) λs = 0 and (9.14) yields

(9.15) λ(E) =

∫
E

h dµ (E ∈M).
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Then h ∈ L1(µ) is called the Radon-Nikodym derivative of λ wrt µ. This is denoted by
dλ = hdµ or

h =
d µ

d λ
.

This result, which is here built into Theorem 9.11 is called the Radon-Niodym theorem.

Remark 9.14. Since it is clear that λ � |λ|, then Theorem 9.11 (b) above shows that a
general complex measure can be written in the form (9.4) (since |λ|(X) < ∞ by Theorem
9.6).

Theorem 9.15 (Hahn Decomposition). Let µ be a signed measure on M. Then there
exist disjoint sets A, B ∈M such that A ∪B = X and

(9.16) µ+(E) = µ(E ∩ A) and µ−(E) = −µ(E ∩B) (E ∈M).

Thus it is possible to write a general real measure as the difference of nonnegative real
measures concentrated on disjoint sets, as in (9.5).

9.2. Proof of the Lebesgue-Radon-Nikodym Theorem. This proof is due to von
Neumann, and it is therefore so blindingly brilliant and unlike anything in our previ-
ous experiece that we will sit in wonder at the end, not quite knowing what happened.
However, it is not painful and can easily be learned.

We begin with the lemma:

Lemma 9.16. Let µ be a nonnegative σ-finite measure on M. Then there is a function
w ∈ L1(µ) which satisfies 0 < w(x) < 1 for every x ∈ X.

Proof. If µ(X) < ∞, put w ≡ 1/2. Otherwise, let X = ∪∞n=1En where 0 < µ(En) < ∞.
Put wn(x) = 0 if x ∈ X \ En and

wn(x) =
2−n

1 + µ(En)
if x ∈ En

and w(x) =
∑∞

n=1 wn(x). Clearly 0 ≤ wn < 2−n, so 0 < w < 1. Moreover,∫
X

w dµ ≤
∞∑

n=1

∫
En

w dµ =
∞∑

n=1

2−n µ(En)

1 + µ(En)
< 1.

�
First assume that λ in Theorem 9.11 is a nonnegative real measure (and hence finite,

by Theorem 9.6). Associate w to µ as in Lemma 9.16, and let dφ = dλ + wdµ, which just
means that φ is the measure

φ(E) = λ(E) +

∫
E

w dµ.

In particular, ∫
X

χE dφ =

∫
X

χE dλ +

∫
X

χEw dµ,
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and then ∫
X

f dφ =

∫
X

f dλ +

∫
X

fw dµ

holds for simple functions, and then for nonnegative functions and then for f ∈ L1(φ).
Now consider the linear functional

L2(φ) 3 f 7→
∫

X

f dλ.

We have ∣∣∣∣∫
X

f dλ

∣∣∣∣ ≤ ∫
X

|f | dλ ≤
∫

X

|f | dφ ≤
(∫

X

|f |2 dφ

)1/2

φ(X)1/2

(Exercise 11). We are implicitly using

φ(X) = λ(X) +

∫
X

w dµ < ∞.

This shows our linear functional is continuous on the Hilbert space L2(φ), so by Corollary
12.8 (Riesz Representation Theorem), there exists g ∈ L2(φ) such that

(9.17)

∫
X

f dλ =

∫
X

fg dφ (f ∈ L2(φ)).

Put f = χE in (9.17) and use 0 ≤ λ ≤ φ to find

(9.18) 0 ≤ λ(E) =

∫
E

g dφ ≤ φ(E) =⇒ 0 ≤ 1

φ(E)

∫
E

g dφ =
λ(E)

φ(E)
≤ 1.

We use one more lemma, which we also need again later, to conclude from (9.18) that
0 ≤ g ≤ 1 ae. (Rudin Lemma 1.40).

Lemma 9.17. Let µ be a nonnegative real measure, µ(X) < ∞, f ∈ L1(µ), and S be a
closed convex subset of C. If

(9.19)
1

µ(E)

∫
E

f dµ ∈ S (E ∈M, µ(E) > 0)

then f(x) ∈ S for almost all x ∈ X.

Proof. Sc = C \ S is the union of countably many closed circular disks. Let ∆ ⊂ Sc be
such a disk; it suffices to prove that E := f−1(∆) is a µ null set. Let α be the center of
∆ and r > 0 be its radius. If µ(E) > 0, then∣∣∣∣ 1

µ(E)

∫
E

f dµ− α

∣∣∣∣ =

∣∣∣∣ 1

µ(E)

∫
E

(f − α) dµ

∣∣∣∣ ≤ 1

µ(E)

∫
E

|f − α| dµ ≤ r.

However, this contradicts (9.19). �
Hence 0 ≤ g ≤ 1 ae wrt φ. Hence we may assume that 0 ≤ g ≤ 1 everywhere. Rewrite

(9.17) in the form

(9.20)

∫
X

(1− g)f dλ =

∫
X

fgw dµ.
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Put

(9.21) A = {x : 0 ≤ g(x) < 1} , B = {x : g(x) = 1} ,

and define

(9.22) λa(E) = λ(A ∩ E), λs(E) = λ(B ∩ E) (E ∈M).

Clearly λs is concentrated on B. On the other hand, putting f = χB in (9.20), using that
g = 1 on B and 0 < w everywhere, yields∫

B

w dµ = 0 =⇒ µ(B) = 0.

Thus µ is concentrated on X \B = A, and so, by definition, λs ⊥ µ.
Next we choose

(9.23) f = (1 + g + · · ·+ gn)χE

in (9.20) to find

(9.24)

∫
E

(1− gn+1) dλ =

∫
E

g(1 + g + · · ·+ gn)w dµ.

Clearly

g(1 + g + · · ·+ gn)w ↑ h :=


∞ on {g = 1}
g

1− g
w on {g < 1} ,

while 1 − gn+1 ↑ χA as n → ∞. Using the monotone convergence theorem in (9.24)
therefore yields

λa(E) = λ(E ∩ A) =

∫
E

h dµ (E ∈M).

Taking E = X, we find h ∈ L1(µ) and then deduce that µ(E) = 0 implies that λa(E) = 0,
or λa � µ, as desired. This completes the proof for nonnegative real measures λ, up to
the claims of uniqueness. Clearly h satisfying (9.14) is unique a.e. µ, (given λa.) The
uniqueness of λa, λs is argued below.

If λ = λ1 + iλ2 with real λj, we use the above result on the positive and negative
variations of λ1, λ2. To glue the results of this together (first to obtain results about λj,
then to obtain the desired conclusions about λ), which involves noting:

ν1 ⊥ µ and ν2 ⊥ µ =⇒ ν1 + ν2 ⊥ µ,

ν1 � µ and ν2 � µ =⇒ ν1 + ν2 � µ.

The second claim is trivial. For the first claim, we note that if ν1, ν2 are concentrated on
A1, A2 respectively, and µ is concentrated on B1 and B2, where Aj ∩Bj = ∅, then ν1 + ν2

is concentrated on A1 ∪ A2 and µ is concentrated on B1 ∩B2.
As to the uniqueness, let λa, λ̂a � µ, λs, λ̂s ⊥ µ, and

λs + λa = λ̂s + λ̂a = µ,
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then, by the above remark,

µ ⊥ (λa − λ̂a) = (λ̂s − λs) � µ.

But ν ⊥ µ and ν � µ clearly implies ν = 0. �

9.3. Consequences of the Radon-Nikodym Theorem.

Corollary 9.18. Let λ, µ be nonnegative σ-finite measures on M. Then λ = λs + λa for
unique measures λa ⊥ µ and λs � µ. Moreover, there exists a unique (a.e. µ) h, 0 ≤ h,
such that

λa(E) =

∫
E

h dµ (E ∈M).

Proof. Let X1 ⊂ X2 . . . ⊂ X, X = ∪∞n=1Xn, and λ(Xn) < ∞ for n = 1, 2, . . . . Define
E1 = X1, E2 = X2 \ X1, E3 = X3 \ (X1 ∪ X2), etc, constructing a pairwise disjoint
partition of X on which λ is finite. Define λn(E) := λ(E ∩En) and λn

a , λ
n
s , hn ∈ L1(µ) be

the decomposition data for λn wrt µ as in the Radon-Nikodym Theorem. Note that we
may assume hn = 0 on X \ En. Then it is straightforward to show that

(9.25) λa :=
∞∑

n=1

λn
a , λs :=

∞∑
n=1

λn
s , h :=

∞∑
n=1

hn

have the desired properties. Finally, note that h is not necessarily in L1(µ), but∫
E

h dµ = λa(E) ≤ λ(E)

is finite iff λ(E) < ∞. �

Remark 9.19. If σ finiteness is dropped, then the Lebesgue - Radon-Nikodym Theorem
fails. Indeed, let λ be counting measure on (0, 1) and µ be Lebesgue measure and M con-
sists of the Lebesgue measurable subsets of (0, 1). Then λ has no Lebesgue decomposition
relative to µ and even though µ � λ, there is no h ∈ L1(λ) such that µ = hλ. (exercise)

Theorem 9.20. Let µ be a complex measure on M. Then there is a measurable function
h such that |h(x)| = 1 for all x ∈ X, and dµ = hd|µ|.

Theorem 9.21. Let µ be a positive measure on M, g ∈ L1(µ), and

λ(E) :=

∫
E

g dµ (E ∈M).

