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1. Introduction

The first purpose of this paper is to tell the history of John von Neumann’s devel-
opment of the minimax theorem for two-person zero-sum games from his first proof of
the theorem in 1928 until 1944 when he gave a completely different proof in the first
coherent book on game theory. I will argue that von Neumann’s conception of this theo-
rem as a theorem belonging to the theory of linear inequalities as well as his awareness
of its connection to fixed point theorems were absent in 1928. In contradiction to the
impression given in the literature these connections were only gradually recognized by
von Neumann over time. By reading this knowledge into von Neumann’s first proof
of the minimax theorem from 1928 a major part of the cognitive development of this
theorem is neglected within the history of mathematics. The significance of interactions
between different branches of mathematics for the conception and development of the
minimax theorem are neglected as well. This paper will remedy this and shed new light
on these issues.

Since the beginning of the nineties there has been an increasing interest in the histo-
ry of game theory, several historical papers have appeared and most of them of course
mention von Neumann’s 1928 proof of the minimax theorem. A common feature though
is that none of these give an analysis of the mathematics in von Neumann’s proof. There
is only one paper that goes deeper into the mathematics. It is an old essay written by
two Princeton mathematicians, the late Albert W. Tucker and Harold W. Kuhn, in mem-
ory of John von Neumann. They treat the mathematics in a modern (1958) framework
and emphasize in particular the connections to fixed point theorems and the theory of
linear inequalities [Kuhn and Tucker, 1958, p. 111–112]. The other historical papers
say little more about von Neumann’s 1928 proof of the minimax theorem than that it
is very difficult.1 Von Neumann’s biographer Steve J. Heims very tellingly called it “a
tour de force” [Heims, 1980, p. 91]. Some of the papers also state that the proof is about

1 See [Dimand and Dimand, 1992, p. 24], [Leonard, 1992, p. 44], [Ingrao and Israel, 1990,
p. 211].



40 T. H. Kjeldsen

systems of linear inequalities and equations2 and one claims that it is based on fixed
point theorems3. Reading von Neumann’s 1928 paper I found that these statements were
not at all obvious; as a matter of fact von Neumann did not talk about fixed points in
his 1928 proof and he did not formulate or present a system of linear inequalities and
equations to be solved. Today we know that all these connections are there but von
Neumann doesn’t seem to have been fully aware of this in 1928, rather it was an insight
that emerged gradually during his work from 1928 until 1944 in which the minimax
theorem – sometimes surprisingly – presented itself in different mathematical contexts.

I will argue for this claim of gradually emerging insight through an analysis of von
Neumann’s 1928-paper, of a paper he published in 1937 on a mathematical model for
an expanding economy, and of the proof of the minimax theorem that appeared in von
Neumann and Morgenstern’s famous book on game theory published in 1944.

The second purpose of this paper is to discuss a more philosophical issue concern-
ing the significance of the context in which a theorem is developed. The importance
of a mathematical theorem is dependent on the branch or discipline of mathematics
within which it is considered. A mathematical result is not likely to be deemed equally
important within different branches or contexts of mathematics. The interesting ques-
tions, the questions that guide the research in different mathematical contexts are not
the same. Thus, the potential of a mathematical theorem for stimulating further research
is dependent of the mathematical context of discovery.4

The background for these questions in relation to the history of the minimax theo-
rem is a dispute in 1953 between von Neumann and the French mathematician Maurice
Fréchet about who should be named the initiator of game theory – an honour the math-
ematical literature at that time associated with von Neumann. Fréchet argued that even
thoughÉmile Borel was not able to prove the minimax theorem he was the true initi-
ator of game theory because of his treatment of the subject in papers published at the
beginning of the twenties, before von Neumann’s 1928 paper. The interesting issue is
not to settle the priority between Borel and von Neumann but rather to analyze the sig-
nificance of the minimax theorem. According to Fréchet the minimax theorem was not
such an important result because it turned out that it can be derived very easily from
other theorems on linear inequalities, theorems proved before 1928. The underlying
assumption behind Fréchet’s argument is that theorems that turn out to be equivalent
have the same significance or the same potential for stimulating further mathematical
developments regardless of the mathematical context in which they were derived. This
touches the philosophical issue raised above. A contextualized analysis of similar math-
ematical theorems derived in different mathematical contexts can give the historian a

2 See [Ingrao and Israel, 1990, p. 211], [Heims, 1980, p. 91].
3 See [Ingrao and Israel, 1990, p. 211].
4 For example both the calculus of variations and mathematical programming treat optimiza-

tion under constraints. In the calculus of variations the infinite cases are treated whereas mathe-
matical programming is concerned with finite dimensional cases; so a theorem about constrained
optimization can be deemed very important and can lead to new knowledge in mathematical pro-
gramming whereas the same theorem evaluated from the point of view of the calculus of variations
is seen as just a minor thing. For a specific case see footnote 5.
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tool for understanding processes behind the divison of mathematical results that gave
rise to new developments in mathematics and results that did not.5

This issue is discussed in the second part6 of the paper on the basis of an analysis
of some of Borel’s papers on game theory, of von Neumann’s work, and of the dispute
between Fŕechet and von Neumann.

2. The first proof of the minimax theorem: von Neumann’s 1928 paper

John (Johann) von Neumann (1903–1957) published his first paper on what he called
“Theorie der Gesellschaftsspiele” in 1928. From there on it took 16 years before he pub-
lished on game theory again. This has of course given rise to some speculations about
why and where the idea and the inspiration to develop a mathematical theory of games
came from. Two explanations have been suggested in the literature, one of them is that
von Neumann got the idea from reading Borel’s work on the subject.7 As to this explana-
tion von Neumann himself claimed in a short note presented by Borel May 14, 19288 at
l’Académie des Sciences, shortly before the publication of his paper, that he developed
the theory independently of Borel [von Neumann, 1928a]. He explicitly stated so in a
footnote in the 1928 paper9 where he tells that someone drew his attention to Borel’s
notes during the proofreading, indicating that he had no knowledge of Borel’s work until
he had completed his own work [von Neumann, 1928, p. 306]. Von Neumann’s claim
is supported by the course of events: Even though he presented his work at the weekly
seminar of the mathematical institute in Göttingen in December 1926 [von Neumann,

5 The Kuhn-Tucker theorem in nonlinear programming is an example of this. Kuhn and
Tucker derived the theorem in 1950 and it imediately launched the theory of nonlinear program-
ming and became viewed as a very important result. Later it turned out that a similar result had
been proven 11 years earlier by William Karush in his master thesis. Karush’s work was done
in the mathematical context of the calculus of variations within which is was not regarded as a
very important result, and was not even published. Fritz John also proved a similar result, but he
encountered problems in getting it published. It finally appeared in print in 1948 – only two years
before Kuhn and Tucker’s version of the theorem was published. John’s work was done in the
context of the theory of convexity, in which the theorem was once again not deemed to be some
thing special. The reasons for the very different receptions of these results within the mathemat-
ical community can be explained by referring to the significance of the different mathematical
contexts in which the results were derived. For an analysis of this see [Kjeldsen, 2000b].

6 The second part of the paper starts at Sect. 6. The discussions and conclusions in that part
draw on the analysis of von Neumann’s work presented in the first part of the paper, which means
that the second part of the paper cannot stand alone.

7 See for example [Ulam, 1958, p. 7].
8 The note was published inComptes Rendus de l’Académie des SciencesJune 18, 1928 [von

Neumann, 1928a].
9 There are two publications by von Neumann from 1928. The first one is labelled [von Neu-

mann, 1928a] and refers to the short note inComptes Rendus de l’Académie des Sciences. The
second one is labelled [von Neumann, 1928] and refers to von Neumann’s paper “Theorie der Ges-
ellschaftsspiele”. In the list of references the two publications are listed in chronological order.
Whenever the phrase: “the 1928 paper” occurs in the text it refers to [von Neumann, 1928].
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1928, p. 295] and sent the manuscript toMathematische Annalenin July 1927, it was
not until May 1928, that he saw to it that his work was presented to theAcad́emie des
Sciencesin Paris [von Neumann, 1928a]. If von Neumann had known about Borel’s
work all the time it does not make sense to wait more than a year to have his own ideas
presented at theAcad́emiein Paris, it would have been more natural to have it presented
right away. Instead von Neumann had it prestented just a short time before the paper
itself was published, which makes perfect sense assuming he learned about Borel’s work
for the first time during the proofreading stage. At that point he might have been afraid
that Borel or someone else would be about to publish a similar result and then acted
quickly by sending a note to theAcad́emieto ensure priority. The other explanation
given in the literature for why von Neumann suddenly developed a theory of games is
more plausible I think. Here the apperance of von Neumann’s game-theoretic work is
linked with the social context of von Neumann’s life during the years leading up to the
publication of the paper. Von Neumann was at that time very much influenced by Hil-
bert and the G̈ottingen mathematical community. He was especially deeply involved in
Hilbert’s axiomatization programme.10 In the papers [Mirowski, 1991, 1992] Mirowski
argues convincingly that von Neumann’s game theory was a result of his connection to
Hilbert and the formalist programme.11

2.1. What is a “Gesellschaftsspiel”?

The two essential parts of von Neumann’s 1928 paper are the mathematization
of “Gesellschaftsspiele” or “games of strategy” and the proof of the theorem “Max
Min = Min Max” for a game involving two players who play against each other and for
which the players’ gains add up to zero. That is the theorem now known as the mini-
max theorem for two-person zero-sum games. In the following I will explain how von
Neumann mathematized games of strategy and how he proved the minimax theorem.12

Von Neumann began the paper by posing the question under consideration

n Spieler,S1, S2, . . . , Sn, spielen ein gegebenes GesellschaftsspielB. Wie muß einer die-
ser Spieler,Sm, spielen, um dabei ein m̈oglichst g̈unstiges Resultat zu erzielen?13 [von
Neumann, 1928, p. 295]

As von Neumann pointed out, the problem is well known from daily life but ambiguous
because what will happen when there are more than one player involved? In that case
the fate of each player depends on the rest of the players and they are all guided by the

10 In 1925–1928 he published three papers on the axiomatization of set theory, one on Hilbert’s
proof theory, and seven papers on the foundation and axiomatization of quantum mechanics; see
the bibliography of John von Neumann in his collected works [von Neumann, 1963, pp. 645–652].

11 See also [Leonard, 1992, 1995].
12 The paper was published in German. In 1959 an English translation of it was published from

which the translations in the footnotes of the quotes have been taken.
13 “n playersS1, S2, . . . , Sn are playing a game of strategy,B. How must one of the partic-

ipants,Sm, play in order to achieve a most advantageous result?” [von Neumann, 1928, (1959
p. 13)].
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same selfish interests. Thus the first problem von Neumann faced was to clarify what
precisely was to be understood by the term “Gesellschaftsspiel”. As the following quote
shows, von Neumann had a very broad understanding of the concept

Es fallen unter diesen Begriff sehr viele, recht verschiedenartige Dinge: von der Roulette
bis zum Schach, vom Bakkarat bis zum Bridge liegen ganz verschiedene Varianten des
Sammelbegriffes ‘Gesellschaftsspiel’ vor. Und letzten Endes kann auch irgendein Ereig-
nis, mit gegebenen̈ausseren Bedingungen und gegebenen Handelnden (den absolut freien
Willen der letzteren vorausgesetzt), als Gesellschaftsspiel angesehen werden, wenn man
seine R̈uckwirkungen auf die in ihm handelnden Personen betrachtet.14 [von Neumann,
1928, p. 295]

Von Neumann’s very broad interpretation of “Gesellschaftsspiele” points towards
an extremely ambitious project. At a first glance it must have seemed very unlikely that
one could succeed in building a mathematical model for this kind of situation. Anyway,
even though von Neumann was ‘only’ able to contruct a solution concept and prove the
existence of such a solution for a very limited subset of the overall game concept, he
started out with the mathematization of the general case.

By collecting the common features in game situations von Neumann first derived
what he called a qualitative description of the game concept. He argued as follows: A
game is composed of a series of events of which each can have at most a finite number
of outcomes. In some game situations it can happen that the outcome of some of the
events depends only on chance. This means that the probabilities with which each of the
outcomes will appear are known but none of the players have any influence on them.
The outcome of all other events are subject to the individual player’s free choices. For
each of these events it is known which player determines the outcome, and what kind
of information this player has regarding the outcome of earlier events. Finally there is a
rule by which the gains and losses of each player can be calculated after the game, that
is after the outcome of all events in the play are known. [von Neumann, 1928, p. 296].

In order to be able to work with this very broad concept of a game von Neumann
reformulated the above description in a more precise form which then served as his
definition of a game of strategy. His definition was build up around five points.

The first one specifies the number(z) of events depending on chance and the number
(s) of events depending on the free will of the players. Von Neumann let

E1, E2, . . . , Ez

denote the events depending on chance, and

F1, F2, . . . , Fs

denote the events depending on the free will of the players.
The second is the specification of the numberMµ (µ = 1,2, . . . , z) of possible

outcomes of each single event of chanceEµ, and the numberNν (ν = 1,2, . . . , s) of

14 “A great many different things come under this heading, anything from roulette to chess,
from baccarat to bridge. And after all, any event – given the external conditions and the participants
in the situation (provided the latter are acting of their own free will) – may be regarded as a game
of strategy if one looks at the effect it has on the participants.” [von Neumann, 1928 (1959 p. 13)].
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possible outcomes of each single event of free willFν . Von Neumann referred to a result
of an event by its number, i. e. 1,2, . . . ,Mµ or 1,2, . . . , Nν .

The third thing one needs to know in von Neumann’s game model is the probabilities
α
(1)
µ , α

(2)
µ , . . . , α

(Mµ)
µ with which the outcomes 1,2, . . . ,Mµ of an event of chanceEµ

will occur, thus

α(1)
µ ≥ 0, α(2)

µ ≥ 0, . . . , α
(Mµ)
µ ≥ 0,

and

α(1)
µ + α(2)

µ + · · · + α
(Mµ)
µ = 1.

For every event of free willFν , one also needs to specify which playerSm determines the
outcome of this event and in addition one also needs to know what events have occurred
up to this moment, that is the corresponding numbers for all earlier events, both those
of chance and those of free will that the player in charge has information about when he
or she makes up his or her mind.

Finally one needs to specifyn real valued functionsf1, f2, . . . , fn of z+s variables,
where the firstz variables can take the values

1,2, . . . ,M1; 1,2, . . . ,M2; . . . ; 1,2, . . . ,Mz;
and the lasts variables can take the values

1,2, . . . , N1; 1,2, . . . , N2; . . . ; 1,2, . . . , Ns.

These functions determine the gain of the players and must add up to zero

f1 + f2 + · · · + fn ≡ 0.

Suppose the results of thez events of chance and thes events of free will in a game turn
out to be

x1, x2, . . . , xz, y1, y2, . . . , ys,

respectively, where

xµ ∈ {1,2, . . . ,Mµ}, yν ∈ {1,2, . . . , Nν},

µ = 1,2, . . . , z, ν = 1,2, . . . , s,

the playersS1, S2, . . . , Sn then ‘gain’ the amounts

f1(x1, . . . , xz, y1, . . . , ys), f2(x1, . . . , xz, y1, . . . , ys), . . . ,

fn(x1, . . . , xz, y1, . . . , ys)

[von Neumann, 1928, p. 296–297].
In this way von Neumann defined a game of strategy. But as he himself pointed out,

the notion of a playerSm, trying to achieve a result as advantageous as possible is kind
of obscure. It is clear that the most advangeous result forSm has to be defined as the
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largest possible value offm, butfm depends ofz + s variables of which only a part is
controlled bySm, and this is exactly the heart of the problem:

Es soll versucht werden, die Rückwirkungen der Spieler aufeinander zu untersuchen, die
Konsequenzen des (für alles soziale Geschehen so charakteristischen!) Umstandes, daß
jeder Spieler auf die Resultate aller anderen einen Einfluß hat und dabei nur am eigenen
interessiert ist.15 [von Neumann, 1928, p. 298]

The next step in von Neumann’s building of the theory was to simplify the game
concept as much as possible without loosing anything in generality. The key trick was to
introduce the concept of strategy. By a strategy of a playerSm von Neumann understood
a complete plan for how this player is going to act in a precisely defined situation. It
can be thought of as a collection of decisions for any conceivable future situation of
the game [von Neumann, 1928, p. 18]. All the information about the other players’ de-
cisions and the outcome of the events of chance that a player has access to is inherent
in the concept of strategy. The consequence of this is, that each player chooses his or
her strategy knowing neither the strategies chosen by the others nor the results of the
events of chance. As noticed by von Neumann each playerSm has only a finite number,
�m, of strategies (S(m)

1 , S
(m)
2 , . . . , S

(m)
�m

) to choose from. That is, by introducing the con-
cept of strategy von Neumann reduced the number of free choices to the number of
players, such that the choice numberν is determined by the free will of playerSν .