Then d|λ| = |g|dµ.

The Hahn Decomposition (Theorem 9.15).

Corollary 9.22 (to the Hahn Decomposition). If µ is a signed measure and µ = λ1−λ2,
where λ1, λ2 are nonnegative measures, then λ1 ≥ µ+, λ2 ≥ µ−.
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9.3.1. The Continuous Linear Functionals on Lp. This result deserves its own subsec-
tion. Throughout this subsection, µ is a σ-finite nonnegative measure on M. We seek to
represent the bounded linear functionals Φ : Lp(µ) → F for 1 ≤ p < ∞. We know some
of them. If g ∈ Lq(µ) where q is the Hölder conjugate of p, then

(9.26) Φg(f) :=

∫
X

fg dµ.

is well defined by virtue of the Hölder inequality, and

(9.27) |Φg(f)| ≤ ‖f‖p‖g‖q,

so ‖Φg‖ ≤ ‖g‖q. In fact, all continuous linear functionals on Lp(µ) may be so represented.

Theorem 9.23. Let 1 ≤ p < ∞. If Φ ∈ Lp(µ)∗, 1 ≤ p < ∞, then there is a unique
g ∈ Lq(µ) such that Φ = Φg. Moreover, ‖Φg‖ = ‖g‖q. That is, the mapping g 7→ Φg is a
linear isometry of Lq(µ) onto Lp(µ)∗.

Proof. We first show that g, g′ ∈ Lq(µ) and Φg = Φg′ implies g = g′ a.e. If µ(E) < ∞,
then χE ∈ Lp(µ), we have, by assumption,

Φg(χE) = Φg′(χE) =⇒
∫

E

(g − g′) dµ = 0.

According to Exercise 34, this guarantees that g = g′ ae. Thus g 7→ Φg is 1-1.
We attempt now to define a measure associated with Φ ∈ Lp(µ)∗; then the Radon

Nikodym Theorem will be used to obtain the g for which Φ = Φg. We initially assume
that µ(X) < ∞. Define λ on M by

(9.28) λ(E) := Φ(χE).

If E has a partition {Ej} , then we observe that

‖χE −
n∑

j=1

χEj
‖Lp(µ) = ‖χE\∪n

j=1χEj
‖Lp(µ) = µ(E \ ∪n

j=1Ej))
1/p → 0(9.29)

as n →∞. (Here is a place that p < ∞ was used). On the other hand, this implies that

λ(E)−
n∑

j=1

λ(Ej) = Φ(χE)− Φ(
n∑

j=1

χEj
) → 0,

as Φ is continuous on Lp(µ). Thus

(9.30) λ(E) =
∞∑

j=1

λ(Ej),

and λ is a measure. Clearly µ(E) = 0 =⇒ λ(E) = 0. Thus by the Radon-Nikodym
theorem, there is a g ∈ L1(µ) such that

(9.31) λ(E) = Φ(χE) =

∫
E

g dµ (E ∈M).
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By linearity it follows that

(9.32) Φ(f) =

∫
E

fg dµ

for simple functions f. If f ∈ L∞(µ), then it is the uniform limit of simple functions fj,
and then ‖fj − f‖Lp(µ) → 0 (here µ(X) < ∞ is used). Thus, by continuity of Φ, (9.32)
holds for f ∈ L∞(µ).

If p = 1, (9.31) shows that∣∣∣∣∫
E

g dµ

∣∣∣∣ ≤ ‖Φ‖‖χE‖1 = ‖Φ‖µ(E).

By Lemma (9.17), it follows that |g| ≤ ‖Φ‖ ae.
For 1 < p < ∞, we first define

β(z) =


z̄

|z|
if z 6= 0

1 if z = 0.
,

so that β(z)z = |z|. Since β is Borel measurable, x 7→ β(f(x)) is measurable and α(x) =
β(g(x)) satisfies αg = |g| and |α| = 1 everywhere. Put En = {|g| ≤ n} and define
f = χEn|g|q−1α. Then |f |p = |g|q on En and f ∈ L∞(µ). Applying (9.32) to this choice of
f, we find ∫

En

|g|q dµ =

∫
X

fg dµ = Φ(f) ≤ ‖Φ‖
(∫

En

|g|q dµ

)1/p

.

Thus ∫
X

χEn|g|q dµ ≤ ‖Φ‖q.

Using the monotone convergence theorem, we pass to the limit to find ‖g‖q ≤ ‖Φ‖. Thus
Φg and Φ are both continuous and agree on the dense subspace L∞(µ) of Lp(µ), and
therefore Φ = Φg. Moreover, from the above and (9.27), ‖Φg‖ = ‖g‖q. This completes the
proof for the case µ(X) < ∞.

To treat the case X = ∪∞j=1Ej, where E1 ⊂ E2, . . . and µ(Ej) < ∞, define µk to be µ
restricted to the sigma algebra of those measurable sets which are subsets of Ek; µk is a
finite measure. For f ∈ Lp(µk), define fk to be the extension of f to X which vanishes
off of Ek. The functional Lp(µk) 3 f → Φ(fk), call it Φk, is linear and ‖Φk‖ ≤ ‖Φ‖. By
what we already proved, there exists gk ∈ Lq(µ), ‖gk‖q ≤ ‖Φ‖, such that

Φk(f) =

∫
Ek

fgk dµk (f ∈ Lp(µk)).

By the uniqueness of g’s, and Ej ⊂ Ek if j ≤ k, it follows that gj = gk a.e. on Ej. Hence
defining g on X by

g = gk on Ek
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is perfectly sensible. Since for 1 < p < ∞ (you do the p = 1 case)∫
X

|g|q dµ = lim
k→∞

∫
Ek

|g|q dµ = lim
k→∞

∫
Ek

|gk|q dµk ≤ ‖Φ‖q,

g ∈ Lq(µ) and Φ(f) = Φg(f) if f vanishes on Ek. By density (χEk
f → f in Lp(µ)),

Φ = Φg, and we are done in general. �

10. Differentiation of Measures, Integrals and Functions

Much of this material is taken from Rudin, Chapter 7.

10.1. Notation, Definitions and a Few Preliminaries. In this section we work in
IRn. We will use the notation

B (x, r) := {y : |y − x| < r}

to denote the open ball of center x and radius r. We will also use the notation

|E| := Ln(E) for the Lebesgue measure of E ⊂ IRn.

The following quantities will appear, involving a (usually complex) Borel measure µ on
IRn :

(10.1) (Qrµ)(x) :=
µ(B (x, r))

|B (x, r) |
=

µ(B (x, r))

ωnrn
,

where ωn is the area of the unit sphere in IRn,

(10.2) (Dµ)(x) := lim
r↓0

(Qrµ)(x) (for x such that the limit exists),

(10.3) (Mµ)(x) = sup
0<r<∞

(Qrµ)(x) (µ ≥ 0).

Definition 10.1. At points x where Dµ(x) is defined, Dµ(x) is called the symmetric
derivative of µ at x. The function Mµ is called the maximal function of µ. It can take the
value ∞.

In the case where µ is given by

µ(E) =

∫
E

|f(x)| dx

for some f ∈ L1 (IRn) , then we write Mf instead of Mµ. That is

(10.4) (Mf)(x) := sup
0<r<∞

1

ωnrn

∫
B(x,r)

|f(y)| dy.

In this case, we call Mf the maximal function of f.
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Definition 10.2. A function h : IRn → [−∞,∞] is lower semicontinuous if any, and
hence all, of the following equivalent conditions are satisfied:

(i) {x : f(x) > λ} is open for λ ∈ (−∞,∞].

(ii) {x : f(x) ≤ λ} is closed for λ ∈ (−∞,∞].

(iii) if xk → x, then lim inf
k→∞

f(xk) ≥ f(x).

(10.5)

Lemma 10.3. Let µ be a nonnegative Borel measure on IRn. Then Mµ is lower semi-
continuous; thus it is measurable.

Proof. There are two main points. The first is that Qr is lower-semicontinuous for fixed
r > 0. To see this, let xk → x. Then

(10.6) B(x, r) ⊂ ∪∞j=1 ∩∞k=j B(xk, r),

which implies that

µ(B(x, r)) = lim
j→∞

µ(∩∞k=jB(xk, r)) ≤ lim inf
j→∞

µ(B
(
xj, r

)
).

Since |B(x, r)| is a multiple of rn, independent of x, Qr is lower-semicontinuous. The next
main point is that the sup of any family {fα, α ∈ A} of lower semicontinuous functions is
again lower semicontinuous. To see this, we note that

f(x) := sup
α∈A

fα(x)

implies

{x : f(x) > λ} = ∪α∈A {x : fα(x) > λ} ,

which is the union of open sets. �

10.2. Maximal Functions and Lebesgue Points. The most important result in this
section is:

Theorem 10.4. Let f ∈ L1 (IRn) . Then for almost all x ∈ IRn

(10.7) lim
r↓0

1

rn

∫
B(x,r)

|f(y)− f(x)| dy = 0.

Remark 10.5. The unmodified expression “almost all” or the form “a.e.” of this will
always mean relative to Lebesgue measure in this section.

Definition 10.6. If (10.7) holds for x, then x is called a Lebesgue point of f.

In the course of proving Theorem 10.4 we will use

Theorem 10.7. If µ is a nonnegative real Borel measure on IRn, and λ > 0, then

(10.8) | {Mµ > λ} | ≤ 3n µ(IRn)

λ
.
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When µ(E) =
∫

E
|f | dx, (10.7) becomes

(10.9) | {Mf > λ} | ≤ 3n
‖f‖

L1(IR
n
)

λ
.

Note that if g ∈ L1 (IRn) , then

(10.10) | {|g| > λ} |λ ≤
∫
IRn

|g| dx = ‖g‖
L1(IR

n
);

that is, |g| obeys the same sort of inequality as Mf does in (10.9). However, this sort of
inequality is not equivalent to being in L1, and it is therefore referred to as follows: if

λ| {|g| > λ} | is bounded for λ > 0,

then “g is in weak L1.” The function x 7→ 1/|x| for IR 3 x 6= 0 is an example of a weak
L1 function which is not L1.

The proof of Theorem 10.7 is not more difficult than that of the special case µ(E) =∫
E
|f | dx. The key ingredient is a covering lemma.

Lemma 10.8. Let B (xj, rj) , j = 1, 2, . . . , N be a finite collection of balls in IRn. Let

W := ∪N
j=1B (xj, rj) .

Then there is a set S ⊂ {1, . . . , N} such that

(a) B (xj, rj) ∩B (xk, rk) = ∅ for j, k ∈ S, j 6= k.
(b) W ⊂ ∪j∈SB (xj, 3rj) .

Proof. Relabel the balls so that rN ≤ rN−1 ≤ . . . ≤ r1. Set l1 = 1. Discard B (xj, rj) if
it intersects B (x1, r1) , and let j be the first index 1 < j for which B (xj, rj) does not
meet B (x1, r1) . Put l2 = j. Repeat this process, discarding all remaining balls which
meet B (xl2 , rl2) , and let l3 be the least index from the set of non cast out balls for which
B (xl3 , rl3) meets B (xl2 , rl2) , etc. The process terminates in some number m ≤ N steps.
We claim S = {l1, . . . , lm} has the desired properties. Property (a) is clear. Property (b)
is also clear, for any ball which was cast out meets a ball we kept, and which has at least
as large a radius. But if two balls meet, then the one with the smallest radius is contained
in the ball with thrice the radius and same center as the other ball (in other words, draw
a pic). �
Proof of Theorem 10.7. Let K be a compact subset of the open set {Mµ > λ} . Each
x ∈ K is the center of an open ball B for which

µ(B) ≥ λ|B|.
Select a finite subcover of K by such balls, and apply the preceding lemma to extract a
disjoint subcollection {B1, . . . , Bm} , for which the balls with the same centers and thrice
the radius cover K. Then

|K| ≤ 3n

m∑
j=1

|Bj| ≤ 3nλ−1µ(Bj) ≤ 3n µ(IRn)

λ
.
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The result follows upon supping over the compact sets K. �
Proof of Theorem 10.4. For f ∈ L1 (IRn) and r > 0, define the function Trf by

(10.11) (Trf)(x) :=
1

|B (x, r) |

∫
B(x,r)

|f(y)− f(x)| dy =
1

ωnrn

∫
B(x,r)

|f(y)− f(x)| dy,

and then the function Tf by

(10.12) (Tf)(x) := lim sup
r↓0

(Trf)(x).

We seek to show that Tf = 0 a.e. Notice that

(10.13) Tf ≤ Mf + |f |.

Next, notice that Tr, and hence T, is subadditive:

(10.14) Tr(f + g) ≤ Trf + Trg =⇒ T (f + g) ≤ Tf + Tg.

so that

Tf = T (f − g + g) ≤ T (f − g) + Tg.

Finally, we notice that Tg = 0 if g is continuous. Combining this with (10.13), we conclude
that if g ∈ L1 (IRn) is continuous, then, by the above,

(10.15) Tf ≤ M(f − g) + |f − g|.

If (Tf)(x) > λ, then it must be that at least one of M(f − g) and |f − g| is more than
λ/2; that is

{Tf > λ} ⊂ {M(f − g) > λ/2} ∪ {|f − g| > λ/2} .

Furthermore, by Theorem 10.7 and (10.10),

| {M(f − g) > λ/2} | ≤ 3n2
‖f − g‖

L1(IR
n
)

λ
, {|f − g| > λ/2} | ≤ 2

‖f − g‖
L1(IR

n
)

λ

Hence {Tf > λ} is contained in a set of measure at most

2(3n + 1)
‖f − g‖

L1(IR
n
)

λ
,

where g ∈ C(IRn) ∩ L1 (IRn) is arbitrary. Since the continuous functions are dense in
L1 (IRn) , {Tf > λ} is contained in a set of measure 0, and, Lebesgue measure being
complete, it is then a measurable set of measure 0, and we are done. �
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10.2.1. Some Consequences of Theorem 10.4. We’ll say more in class, but won’t write
much here (“too simple” :)).

(1) If f ∈ L1 (IRn) and x is a Lebesgue point of f and {Ej} is a sequence of sets and
{rj} is a sequence of positive numbers convergent to 0, and Ej ⊂ B (x, rj) , then

1

|Ej|

∫
Ej

|f(y)− f(x)| dy ≤
rn
j

|Ej|
1

rn
j

∫
B(x,rj)

|f(y)− f(x)| dy → 0

provided that the ratio rn
j /|Ej| is bounded above; equivalently, |Ej| ≥ κ|B (x, rj) |

for some κ > 0. This is the definition of {Ej} shrinks nicely to x. Note that we do
not even need x ∈ Ej. Of course, this implies

1

|Ej|

∫
Ej

f(y) dy → f(x).

(2) Let f ∈ L1(0, 1) and extend it as 0 to the rest of IR. Consider

1

h

(∫ x+h

0

f(y) dx−
∫ x

0

f(y) dy

)
=

1

|h|

∫
[x,x+h]

f(y) dy

for x ∈ (0, 1) and |h| > 0. As the intervals [x, x+h] shrink nicely to x, we conclude
that F (x) :=

∫ x

0
f(y) dy is differentiable a.e. on (0,1) (in the calculus sense) and

F ′(x) = f(x) a.e.
(3) If E is any set, we have

|E ∩B (x, r) |
|B (x, r) |

=
1

|B (x, r) |

∫
B(x,r)

χE dy → χE(x)

for almost every x. It follows that the metric density of E (namely, the limit of
the left-hand side as r ↓ 0) exist almost everywhere, is 1 a.e. on E and is 0 a.e. on
the complement of E.

11. The Fundamental Theorem of Calculus, Lebesgue Style

We are out to identify the functions f : [0, 1] → IR for which f ′ exists ae, belongs to
L1(0, 1), and

(11.1) f(x)− f(0) =

∫ x

0

f ′(s) ds (0 ≤ x ≤ 1),

where the integral is understood in the Lebesgue sense. To minimize notation, we will
work on [0,1] rather than “[a, b]”, as does Rudin, but if you understand [0,1], you can
easily generalize to [a, b]. To start, suppose that g ∈ L(0, 1) and

(11.2) f(x) = f(0) +

∫ x

0

g(s) ds (0 ≤ x ≤ 1).

What properties does f have? Well, we know by Section 10.2.1, point (2), that f ′ exists
a.e. and f ′ = g a.e. This much information about f, that f ′ exists a.e. and is in L1(0, 1),
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does not guarantee that (11.1) holds. The key property of those functions f of the form
(11.2) is this: suppose that (aj, bj) ⊂ [0, 1] for j = 1, . . . ,m is a finite collection of pairwise
disjoint intervals. Then

(11.3)
m∑

j=1

|f(bj)− f(aj)| =
m∑

j=1

|
∫ bj

aj

g(s) ds| ≤
m∑

j=1

∫ bj

aj

|g(s)| ds.

We claim that for every ε > 0 there is a δ > 0 such that

(11.4)
m∑

j=1

(bj − aj) < δ =⇒
m∑

j=1

∫ bj

aj

|g(s)| ds < ε.

This is a special case of the following general remark.

Lemma 11.1. Let µ be a nonnegative measure on a σ-algebra M and g ∈ L1(µ). Then
for every ε > 0 there is a δ > 0 such that if µ(E) < δ, then

∫
E
|g| dµ < ε.

Proof. If the assertion of the theorem fails for some ε > 0, then there exist sets Ej such
that µ(Ej) < 1/2j, but ∫

Ej

|g| dµ > ε

Let

Fk = ∪∞j=kEj; then µ(Fk) ≤
1

2k−1
.

The Fk decrease with k and, by the above, we would have that F := ∩∞k=1Fk is a µ-null
set for which ∫

F

|g| dµ = lim
k→∞

∫
Fk

|g| dµ ≥ lim sup
k→∞

∫
Ek

|g| dµ ≥ ε.

This is a contradiction. �
Thus (11.4) indeed holds, and by (11.3) we then know that if f is given in the form

(11.2), it must be AC (short for absolutely continuous) in the sense of the definition below.

Definition 11.2. A function f : [0, 1] → C is absolutely continuous (AC for short) if for
every ε > 0 there exists a δ > 0 such that if (aj, bj) ⊂ [0, 1], j = 1, . . . ,m, is a finite
collection of pairwise disjoint intervals and

∑m
j=1(bj−aj) < δ, then

∑m
j=1 |f(bj)−f(aj)| ≤

ε.