Another advantage of the concept of strategy is, that von Neumann could eliminate
the events of chance altogether. First he reduced the number of events of chance to one.
Because, since a player has to choose the strategy without knowing beforehand the out-
come of the events of chance, these events need no longer be treated as separate events.
It is then possible to combine allz events of chance into one single event of chanceH ,
the outcome of which will be a collection of numbers

x1, x2, . . . , xz (xµ ∈ {1,2, . . . ,Mµ})
with their respective probabilities

α
(x1)
1 α

(x2)
2 . . . α

(xz)
z .

There areM̂ = M1M2 · · · · ·Mz possible collections of these numbers.16 Von Neumann
associated each collection with a number

1,2, . . . , M̂ (M̂ = M1M2 · · · · · Mz),

and he let

β1, β2, . . . , βM̂

denote the corresponding probabilities [von Neumann, 1928, p. 300].

15 “We shall try to investigate the effects which the players have on each other, the consequenc-
es of the fact (so typical of all social happenings!) that each player influences the results of all
other players, even though he is only interested in his own” [von Neumann, 1928, (1959 p. 17)].

16 Von Neumann used the symbolM instead ofM̂. Later, in Sect. 2.3,M means something
else, and to avoid confusion I have here used the symbolM̂.
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By doing so von Neumann had boiled it all down to the following: If the players
S1, S2, . . . , Sn have chosen the strategies

S(1)u1
, S(2)u2

, . . . , S(n)un
,

where

um ∈ {1,2, . . . , �m}, m = 1,2, . . . , n,

and if the outcome of the event of chanceH , is the numberν (ν ∈ {1,2, . . . , M̂}), then
the results for the playersS1, S2, . . . , Sn are

f1(ν, u1, u2, . . . , un), f2(ν, u1, u2, . . . , un), . . . , fn(ν, u1, u2, . . . , un)

respectively. Now if only the choicesu1, u2, . . . , un, and not the resultν, of the event
of chance is known, then the expected value offm would be

gm(u1, . . . , un) =
∑

βνfm(ν, u1, . . . , un), (m = 1,2, . . . , n),

(f1 + · · · + fn ≡ 0 impliesg1 + · · · + gn ≡ 0). Von Neumann then argued that ac-
cording to the theory of probability it is fully acceptable to ignore the events of chance
and instead work with the expected valuesg1, . . . , gn. That is, by substituting theexact
results (fm) for the individual players by theexpectedvalues he elimatedH altogether.

These simplifications left von Neumann with the following formulation of a game of
strategy: Each of the playersS1, S2, . . . , Sn chooses a number without any information
about the choice of the others.Sm chooses among the numbers 1,2, . . . , �m.17 After the
choicesx1, x2, . . . , xn (xm ∈ {1,2, . . . , �m}) have been made the players will receive
the amount

g1(x1, . . . , xn), g2(x1, . . . , xn), . . . , gn(x1, . . . , xn),

respectively, whereg1 + · · · + gn = 0 holds [von Neumann, 1928, p. 301–302].

2.2. The casen = 2

In 1928 von Neumann was not able to prove anything about the existence of optimal
strategies for the general case. In stead he analyzed the simplest case, namely a game of
strategy with only two playersS1 andS2. The situation is then, that playerS1 chooses
a numberx ∈ {1,2, . . . , �1}, and playerS2 chooses a numbery ∈ {1,2, . . . , �2} each
without knowing what the other player has chosen, and they then receive the amounts
g(x, y), −g(x, y) respectively. Von Neumann then gave the following description of the
tension in the two-person game:

Es ist leicht, sich ein Bild von den Tendenzen zu machen, die in einem solchen 2-Perso-
nen-Spiele miteinander kämpfen: Es wird von zwei Seiten am Werte vong(x, y) hin und
her gezerrt, n̈amlich durchS1, der ihn m̈oglichst gross, und durchS2, der ihn m̈oglichst

17 Note that here the strategies are associated with their number, such that if playerSm choose
the numberi it means that he or she will play according to strategyS

(m)

i .
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klein machen will.S1, gebieteẗuber die Variablex, undS2 über die Variabley. Was wird
geschehen?18 [von Neumann, 1928, p. 302]

The core question is ‘What will happen?’ Von Neumann’s analysis of the situation
ran as follows: IfS1 chose the numberx0 (x0 ∈ {1,2, . . . , �1}), that is the strategyx0,
his resultg(x0, y) would then also depend on the choice ofS2; but no matter which
choice (y) S2 comes up with, the following inequality holds:

g(x0, y) ≥ miny g(x0, y).

Now if we suppose (against the rules of the game) thatS2 knewx0, S2 would according
to the assumptions in the model choosey = y0 such that

g(x0, y0) = miny g(x0, y).

Facing this situation the best thing forS1 would be to choosex0 such that

miny g(x0, y) = maxx miny g(x, y).

The conclusion of von Neumann is then thatS1 can make

g(x0, y) ≥ maxx miny g(x, y),

independently of the choise ofS2. The same argument holds forS2, which can make

g(x, y0) ≤ miny maxx g(x, y),

no matter what strategyx, S1 chooses.
From this von Neumann concluded that if a pair of strategiesx0, y0 can be found for

which

g(x0, y0) = maxx miny g(x, y) = miny maxx g(x, y) = M̃,

then that would necessary be the choices forS1 andS2 respectively, andM̃ would be
the result of the game19 [von Neumann, 1928, pp. 302–303]. Thus, such a pair of strat-
egiesx0, y0, if they exist, would constitute a solution concept for two-person games.
Unfortunately the existence of such a pair of strategies is not automatically guaranteed.

The trick used by von Neumann to overcome this difficulty was to introduce what
is now known as mixed strategies. Instead of choosing anx or ay, the players specify
the probabilities with which they will choose the different strategies. That is, the player
S1 chooses�1 probabilities

ξ1, ξ2, . . . , ξ�1

(
ξ1 ≥ 0, ξ2 ≥ 0, . . . , ξ�1 ≥ 0,

∑
ξi = 1

)
,

18 “It is easy to picture the forces struggling with each other in such a two-person game. The
value ofg(x, y) is being tugged at from two sides, byS1 who wants to maximize it, and byS2

who wants to minimize it.S1 controls the variablex, S2 the variabley. What will happen?” [von
Neumann, 1928, (1959 p. 21)].

19 Von Neumann used the symbolM instead ofM̃. Later, in Sect. 2.3,M means something
else; to avoid confusion I have here used the symbolM̃, cf. note 16.
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and from an urn containing the numbers 1,2, . . . , �1 with the above specified proba-
bilities, he or she draws a number and chooses that number. Analogously,S2 specifies
�2 probabilities

η1, η2, . . . , η�2

(
η1 ≥ 0, η2 ≥ 0, . . . , η�2 ≥ 0,

∑
ηj = 1

)
.

Von Neumann put

(ξ1, ξ2, . . . , ξ�1) = ξ, and(η1, η2, . . . , η�2) = η.

If S1 choosesξ , andS2 choosesη, the expected value of the amountS1 receives is

h(ξ, η) =
�1∑
p=1

�2∑
q=1

g(p, q)ξpηq, (1)

while the expected value forS2 is −h(ξ, η) [von Neumann, 1928, p. 304].
As before von Neumann argued thatS1 is in a position to obtain the minimal expect-

ed value maxξ minη h(ξ, η) no matter whatS2 chooses to do.S2 can keep the expected
value ofS1 from exceeding the maximal value minη maxξ h(ξ, η). By considering the
mixed strategies instead of pure strategies the expected values of the players is expressed
by the bilinear formh, and for those von Neumann was able to show that there always
exist mixed strategiesξ0, η0 such that

maxξ minη h(ξ, η) = minη maxξ h(ξ, η) = h(ξ0, η0).

This result is the famous minimax theorem of von Neumann and it establishes that for
two-person games of this kind there always exist optimal (mixed-) strategies. This is
called the minimax solution concept of two-person zero-sum games. It has been criti-
cized for being too defensive a solution concept, indeed it is a solution telling you what
is the best you can do in the worst possible case.