The hard part of the Fundamental Theorem of Calculus, Lebesgue style, is:

Theorem 11.3. If f : [0, 1] → C is AC, then f is differentiable at almost all x ∈ [0, 1],
f ′ ∈ L1(0, 1), and f(x) = f(0) +

∫ x

0
f ′(s) ds for 0 ≤ x ≤ 1.

Remark 11.4. It is not true that if f : [0, 1] → IR is continuous, differentiable a.e. and
f ′ ∈ L1(0, 1), then f is AC. In Rudin, Section 7.16, or, more congenially, in SS, page 125
(bottom), one finds a continuous monotone f with f(0) = 0, f(1) = 1, satisfying f ′(x) = 0
a.e. on [0,1].



66

The proof proceeds through a couple of stages. The first is to establish (11.3) for
nondecreasing functions, and the second reduces the general case to the monotonic one.

This is Rudin, Theorem 7.18.

Theorem 11.5. Let f : [0, 1] → IR be continuous and nondecreasing. Then the following
conditions on f are equivalent:

(a) f is AC on [0,1].
(b) f maps sets of measure 0 to sets of measure 0.
(c) f is differentiable a.e. on [0,1] and

f(x) = f(0) +

∫ x

0

f ′(s) ds (0 ≤ x ≤ 1).

Proof. We will show that (a) =⇒ (b) =⇒ (c) =⇒ (a). Assuming (a), let E be a Lebesgue
null subset of [0,1]. We have to show that f(E) is Lebesgue null. Clearly we may assume
that 0, 1 /∈ E. Since Lebesgue measure is complete, it is enough to show that, for ε > 0,
f(E) is contained in a measurable set W which satisfies |W | ≤ ε. Let δ > 0 go with ε
per Definition 11.2 and let V be an open subset of (0,1) which contains E and satisfies
|V | < δ. V is the disjoint union of open intervals (aj, bj) which satisfy

∑∞
j=1(bj − aj) < δ.

Set W = ∪∞j=1[f(aj), f(bj)]; clearly f(V ) ⊂ W. By the choice of δ,

|W | ≤
∞∑

j=1

(f(bj)− f(aj)) ≤ ε.

Thus (a) =⇒ (b).
To continue, assume that f satisfies (b). We first claim that this guarantees that f(E)

is measurable if E is measurable. To see this, let E ⊂ [0, 1] be measurable and Kj be an
increasing sequence of compact sets such that Kj ⊂ E and |E\∪j=1Kj| = 0. Since f(Kj) is
compact (by continuity of f), it is measurable and therefore so is ∪∞j=1f(Kj) = f(∪∞j=1Kj).
Now

f(E) = f(E \ ∪∞j=1Kj) ∪ f(∪∞j=1Kj)

presents f(E) as the union of the measurable set f(∪∞j=1Kj) and f(E \ ∪∞j=1Kj), which,
due to (b), has measure 0. Thus f(E) is measurable.

If |E| = 0, then E ⊂ ∩∞j=1Vj for some decreasing sequence of open sets Vj such that
|Vj| ↘ 0. We claim that

(11.5) |f(Vj)| ↘ |f(∩∞j=1Vj)| = 0.

To see this, we figure out the extent to which ∩∞j=1f(Vj) and f(∩∞j=1Vj) might differ. If
they differ by a null set, and we will show the difference is an at most countable set, it
follows that

|f(Vj)| ↘ | ∩∞j=1 f(Vj)| = |f(∩∞j=1Vj)| = 0,

whence (11.5).
It is clear that f(∩∞j=1Vj) ⊂ ∩∞j=1f(Vj).
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Suppose that y ∈ ∩∞j=1f(Vj) \ f(∩∞j=1Vj). We claim that then the inverse image of y

under f, f−1(y), which is a closed interval Iy by the monotonicity of f, cannot be a
singleton, Iy = {x}. Indeed, if it were, then y ∈ ∩∞j=1f(Vj) implies x ∈ Vj for all j and
then y ∈ f(∩∞j=1Vj).

Thus
{
Iy : y ∈ ∩∞j=1f(Vj) \ f(∩∞j=1Vj))

}
is a pairwise disjoint collection of subintervals

of [0, 1] of positive length. There can only be at most countably many such intervals.
Hence ∩∞j=1f(Vj) \ f(∩∞j=1Vj) is countable, and (11.5) is established.

Now set
g(x) := x + f(x).

We claim that g also satisfies (b). Indeed, if (a,b) is any component of Vj above, then

|g((a, b))| = |(a + f(a), b + f(b))| = b− a + f(b)− f(a) = |(a, b)|+ |(f(a), f(b))|
and this implies that |g(Vj)| ≤ |Vj|+ |f(Vj)|. Invoking (11.5), the claim follows.

The virtue of g is its strict monotonicity. It allows us to define a measure µ on Lebesgue
measurable subsets of [0,1] by

µ(E) = |g(E)|.
Since the image under g of a measurable set E is measurable by arguments above, and since
{g(Ej)}j=1 is a pairwise disjoint collection of sets whenever {Ej}∞j=1 is, µ is a measure.

Since g satisfies (b), µ(E) = 0 whenever |µ(E)| = 0. According to Radon-Nikodym, there
is then an h ∈ L1(0, 1) such that

µ([0, x]) = |g([0, x])| = g(x)− g(0) = f(x)− f(0) + x− 0 =

∫ x

0

h(s) ds

or

f(x) = f(0) +

∫ x

0

(h(s)− s) ds (0 ≤ x ≤ 1).

By previous results f ′(x) = h′(x)− 1 a.e, and we have proved that (b) =⇒ (c).
We already established that (c) =⇒ (d). �
To get around the restriction to nondecreasing f in the implications (a) ⇐⇒ (b) and

prove Theorem 11.3, we use the following notion.

Definition 11.6. Let f : [0, 1] → C. Then

V (x) := sup

{
n∑

j=1

|f(tj)− f(tj−1)| : 0 = t0 < t1 < . . . < tn = x, n = 1, 2, . . .

}
(0 ≤ x ≤ 1)

is the total variation of f over [0, x] and V is the total variation function of f. Note that
V (x) = ∞ is possible. If V (x) < ∞, f is said to be of bounded variation on [0, x]. We will
call a set {0 = t0 < t1 < . . . < tn = x} a partition of [0, x].

Theorem 11.7. Let f : [0, 1] → C be AC. Then the total variation function V of f is
AC. Moreover, if f is real valued, the functions V, V ± f are nondecreasing and AC on
[0,1].
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Proof. Suppose that 0 ≤ x < y ≤ 1. Then for any partition {0 = t0 < t1 < . . . < tn = x}
of [0, x] we have

V (y) ≥ |f(y)− f(x)|+
n∑

j=1

|f(tj)− f(tj−1)|

which implies

V (y) ≥ V (x) and V (y) ≥ f(y)− f(x) + V (x) and V (y) ≥ f(x)− f(y) + V (x)

so V, V ± f are nondecreasing.
It remains to show that V is AC; that V ±f is AC then follows from the fact that sums

of AC functions are AC. Let ε > 0 and δ > 0 be associated to f as in Definition 11.2. Let
{(αj, βj)}n

j=1 be a collection of disjoint subintervals of [0, 1] such that

(11.6)
n∑

j=1

(βj − αj) < δ.

Let κ > 0 and αj = tj,0 < tj,1 < . . . < tj,mj
= βj be a partition such that

V (βj)− V (αj) ≤
mj∑
k=1

|f(tj,k)− f(tj,k−1)|+ κ.

Then
n∑

j=1

(V (βj)− V (αj)) ≤
n∑

j=1

mj∑
k=1

|f(tj,k)− f(tj,k−1)|+ nκ.

Now the intervals (tj,k−1, tj,k), j = 1, . . . , n, 0 ≤ k ≤ mj, are pairwise disjoint and the sum
of their lengths is less than δ by (11.6). It follows that

n∑
j=1

(V (βj)− V (αj)) ≤ ε + nκ,

where κ > 0 was arbitrary. Thus V is AC. �
Proof of Theorem 11.3 Clearly it suffices to assume that f is real. Let V be the variation
function of f and consider the nondecreasing AC functions V + f and V. According to
Theorem 11.5, both of these functions are differentiable almost everywhere, the derivatives
belong to L1(0, 1), and they are given by the integrals of their derivatives. Thus the same
is true for V + f − V = f. �

Remark 11.8. Some of the above discussion goes through if we merely assume that
V (1) < ∞ (and drop the requirement that f be AC. If V (1) < ∞, we say that f is of
bounded variation on [0,1]. It is still true that the functions V ±f are nondecreasing, and
then f = (V + f)/2− (V − f)/2 represents f as the difference of nondecreasing functions.
According to Exercise 40, it follows that if f is of bounded variation, it is differentiable
a.e.
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11.1. Changes of Variables in Integrals. I can see that we aren’t going to get this
far. We are all tired. However, it is worth at least explaining Theorem 7.26 of Rudin,
pages 153-154. In this statement V ⊂ IRn and T : V → IRn is assumed to be differentiable
at every point of some set X ⊂ V, which means that for x ∈ X, then

(11.7) T (x + h) = T (x) + Ah + o(h) as h → 0,

for some A ∈ L(IRn, IRn). The condition (11.7) means

lim
h→0

|T (x + h)− T (x)− Ah|
|h|

= 0.

If (11.7) holds for some A, then A is unique, T is said to be differentiable at x, and one
sets T ′(x) := A. You can think of T ′(x) as an n× n matrix, called the derivative of T at
x; I often call it the Jacobian matrix of T at x. It is a calculus theorem that (11.7) holds
with Aj,k = ∂Tk

∂xj
(x) if the components of T (x) have continuous partial derivatives with

respect to the components xj of x on V. There is an irritating glitch in the notation here.
One either gets seriously pedantic, or more flexibly thinks of elements of IRn as either
rows or columns depending on the situation. In (11.7), we think of vectors as columns in
order to match up right with the formula for the entries of A just recalled. When T is
differentiable at x we define the Jacobian determinant of T at x by

JT (x) = det(T ′(x))

Theorem 11.9. Suppose that

(i) X ⊂ V ⊂ IRn, V is open, T : V → IRn is continuous;
(ii) X is measurable, T is 1-1 on X, T is differentiable at every point of X;
(iii) |T (V \X)| = 0.

Then if f : IRn → [0,∞], ∫
T (X)

f(y) dy =

∫
X

f(T (x))|JT (x)| dx.

As regards the various assumptions, the differentiability of T is usually obvious in
concrete cases, and the differentiability holds on the full open set V. Verifying the 1-1
assumption in (ii) requires an ad hoc analysis of T, is cannot be verified “globally” by
fairly simple conditions on T ′ when n > 1. However, if T ′(x) is continuous on V and
JT (x) 6= 0, the proof of the inverse function theorem includes a proof that T is “locally
1-1.” The condition (iii) looks a bit scary, but Lemma 7.25 of Rudin shows that it is
satisfied if T is differentiable at each point of V and |V \X| = 0; it is also clearly satisfied
if X = V. Subtle points include that the measurability of x 7→ f(T (x))|JT (x)| is built into
the assertion of the theorem, but it is not necessarily true that x 7→ f(T (x)) is measurable
just because f is measurable.
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12. Appendix: Inner-product and Hilbert Spaces

We assume that you have seen much of this, in a linear algebra course, so we are terse.
An inner-product space (V, 〈·, ·〉) consists of a vector space V (real or complex) and a

mapping

(12.1) V × V 3 (u, v) → 〈u, v〉 ∈ F ,

(here F denotes the scalar field, not the Fourier thingy), which has the following properties

(i) u → 〈u, v〉 is linear,

(ii) 〈u, v〉 = 〈v, u〉,
(iii) 〈u, u〉 ≥ 0 and 〈u, u〉 = 0 iff u = 0.

(12.2)

Note that if F = IR, then (ii) (in which the overbar means “complex conjugate”) says
〈u, v〉 = 〈v, u〉.

Example 12.1. A basic example, for us, is the space L2(µ), where (X,M, µ) is a measure
space, with the inner-product

(12.3) 〈f, g〉 =

∫
X

fg dµ.

Hereafter (V, 〈·, ·〉) is an inner-product space. The associated norm ‖ · ‖ is given by

(12.4) ‖u‖ =
√
〈u, u〉.

While we used the word “norm,” we have yet to verify that it is a norm. All properties
of a norm are immediate, except the triangle inequality, which is proved below. First we
notice that

‖u + v‖2 = 〈u + v, u + v〉 = 〈u, u + v〉+ 〈v, u + v〉
= 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉
= ‖u‖2 + 2<〈u, v〉+ ‖v‖2.

(12.5)

Lemma 12.2 (Cauchy-Schwarz inequality). If u, v ∈ V, then

(12.6) |〈u, v〉| ≤ ‖u‖‖v‖.

In consequence, ‖ · ‖, as defined in (12.4), is a norm.

Proof. To prove (12.6) we may assume that u 6= 0, v 6= 0. For t ∈ IR, (12.5) yields

0 ≤ 〈u + tv, u + tv〉 = ‖u‖2 + 2t<〈u, v〉+ t2‖v‖2.

The minimum value of the rhs wrt t is attained at

t = −<〈u, v〉
‖v‖2

.
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Plugging this value of t into the above, we find

0 ≤ ‖u‖2 − 2
<〈u, v〉
‖v‖2

<〈u, v〉+

(
−<〈u, v〉

‖v‖2

)2

‖v‖2 = ‖u‖2 − <〈u, v〉2

‖v‖2

or

(12.7) |<〈u, v〉| ≤ ‖u‖‖v‖.

We are done in a real inner-product space. In the complex case, chose α ∈ IR such that

|〈u, v〉| = eiα〈u, v〉 = 〈eiαu, v〉

and then, via (12.7),

|〈u, v〉| = |<〈eiαu, v〉| ≤ ‖eiαu‖‖v‖ = ‖u‖‖v‖.

Finally, the triangle inequality for the norm follows from

‖u + v‖2 = ‖u‖2 + 2<〈u, v〉+ ‖v‖2 ≤ ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2 = (‖u‖+ ‖v‖)2.

�
We will say that two vectors u, v are orthogonal if

〈u, v〉 = 0;

this is also the meaning of u ⊥ v. Note here that we allow u = 0 or v = 0.
We will call an indexed family of vectors in V, say {vα : α ∈ A} , pairwise orthogonal if

NO vα = 0 and

(12.8) vα ⊥ vβ for α, β ∈ A, α 6= β.

If {vα : α ∈ A} is pairwise orthogonal, we say, more elegantly, that {vα : α ∈ A} is an
orthogonal sysem. If, in addition, ‖vα‖ = 1 for α ∈ A, we say that {vα : α ∈ A} is an
orthonormal system. It follows from (12.5) that if {v1, · · · , vn} is an orthogonal system,
then

(12.9) ‖
n∑

j=1

ajvj‖2 =
n∑

j=1

|aj|2‖vj‖2.

Lemma 12.3. Let {v1, . . . , vn} be a pairwise orthogonal system in V. Let u ∈ V. Then

(12.10)

(
u−

n∑
j=1

ajvj

)
⊥ vk for k = 1, 2, · · · , vn,

iff

(12.11) ak =
〈u, vk〉
‖vk‖2

for k = 1, 2, · · · , n.
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Proof. We have

〈u−
n∑

j=1

ajvj, vk〉 = 〈u, vk〉 − 〈
n∑

j=1

ajvj, vk〉 = 〈u, vk〉 − ak〈vk, vk〉 = 〈u, vk〉 − ak‖vk‖2,

and the equivalence of (12.10) and (12.11) follows. �
Let u ∈ V and {v1, . . . , vn} be an orthogonal system. Let the ak be given by (12.11)

and b1, . . . , bn ∈ F . Then

‖u−
n∑

j=1

bjvj‖2 = ‖

(
u−

n∑
j=1

ajvj

)
+

(
n∑

j=1

(aj − bj)vj

)
‖2

= ‖u−
n∑

j=1

ajvj‖2 + ‖
n∑

j=1

(aj − bj)vj‖2

= ‖u−
n∑

j=1

ajvj‖2 +
n∑

j=1

|aj − bj|2‖vj‖2

(12.12)

because the two terms displayed in parentheses on the right of the first line are orthogonal
by remarks just made and the vj are an orthogonal system. It follows, in this view, that
the the choice bj = aj, as given by (12.11), makes the left hand side above as small as
possible among all choices of the bj. Taking the bj = 0, we also find that

(12.13) ‖u‖2 = ‖u−
n∑

j=1

ajvj‖2 +
n∑

j=1

|aj|2‖vj‖2 ≥
n∑

j=1

|aj|2‖vj‖2.

The inequality of the extremes is called Bessel’s inequality. We conclude more; rather than
use a general index set, we formulate the next two results for the indexing associated with
Fourier series. The first result is immediate from (12.13).

Proposition 12.4. Let {vj}∞j=−∞ be an orthogonal system in V, u ∈ V and aj be given

by (12.11), j = 1, 2, . . . . Then

u =
∞∑

j=−∞

ajvj (convergence in (V, ‖ · ‖))

iff

(12.14) ‖u‖2 =
∞∑

j=−∞

|aj|2‖vj‖2.

If an inner-product space is complete, it is called a Hilbert space.
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Proposition 12.5. Let (V, 〈·, ·〉) be a Hilbert space and {vj}∞j=−∞ be an orthogonal system.

Let aj ∈ F , j = 1, . . . . Then limN→∞
∑N

j=−N ajvj exists, that is
∑∞

j=−∞ ajvj converges, iff

(12.15)
∞∑

j=−∞

|aj|2‖vj‖2 < ∞.

Proof. We have, for M ≤ N ∈ N,

‖
N∑

j=−N

ajvj −
M∑

j=−M

ajvj‖2 =
∑

M+1≤|j|≤N

|aj|2‖vj‖2,

so the sequence of partial sums is Cauchy iff (12.15) holds. �
The following theorm has to do with the “geometry” of Hilbert spaces. The key ingre-

dient of the proof is the fact that if H is a Hilbert space, x1, x2 ∈ H and x1, x2 and the
midpoint of the line segment joining them, (x1 + x2)/2, all have about the same norm
(which is bounded), then ‖x1 − x2‖ has to be small. We single this out in a preliminary
lemma.