2.3. Von Neumann’s proof of the minimax theorem

Actually von Neumann proved a generalized version of the minimax theorem. He
considered a broader class of functions than the bilinear formsh. For continuous func-
tions f of two variablesξ ∈ RM , η ∈ RN , ξ ≥ 0, η ≥ 0, ξ1 + · · · + ξM ≤ 1,
η1 + · · · + ηN ≤ 1 satisfying the condition:

(K.) Wennf (ξ ′, η) ≥ A, f (ξ ′′, η) ≥ A ist, so ist auch f̈ur jedes 0≤ ν ≤ 1, ξ =
νξ ′ + (1 − ν)ξ ′′ (d.h. ξp = νξ ′

p + (1 − ν)ξ ′′
p , p = 1,2, . . . ,M)f (ξ, η) ≥ A. Wenn

f (ξ, η′) ≤ A, f (ξ, η′′) ≤ A ist, so ist auch f̈ur jedes 0≤ ν ≤ 1, η = νη′ + (1 − ν)η′′

(d.h.ηq = νη′
q + (1−ν)η′′

q , q = 1,2, . . . , N) f (ξ, η) ≤ A. [von Neumann, 1928, p. 307]
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he formulated the theorem in the following way:

... Für diese Funktionenf (ξ, η) werden wir beweisen:

maxξ minη f (ξ, η) = minη maxξ f (ξ, η),

wobei maxξ überξ1 ≥ 0, . . . , ξM ≥ 0,ξ1+· · ·+ξM ≤ 1, und minη überη1 ≥ 0, . . . , ηN ≥
0, η1 + · · · + ηN ≤ 1 zu erstrecken ist.20 [von Neumann, 1928, p. 307]

Today a function with the property (K) is called quasiconcave inξ and quasiconvex
in η.

Since the functionh(ξ, η), that determines the expected values for the two players
is bilinear, it is also continuous and has the property (K), so a proof of this theorem will
also prove the existence of optimal strategies for a two-person zero-sum game.

Von Neumann began by rewriting

maxξ minη f (ξ, η) = minη maxξ f (ξ, η)

in the form

maxξ1
ξ1≥0
ξ1≤1

maxξ2
ξ2≥0

ξ1+ξ2≤1

. . . maxξM
ξM≥0

ξ1+···+ξM≤1

minη1
η1≥0
η1≤1

minη2
η2≥0

η1+η2≤1

. . . minηN
ηN≥0

η1+···+ηN≤1

f (ξ, η) (2)

= minη1
η1≥0
η1≤1

minη2
η2≥0

η1+η2≤1

. . . minηN
ηN≥0

η1+···+ηN≤1

maxξ1
ξ1≥0
ξ1≤1

maxξ2
ξ2≥0

ξ1+ξ2≤1

. . . maxξM
ξM≥0

ξ1+···+ξM≤1

f (ξ, η).

By putting

Mξr f (ξ1, . . . , ξr , η1, . . . , ηs) = maxξr
ξ1+···+ξr≤1

f (ξ1, . . . , ξr , η1, . . . , ηs),

Mηsf (ξ1, . . . , ξr , η1, . . . , ηs) = minηs
η1+···+ηs≤1

f (ξ1, . . . , ξr , η1, . . . , ηs),

he eliminatedf ’s dependency onξr andηs respectively. Thus von Neumann wrote the
identity under consideration as

Mξ1Mξ2 . . .MξpMη1Mη2 . . .Mηq f = Mη1Mη2 . . .MηqMξ1Mξ2 . . .Mξpf.

With p = M andq = N this is equivalent to von Neumann’s formulation above (2) of
the minimax theorem, where he consideredξ ∈ RM andη ∈ RN .

With these reformulations as a tool von Neumann reduced the proof to the proof of
the following two lemmas:

20 “(K.) If f (ξ ′, η) ≥ A, f (ξ ′′, η) ≥ A, thenf (ξ, η) ≥ A for every 0 ≤ ν ≤ 1, ξ =
νξ ′ + (1 − ν)ξ ′′ (i.e.,ξp = νξ ′

p + (1 − ν)ξ ′′
p , p = 1,2, . . . ,M). If f (ξ, η′) ≤ A, f (ξ, η′′) ≤ A,

thenf (ξ, η) ≤ A for every 0 ≤ ν ≤ 1, η = νη′ + (1 − ν)η′′ (i.e., ηq = νη′
q + (1 − ν)η′′

q ,
q = 1,2, . . . , N).

... For these functionsf (ξ, η) we are going to prove that

maxξ minη f (ξ, η) = minη maxξ f (ξ, η),

where maxξ is taken over the rangeξ1 ≥ 0, . . . , ξM ≥ 0, ξ1 + · · · + ξM ≤ 1 and minη is taken
over the rangeη1 ≥ 0, . . . , ηN ≥ 0,η1 + · · · + ηN ≤ 1.” [von Neumann, 1928, (1959 p. 26–27)].
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α) If f = f (ξ1, . . . , ξr , η1, . . . , ηs) is continuous and has the property (K) thenMξr f

andMηsf are continuous and satisfy (K).
β) If f = f (ξ1, . . . , ξr , η1, . . . , ηs) is continuous and satisfy (K) then

MξrMηsf = MηsMξr f.

It is easy to see that the minimax theorem can be derived directly from (α) and (β).
Von Neumann’s proof of (α) is straightforward. The continuity ofMξr f andMηsf

is a direct consequence of the continuity off . To prove thatMξr f andMηsf has the
property (K) von Neumann used first that a continuous function on a closed and boundet
set has a maximum and a minimum and secondly thatf itself has the property (K).21

The central part of the proof is (β) which is much more complicated to prove. In
what follows I will go through the proof step by step following von Neumann closely.
Then I will comment on the proof and discuss it in relation to the description given by
Kuhn and Tucker.

The proof for (β)

Von Neumann is going to prove thatMξrMηsf = MηsMξr f for all ξ1, . . . , ξr−1,
η1, . . . , ηs−1. He began by consideringf for some fixedξ1, . . . , ξr−1, η1, . . . , ηs−1.
Thenf is a function ofξr andηs alone andf is obviously still continuous and posses
the property (K). Writing ξ andη instead ofξr andηs respectively what von Neumann
is going to show is that

maxξ
0≤ξ≤a

minη
0≤η≤b

f (ξ, η) = minη
0≤η≤b

maxξ
0≤ξ≤a

f (ξ, η),

wherea = 1 − ξ1 − · · · − ξr−1 andb = 1 − η1 − · · · − ηs−1. As pointed out by von
Neumann this can also be formulated in an other way:

Es gibt einen “Sattelpunkt”ξ0, η0 (0 ≤ ξ0 ≤ a, 0 ≤ η0 ≤ b), d.h.f (ξ0, η) nimmt in
0 ≤ η ≤ b sein Minimum f̈urη = η0 an, undf (ξ, η0) nimmt in 0≤ ξ ≤ a sein Maximum
für ξ = ξ0 an.22 [von Neumann, 1928, p. 309]

Now it is always true that

maxξ minη f (ξ, η) ≤ minη maxξ f (ξ, η).

On the other hand, if there exists a saddle point(ξ0, η0), then

maxξ minη f (ξ, η) ≥ minη f (ξ0, η) = f (ξ0, η0),

minη maxξ f (ξ, η) ≤ maxξ f (ξ, η0) = f (ξ0, η0)

which gives the other inequality, hence

maxξ minη f (ξ, η) = minη maxξ f (ξ, η) = f (ξ0, η0).

With this, what needs to be proven is the existence of such a saddlepoint.

21 For the detailed proof see [von Neumann, 1928, p. 308–309].
22 “There exists a “saddle point”ξ0, η0 (0 ≤ ξ0 ≤ a, 0 ≤ η0 ≤ b), i.e.,f (ξ0, η) assumes its

minimum forη = η0 in 0 ≤ η ≤ b andf (ξ, η0) assumes its maximum forξ = ξ0 in 0 ≤ ξ ≤ a.”
[von Neumann, 1928, (1959 p. 30)].
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The existence of a saddle point

For every fixedξ von Neumann considered the set ofη, 0 ≤ η ≤ b, for whichf (ξ, η)
assumes its minimum value. Sincef is continuous the set will be closed and it will also
be convex becausef satisfies the condition (K); this means the set is a subinterval of
[0, b]. Von Neumann let [K ′(ξ),K ′′(ξ)] denote this subinterval. Thus for fixedξ :

{η′ ∈ [0, b]| minη f (ξ, η) = f (ξ, η′)} = [K ′(ξ),K ′′(ξ)] ⊆ [0, b].

Similarly for fixedη, the set ofξ , 0 ≤ ξ ≤ a, for whichf (ξ, η) assumes its maximum, is
a closed subinterval of [0, a]. Von Neumann denoted this subinterval by [L′(η), L′′(η)].

That is, for everyξ ∈ [0, a] there is an interval [K ′(ξ),K ′′(ξ)] ⊆ [0, b], such that
every singleη belonging to this interval is a point of minimum for the functionf (ξ, ∗).
Similarly for everyη ∈ [0, b] there is an interval [L′(η), L′′(η)] ⊆ [0, a], such that
everyξ in this interval is a point of maximum for the functionf (∗, η).

Von Neumann then showed that – due to the continuity off –K ′,L′ andK ′′,L′′ are
lower and upper semi-continuous functions respectively. [von Neumann, 1928, p. 310,
note 10].