Lemma 12.6. Let H be a Hilbert space, λ > 0, M > 0, x1, x2 ∈ H and

(12.16) ‖x1‖, ‖x2‖ ≤ λM and M ≤ 1

2
‖x1 + x2‖.

Then

(12.17) ‖x1 − x2‖2 ≤ 42M2(λ2 − 1).

Proof. We may assume that H is a real Hilbert space (use the real part of the inner-
product if H is originally complex). The first estimate we need is

4M2 ≤ ‖x1 + x2‖2 = ‖x1‖2 + ‖x2‖2 + 2〈x1, x2〉 ≤ 2λ2M2 + 2〈x1, x2〉,
which implies that

2M2(2− λ2) ≤ 2〈x1, x2〉.
In consequence, using the above,

‖x1 − x2‖2 ≤ ‖x1‖2 + ‖x2‖2 − 2〈x1, x2〉
≤ 2λ2M2 − 2M2(2− λ2) = 4M2(λ2 − 1).

�

Theorem 12.7. Let C be a nonempty closed convex subset of a Hilbert space H. Then
there is a unique point x ∈ C of minimal norm; that is,

(12.18) ‖x‖ ≤ ‖y‖ for y ∈ C.

Moreover, x ∈ C satisfies (12.18) if and only if

(12.19) ‖x‖2 ≤ <〈y, x〉 for y ∈ C.
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Proof. Let M = inf {‖y‖ : y ∈ C} . Let {xj} be a norm minimizing sequence in C, that
is, ‖xj‖ → M. If M = 0, then xj → 0 ∈ C, and we are done, 0 is the unique element of
minimal norm. If M > 0, define λj ≥ 1 by

‖xj‖ = λjM.

By assumption, λj → 1. Since (xj + xk)/2 ∈ C, we have

M ≤ 1

2
‖xj + xk‖.

Applying Lemma 12.6 with λ = max(λj, λk) and xj, xk in place of x1, x2, we conclude
that

‖xj − xk‖2 ≤ 4M2(max(λj, λk)
2 − 1) → 0 as j, k →∞.

Thus {xj} is Cauchy and converges to some x ∈ C satisfying ‖x‖ = limj→∞ ‖xj‖ = M.
Thus x is an element of minimal norm. If x̂ ∈ C is any element of minimal norm, we
apply (12.6) with λ = 1 and x, x̂ in place of x1, x2 to find x = x̂.

The characterization (12.19) is established as follows. If (12.19) holds and y ∈ C, then

‖x‖2 ≤ <〈x, y〉 ≤ ‖y‖‖x‖,
so ‖x‖ ≤ ‖y‖. In the other direction, if y ∈ C and 0 ≤ t ≤ 1, then x+ t(y−x) ∈ C and so

‖x‖2 ≤ ‖x + t(y − x)‖2 = ‖x‖2 + 2t<〈x, y − x〉+ t2‖y − x‖2

for 0 ≤ t ≤ 1. Clearly, then, (12.19) holds. �
In consequence, we can find all the continuous linear functionals on a Hilbert space; it

turn out that they are just the elements of the space, as explained below.

Corollary 12.8 (Riesz Representation Theorem). Let f ∈ H∗, that is, f : H → F is
linear and continuous. Then there is a unique y ∈ H such that f(x) = 〈x, y〉 for x ∈ H.

Proof. First, if f = 0, then clearly y = 0 is the unique vector in H for which f(x) = 〈x, y〉
for y ∈ H.

If f 6= 0, let Nf = {x ∈ H : f(x) = 0} . Nf is a closed subspace of H. Suppose g ∈ H∗

and Nf ⊂ Ng. Choose z ∈ H such that f(z) 6= 0. We claim that then

(12.20) g(x) =
g(z)

f(z)
f(x) ∀x ∈ H.

Indeed, for any x ∈ H,

(12.21) f

(
x− f(x)

f(z)
z

)
= f(x)− f(x) = 0 =⇒ x− f(x)

f(z)
z ∈ Nf ⊂ Ng.

Hence

g

(
x− f(x)

f(z)
z

)
= g(x)− f(x)

f(z)
g(z) = 0,

as claimed in (12.20).
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If we can find 0 6= y ⊥ N, ie, 〈n, y〉 = 0 for n ∈ Nf , as we will show that we can do,
then g(x) = 〈x, y〉 satisfies Nf ⊂ Ng and so, replacing z by y in (12.20),

〈x, y〉 =
g(y)

f(y)
f(x) =

‖y‖2

f(y)
f(x) =⇒ f(x) = 〈x,

f(y)

‖y‖2
y〉

and renaming
f(y)

‖y‖2
y

to y, we have established the existence of a y such that f(x) = 〈x, y〉. If ŷ also has this
property, then f(x)− f(x) = 〈x, y− ŷ〉 = 0 for every x, in particular x = y− ŷ, so y = ŷ.

It remains to find 0 6= y ⊥ N. Consider the closed convex set C = z − N, with z as
above, and let z − n, n ∈ N, be the element of minimal norm of C. By (12.19),

‖z − n‖2 ≤ <〈z − n, z − w〉 = <〈z − n, z − n + n− w〉 = ‖z − n‖2 + <〈z − n, n− w〉
for w ∈ N. Since n ∈ N while w ∈ N is arbitrary, we conclude that

z − n ⊥ N ie, z − n is perpendicular to every element of N.

Thus y = z − n has the desired properties. �

Exercises

Exercise 1. In Proposition (3.1), we assumed that X was a countable union of sets in S.
The effect of this is that the set on the right of (3.2) never empty. However, if we define
inf ∅ = ∞, then (3.2) makes sense without assuming that X is a countable union of sets
in S. Show that ν∗ is still an outer measure in this situation. (This is almost nothing,
given that you may refer to the notes and don’t need to reproduce what is there. The
point is just for you to learn the definitions.)

Exercise 2. Take X = S0 =
{
(x, y) ∈ IR2 : |x|, |y| < 3/2

}
; that is, S0 is the open square

centered at the origin of side length 3. Let S to be the set of open subsquares in S0 with
sides parallel to the axes and ν(S) = diam(S). Let S1, S2, S3, S4 be the open squares of
side length 1 in the four corners of S0 (draw a picture). Verify that ν∗(S) = ν(S) for
S ∈ S and deduce from this that

ν∗ (S0) <
4∑

i=1

ν∗(Si).

Finally, use this to conclude that Si is not ν∗-measurable for some i ∈ {1, 2, 3, 4} , and
therefore for all i = 1, 2, 3, 4. A point of this is that the “δ ↓ 0” aspect of the definition of
Hausdorff measures is necessary to have Borel sets be measurable.

Exercise 3. Let ν∗ be an outer measure on X where (X, d) is a metric space. Show that
if the Borel sets are ν∗-measurable, then ν∗ is a metric outer measure. Hint: Suppose that
A, B ⊂ X and dist (A, B) > 0. Show that for δ > 0, the set Aδ = {x ∈ X : dist (x, A) < δ}
is open, and for δ small Aδ ∩B = ∅. Now use the assumed measurability of Aδ.
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Exercise 4. Show the the definition (3.19) is unchanged if the restriction s : X → [0,∞)
is added on the right.

Exercise 5. Show that with the definition (3.19) one has∫
E

f dµ =

∫
X

χEf dµ = sup

{∫
E

s dµ : s is simple and 0 ≤ χEs ≤ χEf

}
.

(Rudin top of pg 20)

Exercise 6. Let f : X → [0,∞]. If µ(E) = 0, then
∫

E
f dµ = 0 even if f(x) = ∞ for all

x ∈ E. If f(x) = 0 for all x ∈ E, then
∫

E
f dµ = 0 even if µ(E) = ∞. (Rudin top of pg

20)

Exercise 7. Verify the claims about dp(f, g) = 0 and ∼, X/ ∼, d̃ around (4.8).

Exercise 8. Show that the conditions

(12.22) ∀ε > 0 ∃ J 3 µ ({x : |fj(x)− f(x)| > ε}) < ε for j > J

and

(12.23) ∀ε > 0 ∃ N 3 µ ({x : |fj(x)− fk(x)| > ε}) < ε for j, k > N.

are equivalent to (4.16), (4.17), respectively.

Exercise 9. (a) Show that if fj → f in measure, then {fj} is Cauchy in measure.
(b) Show that if fj → f and fj → g in measure, then f = g a.e.
(c) Is it necessarily true that if f is the function constructed in the proof of Lemma

4.3, then fj → f in measure? (See also Rudin, Pg 74, #18.)

Exercise 10. Show that L∞(µ) is complete.

Exercise 11. Let 1 ≤ r, s ≤ ∞. If (X,M, µ) is a finite measure space, show that
Lr(µ) ⊂ Ls(µ) if r ≥ s. Hint: Hölder inequality.

Exercise 12. In the case of Lebesgue measure on a subset E of IRn, we simply write
Lp(E) rather than display Lebesgue measure restricted to E. Let 1 ≤ r, s ≤ ∞.

(a) Let B be the unit ball in IRn. Show that Lr(B) ⊂ Ls(B) only if r ≥ s.
(a) Show that Lr(IRn) ⊂ Ls(IRn) only if r = s.

Hint: Consider functions of the form |x|−α near infinity and near 0. You may assume
that changes of variables to spherical coords are ok and Riemann integrals of nonnegative
functions are Lebesgue integrals.