For a fixedξ∗ von Neumann studied the following set which I have namedD(ξ∗):

D(ξ∗) = {ξ∗∗|∃η∗ : minη f (ξ
∗, η) = f (ξ∗, η∗) and maxξ f (ξ, η

∗) = f (ξ∗∗, η∗)},
that is,

D(ξ∗) = ∪[L′(η∗), L′′(η∗)] overη∗ ∈ [K ′(ξ∗),K ′′(ξ∗)].

Within the intervalK ′(ξ∗) ≤ η∗ ≤ K ′′(ξ∗), the lower semi-continuous functionL′
will assume its minimum value and the upper semi-continuous functionL′′ will assume
its maximum value. Hence the setD(ξ∗) will contain a minimal as well as a maximal
element. Furthermore von Neumann argued by means of the following indirect proof
thatD(ξ∗) also contains allξ ′ between the minimal and the maximal element: In con-
tradiction to what he wanted to demonstrate von Neumann assumed the existence of an
elementξ ′ situated in between the minimal and the maximal element but not contained
in D(ξ∗). Then every interval [L′(η∗), L′′(η∗)] would lie either entirely to the left or
entirely to the right ofξ ′. Sinceξ ′ is between the minimum and the maximum element of
D(ξ∗), both kind of intervals will exist.η∗ runs over an interval, which implies that both
kinds ofη∗’s, that is, thoseη∗’s corresponding to the intervals [L′(η∗), L′′(η∗)] entirely
to the left ofξ ′, and thoseη∗’s corresponding to the intervals [L′(η∗), L′′(η∗)] entirely
to the right ofξ ′, have a common limit-pointη′. This means that bothL′(η∗) ≤ ξ ′
andL′′(η∗) ≥ ξ ′ will occur arbitrary close toη′, which because of the lower and upper
semi-continuity ofL′ andL′′ respectively, implies thatL′(η′) ≤ ξ ′ andL′′(η′) ≥ ξ ′, that
is ξ ′ does indeed belong to one of the intervals, namely [L′(η′), L′′(η′)] [von Neumann,
1928, p. 310].

The above result implies thatD(ξ∗) is a closed subinterval of [0, a], which von
Neumann denoted [H ′(ξ∗),H ′′(ξ∗)]. To finish the demonstration he showed the exis-
tence of an elementξ∗ ∈ [0, a], which is also aξ∗∗, that is, an elementξ∗, for which
H ′(ξ∗) ≤ ξ∗ ≤ H ′′(ξ∗). The proof for this is similar to the proof above for the claim
thatD(ξ∗) is a closed subinterval, due to the fact thatH ′ andH ′′ are lower and upper
semi-continuous functions respectively. As before, if one assumes that there can exist
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no suchξ∗ that would imply that all the intervals [H ′(ξ∗),H ′′(ξ∗)] will lie entirely to
the left or entirely to the right ofξ∗. Again both kinds ofξ∗’s will have a common limit
point ξ ′ which will belong to the interval [H ′(ξ ′),H ′′(ξ ′)].

With this von Neumann has demonstrated the existence of an elementξ∗ ∈ [0, a],
which also satisfiesξ∗ ∈ D(ξ∗). Since this means that there exists an elementη∗, such
that minη f (ξ∗, η) = f (ξ∗, η∗), and at the same time maxξ f (ξ, η

∗) = f (ξ∗, η∗), the
point ξ∗, η∗ is a saddle point for the functionf , which finished von Neumann’s proof
of the minimax theorem.

2.4. Von Neumann’s 1928 proof in relation to fixed point theorems
and systems of inequalities

The 1928 proof of von Neumann is indeed a “tour de force” [Heims, 1980, p. 91].
Summarizing the other remarks in the literature that I cited in the introduction it has
been said about von Neumann’s 1928-proof that he “demonstrates the close connection
with fixed point theorems and especially Brouwer’s theorem” [Ingrao and Israel, 1990,
p. 211], and that the proof concerns the existence of a solution to a system of equalities
and inequalities.23 These statements do not seem very obvious to me. Von Neumann
talked at no point about fixed points and he did not formulate a system of equations and
inequalities to be solved.

Yet, in Kuhn and Tucker’s paper about von Neumann’s work on game theory they
wrote:

The analytic proofs of the Minimax Theorem given by von Neumann were of two es-
sentially different types. Proofs of the first type (see [A] and [B]) are based explicitly on
extensions of the Brouwer’s fixed point theorem; [Kuhn and Tucker, 1958, p. 112]

[A] refers to von Neumann’s 1928 paper while [B] refers to a paper by von Neumann
published in 1937 which will be treated in the next section. From von Neumann’s 1928
proof one can “extract” a proof for an extension of Brouwer’s fixed point theorem. In
doing so the question about existence of a saddle point for the functionf (ξ, η) becomes
a question about the existence of a fixed point for a ‘point to set’ map. The connection
can be derived in the following way:

In the end von Neumann showed the existence of an elementξ∗ satisfyingξ∗ ∈
[H ′(ξ∗),H ′′(ξ∗)]. If one putsF(ξ∗)= [H ′(ξ∗),H ′′(ξ∗)], F can be interpreted as a
map which associates to each elementξ in [0, a] a set, namely the subintervalF(ξ) of
[0, a]. An elementξ∗ which is mapped onto an intervalF(ξ∗) to which the element
itself belongs, is a kind of a fixed point for a ‘point to set’ map. With this interpretation
the existence of a saddle point and the existence of a fixed point for the mappingF is
one and the same thing.

Von Neumann did not make this interpretation in the 1928 paper and for reasons
to be discussed in the next section I am not convinced that von Neumann in 1928 was
aware of this connection to fixed points.

23 See [Ingrao and Israel, 1990, p. 211], [Heims, 1980, p. 91].
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As far as the connection to systems of linear inequalities and equations is concerned,
von Neumann in his proof did not draw any connections at all. But as Kuhn and Tucker
show in their essay on von Neumann’s work it is possible to derive such a connection.
It can be done in the following way: In an analysis of the consequences of the minimax
theorem for the choice of strategies von Neumann considered the setA of all ξ for
which minη h(ξ, η) assumes its maximum valuẽM, and the setB of all η for which
maxξ h(ξ, η) assumes its minimum valuẽM. That is,

A = {ξ ∈ R�1 : minη h(ξ, η) assumes its maximum valuẽM}

B = {η ∈ R�2 : maxξ h(ξ, η) assumes its minimum valuẽM}.
As pointed out by von Neumann it is obvious that

1. if ξ belongs toA then h(ξ, η) ≥ M̃ applies for all η (becauseh(ξ, η) ≥
minη h(ξ, η) = M̃, sinceξ belongs toA),

2. similar, ifη belongs toB thenh(ξ, η) ≤ M̃ for all ξ ,
3. if ξ does not belong toA there exists an elementη for whichh(ξ, η) < M̃,
4. if η does not belong toB there exists an elementξ for whichh(ξ, η) > M̃,
5. if ξ belongs toA andη belongs toB thenh(ξ, η) = M̃.

Hence, von Neumann argued, it is obvious thatS1 should choose a strategyξ that be-
longs toA andS2 should choose a strategyη which belongs toB. For every such choice
the game will have the valuẽM for S1 and the value−M̃ for S2 [von Neumann, 1928,
p. 305].

In the 1928 paper von Neumann did not discuss this further, but one can interpret
this as the finding of elementsξ∗, η∗, such that the inequalities

ξ∗ ≥ 0, η∗ ≥ 0, maxξ h(ξ, η
∗) ≤ M̃, minη h(ξ

∗, η) ≥ M̃ (3)

and the equalities

ξ1
∗ + · · · + ξ�1

∗ = 1, η1
∗ + · · · + η�2

∗ = 1 (4)

are all satisfied.
Kuhn and Tucker in their essay derived the following connection between solutions

(ξ∗, η∗, M̃) to the ‘minimax problem’ and a system of linear inequalities and equations.
They wrote the bilinear form (1) (introduced in section 2.2) ash(ξ, η) = ξAη, where
A is a matrix with elementsg(p, q). Hence a solution(ξ∗, η∗) to the linear inequalities
and equations

ξ∗ ≥ 0, η∗ ≥ 0, Aη∗ ≤ M̃, ξ∗A ≥ M̃

ξ1
∗ + · · · + ξ�1

∗ = 1, η1
∗ + · · · + η�2

∗ = 1

will then also be a solution to the system (3) and (4) [Kuhn and Tucker, 1958, p. 111]. But
this algebraical interpretation of optimal strategies as constituting a solution to a system
of linear equalities and inequalities was not explicitly formulated by von Neumann in
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1928. As we shall see in the next sections this insight came later. As a matter of fact von
Neumann’s 1928 proof is more general covering also nonlinear functions. To be fair it
needs to be said that Kuhn and Tucker did not claim that von Neumann actually made
this algebraic characterisation in 1928 but the other statements in the literature cited
above leaves the impression that von Neumann in 1928 was working within a frame-
work of linear inequality theory. As we shall see in the next sections and as von Neumann
also himself later remarked about an announcement made by the French mathematician
Fréchet, this connection to the theory of convexity and linear inequality theory was only
recognized later on.