Exercise 13. (a) The identity map I of IR3, that is, Ix = x for x ∈ IR3, is a bounded
linear mapping from any of l23, l

1
3, l

∞
3 into any of l23, l

1
3, l

∞
3 (see Definition 4.4). Com-

pute the norm of I as a mapping between any two of these spaces.
(b) Determine the set of 1 ≤ r, s ≤ ∞ for which lr ⊂ ls for the sequence spaces of

Definition 4.4.
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Exercise 14. Let Z be a vector space. If z, w ∈ Z, the line segment joining z and w is

[z, w] := {tz + (1− t)w : 0 ≤ t ≤ 1} .

A subset C of Z is convex if it contains the line segment joining any two of its points.
For general C ⊂ Z, the convex hull conv C of C is the smallest convex set containing C.
Show that conv C is the set of all vectors of the form

t1z1 + · · ·+ tmzm

where zj ∈ C, tj ≥ 0 for j = 1, . . . ,m,

t1 + · · ·+ tm = 1,

and m = 1, 2, . . . .

Exercise 15. Let (Z, ‖ ‖ be an nls. If C ⊂ Z, then C is its closure, C◦ denotes its
interior, conv C is its convex hull, and conv C is the closure of the convex hull of C. If
a ∈ F , then aC = {az : z ∈ C} . If C, D ⊂ Z, then C + D = {z + w : z ∈ C, w ∈ D} and
C −D = {z − w : z ∈ C, w ∈ D} .

Below, a ∈ F , and C, D ⊂ Z.

(a) Show that aC = aC.
(b) Show that (aC)◦ = aC◦.
(c) If C is convex, show that C and C◦ are convex.
(d) If C is open, then so is C + D.

Exercise 16. Show that
∫ π

−π
|Dn(t)| dt →∞ as n →∞.

Exercise 17. Consider the mapping f 7→ sN(f) :=
∑N

−N f̂(n)eint, which takes f into the

N th partial sum of its Fourier series. Show that it is not true that for all f in L1(−π, π)
we have ‖f − sN(f)‖L1(−π,π) → 0 as N →∞. Hint: In outline, but not in detail, the proof
mimics the proof that Fourier series of a continuous function do not converge pointwise
to the function. You need to show that ‖SN‖ is unbounded in N , and this is related to
‖DN‖L∞(−π,π).

Exercise 18. Let X be a normed linear space, Y be a Banach space, M ∈ IR, and
{Tj}∞j=1 ⊂ L(X, Y ) satisfy

‖Tj‖ ≤ M (j = 1, 2, . . .).

Show that C := {x ∈ X : limj→∞ Tjx exists} is a closed linear subspace of X. Show
that if C is dense, then Tx := limj→∞ Tjx is a bounded linear operator and ‖T‖ ≤
lim supj→∞ ‖Tj‖.

Exercise 19. Let X, Y be a Banach spaces, and {Tj}∞j=1 ⊂ L(X, Y ). Let T : X → Y be
linear. One says that Tj → T

(a) in the uniform operator topology if ‖Tj − T‖ → 0 (which gets abbreviated to
Tj → T in norm).
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(b) in the strong operator topology if Tjx → Tx for all x ∈ X (which gets abbreviated
to Tj → T strongly).

(c) in the weak operator topology if f(Tjx) → f(Tx) for all x ∈ X and all f ∈ Y ∗,
the dual space of Y (which gets abbreviated to Tj → T weakly).

Here are questions about these notions of convergence of operators.

(i) Show that Tj → T in norm implies Tj → T strongly implies Tj → T weakly.
(ii) According to Theorem 6.4 the operators sN satisfy sN → I (the identity) strongly.

Show that sN → I does not hold in norm.
(iii) Show that the translations τhf(x) = f(x−h) satisfy τh → I strongly in Lp (IRn) , 1 ≤

p < ∞, as h → 0, but τh → I does not hold in norm.
(iv) Do the same for the mappings f → ρε ∗ f of Theorem 7.2 (as ε ↓ 0.)
(v) Consider the shift operator S({x1, x2, . . .}) = {0, x1, x2, . . .} , which is an isometry

of l2 into l2. Show that Sj → 0 weakly, but not strongly. You may assume Corollary
12.8, which tells you what the continuous linear functionals on l2 are.

Exercise 20. (a) Provide details about the claim (7.3).
(b) In the context of (7.3), provide a formula for

∫
E

f(T−1x) dx in terms of the integral
of f over some set.

Exercise 21. Show that if f : IRn → IR is Lebesgue measurable, then there is a Borel
measurable function f0 such that f = f0 a.e. You may quote - do so in detail by giving
page numbers or statements - results from KF or your lecture notes from last quarter,
but not other sources. Close any gaps to accommodate “infinite measures.”

Exercise 22. Let 1 ≤ p, q ≤ ∞ (not necessarily conjugate) be such that

1

p
+

1

q
≥ 1 and define r ≥ 1 by

1

r
=

1

p
+

1

q
− 1.

Show that f ∗ g exists a.e. and

‖f ∗ g‖
Lr(IR

n
) ≤ ‖f‖

Lp(IR
n
)‖g‖Lq(IR

n
).

Exercise 23. Let f ∈ L1 (IRn) and consider the mapping Tg = f ∗g of Lp (IRn) into itself
where 1 ≤ p < ∞. Show that the norm of T is ‖f‖

L1(IR
n
).

Exercise 24. Show that if f ∈ L1 (IRn) , then u(t, x) as given by (7.12) is continuous on
IRn × (0,∞) and has continuous first partial derivatives there, which may be computed
by differentiating “under the integral sign.”

STARRED EXERCISES BELOW NEED NOT BE TURNED IN - WHICH ONES ARE
STARRED MAY CHANGE A BIT (until March 8 ). IF YOU SEE WRONG THINGS,
LET ME KNOW - TIA. Right now there are 14 unstarred problems below, but I judge
about 7 of them to be short and “easy.”
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Exercise 25. There is something amiss with our sketch of proof in Section 7.2. It does
not appear to use that f(π) = f(−π), which certainly must be the case if f is the uniform
limit of trig polys. Clarify this point.

Exercise 26. Show that
P (x) = lim sup

j→∞
xj

is a sublinear function on (real) l∞. Show that if L : l∞ → IR is linear and L ≤ P, then
L is continuous and satisfies

L(x) = lim
j→∞

xj

whenever the limit exists. Continuous linear functionals with this property are called
“Banach limits.”

Exercise 27. Use Zorn’s Lemma, as formulated during the proof of Lemma 8.4, to prove
that if “ ≤ ” is a partial order on a set S, and every chain in S has an upper-bound, then
S contains maximal elements (with the obvious definition).

Exercise 28. Let H be a Hilbert space. For any S ⊂ H, define

S⊥ = {x ∈ H : 〈x, s〉 = 0 for s ∈ S} .

(a) Show that S⊥ is a closed linear subspace of H.

(b) Show that
(
S⊥)⊥ is the closure of the linear span of S.

Exercise 29.∗ Let (H, 〈·, ·〉) be a Hilbert space. Let D(A) be a subspace of H, not
necessarily closed, and A : D(A) → H be linear. We will abbreviate this to “A is a linear
operator in H.” Define the graph G(A) of A by

G(A) = {(x, Ax) : x ∈ D(A)} ⊂ H ×H.

Note that G(A) is a linear subspace of H×H and H×H is a Hilbert space when equipped
with the inner-product

〈(x, y), (u, v)〉H×H := 〈x, u〉+ 〈y, v〉.
(a) Let V be a linear subspace of H×H. Show that it is the graph of a linear operator

iff (0, v) ∈ V implies v = 0.
(b) Show that {

(x, y) : (−y, x) ∈ G(A)⊥
}

is the graph of a linear operator iff D(A) is dense. If D(A) is dense, the operator
A∗ whose graph is

{
(x, y) : (−y, x) ∈ G(A)⊥

}
is called ‘the adjoint of A.”

(c) If D(A) is dense, show that D(A∗) is dense if and only if the closure of G(A) is
a graph. This property of A, that the closure of G(A) is a graph, is referred to
by saying “A is closeable,” while the operator Ā whose graph is the closure of the
graph of A is called the closure of A. If G(A) itself is closed, then A is said to be
a closed linear operator.

(d) Show that if A is a densely defined closeable linear operator, then (A∗)∗ = Ā.
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(e) If A ∈ L(H, H), show that A∗ ∈ L(H, H) and ‖A∗‖ = ‖A‖.
(f) If A is a closed linear operator, and R(A) := {Ax : x ∈ D(A)} , show that R(A)⊥ =

N(A∗) := {x ∈ D(A∗) : A∗x = 0}. If R(A) is closed, we conclude that Ax = y has
a solution x ∈ D(A) iff y ⊥ N(A∗). This is the Fredholm Alternative.

(g) Let D(A) be the set of twice continuously differentiable functions u on [0, 1] sat-
isfying u(0) = u(1) = 0 (you may assume that D(A) is dense in L2(0, 1)) and

(Au)(x) = −(1 + x2)u′′(x) +

∫ x

0

sin(s)exu(s) ds (u ∈ D(A), 0 ≤ x ≤ 1).

Show that A is closeable by showing that D(A∗) is dense.