3. The connection to fixed point theorems and economy:
von Neumann’s 1937 paper

After the 1928 paper sixteen years passed before von Neumann published on game
theory again. Yet the minimax theorem reappeared as early as 1932, but in another dis-
guise. It happened in a mathematical-economic model that von Neumann developed in
the early thirties. The first mention of the work is a talk von Neumann gave on the model
at the mathematics seminar at Princeton. The paper was published five years later (at the
request of Karl Menger) under the title “Über einökonomisches Gleichungssystem und
eine Verallgemeinerung des Brouwerschen Fixpunktsatzes” [von Neumann, 1937].

The model of von Neumann is a linear production model in which he did not distin-
guish between goods consumed and goods produced in the process of production. He
analyzed a situation where there aren goodsG1, . . . ,Gn which can be produced by
m processesP1, . . . , Pm; the numbersy1, . . . , yn denote the prices of the goods while
x1, . . . , xm are the intensities with which the processes are being used. Finallyaij and
bij denote the number of units of the goodGj consumed and produced respectively by
the processPi .

Von Neumann was interested in situations where the whole economy expands with-
out change of structure, i.e. where the ratios of the intensitiesx1 : . . . : xm remain
unchanged, althoughx1, . . . , xm themselves may change [von Neumann, 1937, p. 30].
In such a case the intensities are multiplied by a common factorα per unit of time,
the so-called coefficient of expansion. The unknowns are the intensitiesx1, . . . , xm, the
coefficient of expansionα, the pricesy1, . . . , yn of the goods, and the interest factor
β = 1 + z

100, wherez is the rate of interest in % per unit of time [von Neumann, 1937,
p. 30].

The analysis of von Neumann resulted in the following system of inequalities which
was to be solved:

xi ≥ 0, (5)

yj ≥ 0, (6)

m∑
i=1

xi > 0, (7)
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n∑
j=1

yj > 0, (8)

α

m∑
i=1

aij xi ≤
m∑
i=1

bij xi, for all j (9)

whereyj = 0 if strict inequality ‘<’ holds.

β

n∑
j=1

aij yj ≥
n∑

j=1

bij yj , for all i (10)

wherexi = 0 if strict inequality ‘>’ holds.
The inequality (9) means that it is impossible to consume more of the goodGj than

the amount produced in the total process. If more is produced than is consumedGj
becomes a free good with zero priceyj = 0. The inequality (10) appears because there
is no profit in the model so a possible gain would be reinvested. (10) means that in
equilibrium there cannot be a profit on any processPi . If there is a loss, i.e. if ‘>’ holds
the processPi will not be used andxi = 0 [Von Neumann, 1937, p. 75–76].

3.1. The solution of the system of inequalities

In order to find necessary and sufficient conditions for the existence of a solution
to such a system of linear inequalities von Neumann first transformed the problem of
solutions into a saddle point problem. For this purpose he introduced the function

φ(X, Y ) =
∑m

i=1
∑n

j=1 bij xiyj∑m
i=1

∑n
j=1 aij xiyj

whereX = (x1, . . . , xm) andY = (y1, . . . , yn) are variables satisfying (5), (7) and (6),
(8) respectively. That is, he was looking at the ratio between the total income and the
total costs.

Von Neumann then argued that the question of the existence of a solution to the
system of inequalities (5)–(10) becomes the question of the existence of a saddle point
for the functionφ. Hence, he could formulate the question of the existence of a solution
to the system (5)–(10) as follows:

(*) Consider(X, Y ) in the domain bounded by (5)–(8). To find a saddle pointX = X0,
Y = Y0 for φ. (See [von Neumann, 1937, p. 78].)

Thus, just like in the 1928 paper on games, the key problem is to prove the existence
of a saddle point for a certain function. Instead of proving the existence of a saddle point
right away as he did in the 1928 paper he instead proved a ‘fixed point’-lemma, which
is the lemma that appears in the last part of the title: “... eine Verallgemeinerung des
Brouwerschen Fixpunktsatzes”. Von Neumann then derived the existence of a saddle
point forφ as a direct consequence of this lemma. (See [von Neumann, 1937, p. 80].)
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3.2. The connection to the minimax theorem

At this time von Neumann was fully aware of the connection between the game
theoretical problem and the problem of existence of a solution to a system of linear
inequalities:

Die Lösbarkeit unseres Problems [The existence of a solution to the system (5)–(10)]
hängt sonderbarerweise mit jener eines in der Theorie der Gesellschaftsspiele auftre-
tenden Problems zusammen, das der Verf. anderwärtig behandelt hat. . . Jenes Problem
ist ein Specialfall von (*) und wird durch unsere Lösung von (*) auf eine neue Weise
miterledigt.24 [Von Neumann, 1937, p.79, note 2]25

This is the first time von Neumann explicitly states that he has recognized a con-
nection between the solution of systems of linear inequalities and the minimax solution
of a two-person zero-sum game. The connection was not trivial. As I pointed out in the
previous section, reading von Neumann’s 1928 paper on its own terms without making
recourse to later developments in game theory reveals no evidence that von Neumann
had realized this connection to systems of linear inequalities in 1928. On the contrary
his statement in 1937 that the question about solutions to the system of inequalities is
“oddly” connected with the minimax solution shows that this was kind of unexpected.
Had he already in 1928 been aware of this he would probably not have called it “odd”
ten years later.

Regarding the fixed point technique used by von Neumann to show the existence of
a saddle point in the 1937 paper it can be seen both from the title of the paper where
the result is announced and from the following quote from the paper that von Neumann
found it a quite important result which was interesting in itself

Dieser verallgemeinerte Fixpunktssatz. . . ist auch an sich von Interesse.26 [Von Neumann,
1937, p. 73]

In the previous section I argued that von Neumann in 1928 probably was not aware
of the fact that the existence of a saddle point could be proved on the basis of fixed point
techniques. The above quotation and the fact that he found the generalised fixed point
result so important that he announced it in the title indicate that he had not fully recog-
nized this in 1928. If so he would probably have announced it at that time considering
the importance he ascribed to it in 1937 and there is no mention of fixed point techniques
what-so-ever in the 1928 paper. Another argument in favour of this is that he explicitly
wrote in the 1937 paper that the game theoretic problem is solved in the 1937 paper in
“a new way”.

24 “The question whether our problem has a solution is oddly connected with that of a problem
occuring in the Theory of Games dealt with elsewhere.. . . The problem there is a special case of
(*) and is solved here in a new way through our solution of (*).” [von Neumann, 1937, (1945 p. 5,
note 1)].

25 The (*) in the above quotation refers to the saddle point formulation labelled (*) in
Sect. 3.1.

26 “This generalised fix-point theorem. . . is also interesting in itself.” [von Neumann, 1937
(1945 p. 1)].
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4. The minimax theorem in the theory of convexity: The 1944 proof

As we have just seen, in 1937 von Neumann was aware of the connection between the
minimax theorem and the solvability of systems of linear inequalities. The proof though
was not built on the algebra of inequalities but was founded on topological methods.
The first algebraic proof of the minimax theorem was due to the French mathematician
Jean Ville who published it in the fourth volume (fascicule 2) ofÉmile Borel’s treatise
“Traité du calcul des probabilités et de ses applications” which appeared in 1938.

Borel himself had published a series of notes on games from 1921 to 1927. He was
the first who tried to build a mathematical theory for games but after the publication of
von Neumann’s minimax theorem in 1928 he seems to have lost interest in the subject27.
He published a note on game theory in 1927 and then he did not publish anything on
games until this part of volume four of the treatise of probability came out 10 years later.
In this volume Borel has a chapter written by himself devoted to game theory and quite
strikingly there is no reference at all to von Neumann and the minimax theorem in that
chapter.28 Instead the minimax theorem is treated in a separate note by Jean Ville with
the title “Théor̀eme de M. von Neumann” [Ville, 1938].

Ville’s algebraic proof is important because it exercised a direct influence on von
Neumann during his work with the book “Theory of Games and Economic Behavior”,
which was the first collected and coherent book on game theory. Thereby Ville’s proof
gave rise to a development which led to the establishment of the minimax theorem in
the theory of convexity.