Exercise 30.∗ Let H be a Hilbert space. Define

(12.24) S =
{
{vα}α∈A : {vα}α∈A is an orthonormal system in H

}
I guess we have to say what this notation means. “{vα}α∈A” denotes an “indexed family
of vectors,” where vα has the index α from the “index set” A. In other words, we are
talking about a function f : A → H, where vα is another name for f(α). We are about to
partially order S by

{vα}α∈A ≤ {v′α}α′∈A′

where “≤” means inclusion of the sets of vectors, independent of the particular indexing.
That is, if f : A → H, f ′ : A′ → H are the functions corresponding to the “systems,”
then f ≤ f ′ means f(A) ⊂ f ′(A′).

(a) Show that S has a maximal element with this ordering.
(b) Show that {vα}α∈A is maximal iff H is the closure of the linear span of {vα}α∈A .

Hint: If H is not the closure of the linear span of {vα}α∈A , rediscover where we
proved that then there is a unit vector v which satisfies 〈v, vα〉 = 0 for α ∈ A.

(c) If {vα}α∈A is any orthonormal system and v ∈ H, use Bessel’s inequality (12.13)
to show that 〈v, vα〉 = 0 except for at most countably many α. (Hint: how many
α’s can there be for which |〈v, vα〉| ≥ δ where δ > 0?

(d) If {vα}α∈A is maximal and v ∈ H, show that

v =
∑

α∈A,〈v,vα〉6=0

〈v, vα〉vα.

By (c), the sum above is over an at most countable set. Not indicating the order
of summation means that the statement is true no matter how the summands are
ordered.

(e) Conclude that if {vα}α∈A is maximal, then the mapping v 7→ {〈v, vα〉}α∈A is
an isometry of H onto the Hilbert space of functions g : A → C such that∑

α∈A |g(α)|2 < ∞, which is equipped with the inner-product

〈h, g〉 =
∑
α∈A

h(a)g(a).

This space is just L2(counting measure on P(A)).
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Exercise 31. Let µ be a complex measure on (X,M). Show that if {Aj}∞j=1 is an in-
creasing sequence of measurable sets, then

µ(∪∞j=1Aj) = lim
j→∞

µ(Aj).

Exercise 32. Give an example to show that if µ be a signed measure on (X,M), then
A 7→ µ(A)+ is not necessarily a nonnegative real measure.

Exercise 33. Let (X,M) be a measurable space. Consider the space

M = {µ : µ is a complex measure on (X,M)}
M is a vector space in the obvious way. Show that

‖µ‖ = |µ|(X)

is a norm on M and (M, ‖ · ‖) is a Banach space. Hint: suppose {µj}∞j=1 is a Cauchy

sequence in M and {Ek}∞k=1 is a sequence of pairwise disjoint measurable sets. Along the
way, show that for ε > 0 there exists Nε such that

|µj|(∪∞k=KEk) ≤ ε for K ≥ Nε, j = 1, 2, . . . .

Exercise 34. Let (X,M, µ) be an arbitrary measure space and f ∈ Lp(µ) where 1 ≤
p ≤ ∞ and f is allowed to take complex values.

(a) Show that if 1 ≤ p < ∞ and
∫

E
f dµ = 0 for every set of finite measure E, then

f = 0 a.e.
(b) Show, however, that the assertion of (a) is in general false for f ∈ L∞(µ) by

considering the weird space preceding (3.15).
(c) Show that the assertion of (a) does hold for p = ∞ if µ is σ-finite.

Exercise 35. Let f, g ∈ L1(IRn), 0 ≤ f. Let

λ(E) =

∫
E

g dx, µ(E) =

∫
E

f dx.

Find the Lebesgue decomposition of λ with respect to µ.

Exercise 36. (a) Part of the proof of the Arzéla-Ascoli Theorem (AAT) is this: Let
(X, d), (Y, ρ) metric spaces and {fj}∞j=1 be a sequence of functions fj : X → Y

such that {fj(x)}n
j=1 lies in a compact subset of Y for each x ∈ X. Let {xk}∞k=1

be a countable subset of X. Then there is a subsequence fjl
of the fj’s such that

liml→∞ fjl
(xk) exists for each k. The proof goes by selecting a subsequence of the

fj’s along which fj(x1) converges, then a subsequence of the one just selected along
which fj(x2) converges, and so on, and then “diagonalize.” Do not write this up,
but do review/understand it.

(b) Let (X, ‖ · ‖) be a separable normed space; that is, there is a countable dense
subset of X, call it {xk}∞k=1 . Let X∗ be the space of continuous linear functionals
on X and

{
x∗j
}∞

j=1
⊂ X∗ be bounded. then

{
〈x∗j , x〉

}
is bounded for each x ∈ X
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(we are denoting the value of x∗ ∈ X∗ at x ∈ X by 〈x∗, x〉 in this exercise). Using
Part (a) of this exercise and Exercise 18, conclude that there is a subsequence x∗jl

of the x∗j and x∗ ∈ X∗ such that 〈x∗jl
, x〉 → 〈x∗, x〉 for x ∈ X. In the nomenclature

of Exercise 18, x∗jl
→ x∗ strongly.

Exercise 37. Explain how Corollary 8.8 provides a nonzero Φ ∈ L∞(0, 1)∗ which is 0 on
C([0, 1]). Prove that there is no g ∈ L1(0, 1) for which Φg = Φ.

Exercise 38. Let (X, ‖ · ‖) be a Banach space, X∗ be the space of continuous linear
functionals on X and “〈x∗, x〉” have the same meaning as in Exercise 36. A sequence
{xk}∞k=1 is said to converge weakly to x ∈ X if 〈x∗, xk〉 → 〈x∗, x〉 for x∗ ∈ X∗, and a
sequence

{
x∗j
}∞

j=1
is said to converge weakly ∗ to x∗ ∈ X∗ if 〈x∗j , x〉 → 〈x∗, x〉 for x ∈ X.

Note that weak ∗ convergence of a sequence in X∗ is the same as strong convergence as a
sequence of operators and express your irritation at the nomenclature (to yourself). This
nomenclature horror is compounded by the common usage of xk → x “strongly” to mean
‖xk − x‖ → 0.

(a) Show that if {xk}∞k=1 ⊂ X and xk → x weakly, then the sequence is bounded.
Hint: Each x ∈ X defines a continuous linear functional on X∗ by x∗ → 〈x∗, x〉.
What is the norm of this linear functional?

(b) Show that Lp(IRn) is separable for 1 ≤ p < ∞ and L∞(IRn) is not separable.
I’ll be satisfied with n = 1, for simplicity in writing. Hints: (i) C0(IR) is dense.
(ii) Approximate compactly supported continuous functions uniformly by step
functions with rational values on some well chosen countable collection of intervals.

(c) Conclude that if {fj}∞j=1 is a bounded sequence in Lp(IRn) and 1 < p < ∞, then

it has a subsequence {fjl
} for which there is an f ∈ Lp(IRn) such that fjl

→ f
weakly; explain why this amounts to∫

IRn
fjl

g dx →
∫
IRn

fg dx (g ∈ Lp/(p−1)(IRn)).

(d) Show that the assertion of (c) is false if p = 1. Hint: we have already discussed
a bounded sequence in L1(IR) that provides a counterexample when discussing
approximate identities.

Exercise 39. Let f ∈ Lp (IRn) where 1 ≤ p < ∞.

(a) Use Theorem 10.4 to show that almost every x ∈ IRn is a Lebesgue point of f.
(b) Let ρε be as in Theorem 7.2; in addition, for simplicity, assume that ρ is bounded

and compactly supported. Show that limε↓0(ρε ∗ f)(x) = f(x) holds at every
Lebesgue point of f.

(c) Show that |ρε ∗ f |p ≤ ρε ∗ |f |p.
(d) Use dominated convergence to show that ρε ∗ f → f in Lp (IRn) (without using

approximation by continuous functions - this part of the proof is now buried in
(a).).
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Exercise 40.∗ Assume Theorem 7.14 of Rudin:

Theorem 12.9. Let µ be a complex Borel measure on IRn. Let dµ = fdLn + dµs be its
Lebesgue decompostion. For each x ∈ IRn let {Ej(x)} be a sequence of sets which shrinks
nicely to x. Then

lim
j→∞

µ(Ej(x))

|Ej(x)|
= f(x) for almost all x ∈ IRn.

(a) Let f : [0, 1] → IR be nondecreasing and continuous from the left; putting f(x) =
f(0) for x ≤ 0 and f(x) = f(1) for 1 ≤ x, we can assume that f is nondecreasing
and left-continuous on IR. Let µ be the nonnegative real Borel measure on IR for
which µ([a, b)) = f(b) − f(a) (see KF pg 13 - here clearly µ is concentrated on
[0,1]). Apply Theorem 12.9 to conclude that f is differentiable ae on [0, 1].

(b) Show that if f : [0, 1] → IR is nondecreasing, then f is continuous except at an at
most countable set of discontinuities. Hint: f is discontinuous at x ∈ (0, 1) only
if f “jumps” at x, that is, the jump at x,

f(x+)− f(x−) := lim
y↓x

f(y)− lim
y↑x

f(y) > 0.

Now bound the sum of the jumps.
(c) Noting that if f : [0, 1] → IR is nondecreasing, then x 7→ f(x+) is continuous

from the left (understand this, but do not write the proof), deduce that f is
differentiable a.e.

Remark: A more elementary - and probably more friendly - presentation of these results
is found in SS, Chapter 3.