I will only present the key tools in Ville’s proof and not go into the details of the
proof itself.29 Ville derived his key tool as a corollary to the following lemma concerning
linear forms, which he proved by induction:

Let p linear forms inn variables be given:

fj (x) =
∑

aij xi (j = 1, . . . , p; i = 1, . . . , n),

wherex = (x1, . . . , xn).30

Suppose they have the following property:31

For allx ≥ 0 there exists aj in {1, . . . , p}, such thatfj (x) ≥ 0.

Then there exists at least one set of nonnegative coefficients

X1, . . . , Xp with X1 + · · · + Xp = 1,

27 Before the work of Borel one only finds attempts to mathematize specific games like the
card game “le Her” by James Waldegrave, baccarat by Joseph Bertrand in 1899 and chess by Ernst
Zermelo in 1913. For accounts on these earlier attempts and on the work of Borel see [Dimand
and Dimand, 1992]. For accounts on the work of Borel see also [Leonard, 1992].

28 In [Leonard, 1992] Leonard discuss’ this issue and concludes that “This can only be regarded
as an act of deliberate omission by Borel.” [Leonard, 1992, p. 46].

29 See also [Leonard, 1992]. For further details on the proof see [Kjeldsen, 1999].
30 Ville wrote aj

i instead ofaij , I have changed the notation to make clear thati does not
indicate an exponent.

31 x ≥ 0 meansxi ≥ 0 for everyi = 1, . . . , n.
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such that

p∑
j=1

Xjfj (x) ≥ 0 for allx ≥ 0.

[Ville, 1938, p. 105]

The key tool Ville was able to derive from this lemma was the following result

Let f1, . . . , fp bep linear forms inn variablesx1, . . . , xn, and letφ be a linear form in
the same variables. If for every pointx ≥ 0 at least one of the formsfj assumes a value
greater than or equal to the value ofφ then a linear combination

ψ = X1f1 + · · · + Xpfp, Xj ≥ 0, X1 + · · · + Xp = 1,

exists for whichψ ≥ φ for all x ≥ 0. [Ville, 1938, p. 107]

From this result Ville gave a fairly easy proof of von Neumann’s minimax theorem.

4.1. Von Neumann’s 1944 proof

The final placement of game theory in general and the minimax theorem in par-
ticular within a context of linear inequalities and the theory of convexity was due to
the joint work “Theory of Games and Economic Behavior” by von Neumann and the
Austrian economist Oskar Morgenstern [von Neumann and Morgenstern, 1944]. Ac-
cording to Kuhn and Tucker the proof of the minimax theorem which von Neumann and
Morgenstern presented in their book was inspired directly by the proof given by Ville:

Oskar Morgenstern has told us [Kuhn and Tucker] that he drew Ville’s article to von
Neumann’s attention after seeing it quite by chance while browsing in the library of the
Institute for Advanced Study. They decided at once to adopt a similar elementary proce-
dure, trying to make it as pictorial and simple to grasp as possible. [Kuhn and Tucker,
1958, p. 116]

How thrilled Morgenstern was when he discovered Ville’s proof is evident from a note
in his diary dated Christmas Eve 1941:

Both [the 1938 book of Borel and the proof by Ville] are unknown to Johnny. Now he
has discovered additional proofs that are becomming increasingly simple and are purely
algebraic!! It necessitates some modification in the text, but we can print it. (Quoted in
[Rellstab, 1992, p. 87])

The new proofs by von Neumann that Morgenstern speaks about were indeed very dif-
ferent from his earlier proofs. The proof they gave in “Theory of Games and Economic
Behavior” is, as we shall see, of a purely algebraic nature and falls within what von
Neumann and Morgenstern themselves characterised as

the mathematico-geometrical theory of linearity and convexity. [von Neumann and Mor-
genstern, 1944, p. 128]
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The theorem of the alternative for matrices

The essential tool in the proof of the minimax theorem that Morgenstern and von
Neumann gave in 1944 is what they called “The Theorem of the Alternative for Matri-
ces”:

If A is a(n×m) matrix then exactly one of the following two systems of inequalities has
a solution:

Ax ≤ 0, x ≥ 0,
m∑

j=1

xj = 1,

wA > 0, w > 0,
n∑

i=1

wi = 1.

[von Neumann and Morgenstern, 1944, p. 138–141]

They derived this theorem as a direct consequence of the theorem of supporting hyper-
planes which states that

Givenx1, . . . , xp in Rn. Then ay in Rn either belongs to the convex setC spanned by
x1, . . . , xp, or there exists a hyperplane which containsy such thatC falls entirely with-
in one half-space produced by that hyperplane. [von Neumann and Morgenstern, 1944,
p. 134]

In order to use this theorem to prove “The Theorem of the Alternative for Matrices”
von Neumann and Morgenstern considered an(n×m) matrix,A, with elementsa(i, j),
i = 1, . . . , n; j = 1, . . . , m. They formed the convex setC spanned by them column
vectors inA together with then unit vectors inRn. Puttingy = 0, either 0 belongs toC
or to a hyperplaneH , such that all ofC is contained in one half-space produced by that
hyperplane [von Neumann and Morgenstern, 1944, p. 139]. In the first case they could
prove the existence of anx in Rm for which x1 ≥ 0, . . . , xm ≥ 0,

∑m
j=1 xj = 1, and

such that the inequalities
m∑

j=1

a(i, j)xj ≤ 0

are satisfied fori = 1, . . . , n. In the second case, that is where 0 does not belong toC,
they showed the existence of a vectorw in Rn with w1 > 0, . . . , wn > 0,

∑n
i=1wi = 1,

such that the following inequalities are satisfied:
n∑

i=1

a(i, j)wi > 0 for j = 1, . . . , m.

These two possibilities, or alternatives as von Neumann and Morgenstern called them,
exclude each other, and this finished their proof of “The Theorem of the Alternative for
Matrices”.

From this result they proved the minimax theorem for two-person zero-sum games
in the following way: Keeping the notation from von Neumann’s 1928 paper (see (1),
in Sect. 2.2) they let
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h(ξ, η) =
�1∑
p=1

�2∑
q=1

g(p, q)ξpηq

be the expected value for the playerS1. By definingA to be the matrix(g(p, q))(�1×�2),
they obtained either the existence of a vectorξ ∈ R�1 for whichξ ≥ 0,

∑
ξp = 1, such

that

�1∑
p=1

g(p, q)ξp ≥ 0 for q = 1, . . . , �2, (11)

or the existence of a vectorη ∈ R�2 for whichη ≥ 0,
∑

ηq = 1, such that

�2∑
q=1

g(p, q)ηq ≤ 0 for p = 1, . . . , �1. (12)

If (11) holds true then

v1 = maxξ minη h(ξ, η) ≥ 0.

If on the other hand (12) holds true then

v2 = minη maxξ h(ξ, η) ≤ 0.

From this von Neumann and Morgenstern concluded that

either v1 ≥ 0 or v2 ≤ 0

that isnever

v1 < 0 < v2. (13)

The final step in the proof was to show that (13) cannot be the case, and even that, for
any numberw, the inequality

v1 < w < v2

cannot be satisfied. Sincev1 ≤ v2 is always true von Neumann and Morgenstern had
proven the equality:

v1 = maxξ minη h(ξ, η) = minη maxξ h(ξ, η) = v2.

In this way von Neumann and Morgenstern in 1944 reduced the proof for the minimax
theorem to a fairly simple consequence of the theorem of “Alternatives for Matrices”
which is a purely algebraic theorem with in the theory of systems of linear inequalities.
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5. Conclusion on von Neumann’s perception of the minimax theorem

The above analysis of the development of von Neumann’s understanding of the
different mathematical contexts in which the minimax theorem presented itself during
the period 1928 to 1944, clearly shows that his recognition of the connections between
the minimax theorem on the one hand, and fixed point results and the theory of lin-
ear inequalties on the other hand, only emerged gradually. The full understanding of
the connection to fixed point theorems was not present until 1937 while the final es-
tablishment and realization of the minimax theorem as a result belonging to the the-
ory of linear inequalities and the theory of convexity was not fully recognized until
1944.

The history told until now can also serve as an illustration of how mathematics
evolves. In this case a problem (the question of the existence of optimal solutions to
two-person zero-sum games) emerged in connection with a new kind of mathematical
questions (the mathematization of games). The problem is solved, and in the beginning
possible connections to other branches of mathematics can be very difficult, if not im-
possible, to realize. Later the problem or a similar problem crops up again in another
context (the economic model of von Neumann), one recognizes the connection and the
complexity of the problem diminishes, the underlying structure of the proof becomes
visible (fixed point techniques) and new general results (the extension of Brouwer’s
fixed point theorem) emerge, which are interesting in themselves and not limited to the
context in which they originally were derived. Finally the problem is recognized to be
a simple consequence of fundamental theorems in a different branch of mathematics
(theories of linear inequality and convexity).

6. The discussion of priority: the significance of the minimax theorem

The 1928 paper by von Neumann was generally taken to mark the beginning of game
theory. Borel’s earlier notes on the subject from the beginning of the twenties were not
generally known until after 1953 when the French mathematician Maurice Fréchet had
three of them translated into English. In the introduction to the translation Fréchet argued
for the importance of Borel’s work:

It was only relatively recently that I began to occupy myself with the theory of probability
and its applications, which explains why the notes thatÉmile Borel. . . published between
1921 and 1927 on the theory of psychological games escaped my attention. It was chance
to begin with. . . because, in the extensive literature devoted to this theory [game theory]
and its applications in recent years, references to earlier work do not lead back, in general,
further than to the important paper published in 1928 by Professor von Neumann. But,
in reading these notes of Borel’s I discovered that in this domain, as in so many others,
Borel had been an initiator. [Fréchet, 1953a, p. 95]

In order to understand the priority debate and how it connects to the significance of the
context to be discussed below, we need to know a little about Borel’s work.
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6.1. Borel’s work on game theory

The first of Borel’s notes on the subject was published in 1921 [Borel, 1921]. He
considered only symmetric games with two playersA andB. He introduced the concept
“méthode de jeu” (method of play) and the fundamental question asked by Borel was
then, whether is was possible to determine a “méthode de jeu meilleure” (best method
of play). It was not quite clear what was to be understood by a “méthode meilleure” but
his concept of “ḿethode de jeu” was the same as von Neumann’s, that is, what now is
called a pure strategy [Borel, 1921, p. 1304]. Like von Neumann, Borel assumed the
players had a finite number of strategiesC1, . . . , Cn to choose from.

Borel’s inspiration to investigate games came from his work on probability and in
his first paper he was looking for the probabilities of winning the game. His starting
point was, that ifA chooses the strategyCi , andB chooses the strategyCk, then the
probability a, thatA wins the game, can be calculated. The probability for playerB

is thenb = 1 − a. To indicate that these probabilities are dependent of the choices of
strategies he put

a = 1

2
+ αik (14)

and

b = 1

2
+ αki (15)

whereαik andαki lie between−1
2 and+1

2 and satisfy the relation

αik + αki = 0.

Like von Neumann he also considered the concept of what later became known as
mixed strategies [Borel, 1921, p. 1305]. But in contrast to von Neumann, who considered
the actions of both players simultaneously, Borel began by examining singular cases,
calculating if it would be possible for one of the players to choose a mixed strategy
such that the probability that he or she would win would be equal to1

2, no matter what
strategy the other player would choose. In the 1921 note he calculated the case where
there are only three pure strategies to choose from and he reached a positive conclusion.
In general, though, he was convinced that for games with more than three pure strategies
the answer would be negative [Borel, 1921, p. 1306]. Two years later he had done the
calculations for games with five pure strategies which shows that the answer also in
this case turned out to be positive and he thought that it would probably also be true
for seven pure strategies, but he still thought that for a larger number of strategies the
answer should be no [Borel, 1923, p. 1117].32

32 Borel only did the calculations for symmetric games with an uneven number of pure strat-
egies. The reason for this is the appearence, in the calculations of the (mathematical) expected
value of a symmetric game, of a skew symmetric matrix of the same order as the number of pure
strategies. Thus, if the number of pure strategies is an uneven number, it becomes especially nice,
because the determinant of the corresponding skew symmetric matrix will then be equal to zero.
(see [Borel, 1921, p. 1306]).
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In 1924 Borel included a chapter on games in his book on probability [Borel, 1924].
Instead of looking at the probabilities for winning as he had done in 1921, he now letαik
denote an amount of money, which playerB has to give to playerA, if playerA chooses
strategyCi and playerB chooses strategyCk. The question he was trying to answer then
was, is it possible for playerA to choose a mixed strategy such that the expected value
he or she can get is 0, no matter which mixed strategy playerB chooses? That is, can
playerA choose a strategy that in all cases can protectA from loosing money? This is
in principle the same question that led von Neumann to the minimax theorem namely,
what is the best you can do in the worst possible case, which is the case where your
opponent somehow has gained knowledge about your choice of strategy.

Changing the interpretation of theαik ’s from being part of the probabilitya (14), that
A wins, to being the amount of moneyB has to give toA, if they choose the strategies
Ck andCi respectively, did not induce Borel to change his mind about the answer to
the question under consideration. He still believed that if the number of pure strategies
was larger than seven, the answer would be no. Two years later he had not yet found an
argument for his belief, which follows from a note published in 1926, where he discussed
the question again. Only this time he formulated both situations: Is it always possible
for playerA to choose a mixed strategy for which the expected value of the game will
be zero no matter what strategy playerB chooses, or is this not the case? And thereby
left it as an open question [Borel, 1926]. The second situation contradicts the minimax
theorem. The fact that he formulated the positive situation first has been interpreted as
implying that he seriously doubted his original views and was beginning to believe that
maybe what is now called the minimax theorem would turn out to be true.33

The reason why Borel at the outset did not belive in a positive answer has been
discussed by Luca Dell’Aglio in the paper “Divergences in the History of Mathematics:
Borel, von Neumann and the Genesis of Game Theory” [Dell’Aglio, 1995]. Dell’Aglio
argues that Borel had a psychological interpretation of the concept of mixed strategies,
which

. . . constitute the conceptual basis of Borel’s negation of the minimax theorem in his
earlier research into game theory. [Dell’Aglio, 1995, p. 21]

The psychological interpretation enters the picture because Borel on several occa-
sions talks about the advantage of being a better psychologist. The player who is a better
observer and analyst than the opponent will have an advantage in the game, which is not
true for optimal solutions covered by the minimax theorem. Dell’Aglio concludes that

. . . the divergence over the validity of the minimax theorem was ultimately due to a dif-
ference in the conceptual and technical structure underlying the two theories. In other
words, Borel and von Neumann produced different theoretical forecasts because they
were working on different basic problems. [Dell’Aglio, 1995, p. 40]

The two different problems that Dell’Aglio is referring to emerge because von Neu-
mann’s point of departure was “the possibility of the existence of equilibria in games
played by equal players” [Dell’Aglio, 1995, p. 40] while “Borel took into consideration a

33 See e.g. [Fŕechet, 1953b, p. 122].
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similar problem but supposing one player has acquainted himself with the psychological
characteristics of his opponent” [Dell’Aglio, 1995, p. 40].

I do not quite understand in what sense Dell’Aglio meant that von Neumann and Bo-
rel are studying two different problems. Both of them had as point of departure that you
choose your strategy without knowing what your opponent is going to choose. In Borel’s
calculations for the cases with three and five pure strategies he is, like von Neumann,
looking for a strategy that can protect you from being in a losing position, no matter
what the other player does. For such a strategy the result of the game will not change
to your disadvantage even if your opponent somehow found out which one you picked.
In a situation like that it does not matter which one is a better psychologist. As far as I
can see the main difference between their work is the approach in their investigations.
Borel did not consider the mixed strategies of the two players simultaneously. He did
not contemplate the interaction between the two players’ independent and simultaneous
choice of strategy. Von Neumann did so and that brought the various ‘minmax’ and
‘maxmin’ considerations into the picture and it is precisly the interaction between these
that made him realize the solution as a saddle point.

6.2. Discussion of priority

In the quotation cited at the beginning of section 6 from the introduction by Fréchet to
the translation of the notes of Borel, Fréchet announced that Borel had been an “initiator”
in the domain of game theory. In a commentary34 Fréchet argued for this opinion:

Borel was the first to indicate the potential importance for this theory of knowing whether
this theorem [the minimax theorem], applied ton manners of playing, is true for arbi-
trary n. He did, moreover, demonstrate it forn= 3 andn= 5, but only for these values.
[Fréchet, 1953b, p. 122]

This introduction and commentary of Fréchet caused a brief priority discussion be-
tween von Neumann and Fréchet. According to L. J. Savage, the translator of Borel’s
work, von Neumann got very angry when he learned what Fréchet had written [Heims,
1980, p. 440, note 14]. In “Communication on the Borel Notes” von Neumann acknowl-
edged that Borel had been the first one to introduce the concepts of pure and mixed
strategies but, he continued,

The relevance of this concept [of mixed strategies] in his [Borel’s] hands was essentially
reduced by his failure to prove the decisive ‘minimax theorem’, or even to surmise its
correctness. As far as I can see, there could be no theory of games on these bases with-
out that theorem.. . . I felt that there was nothing worth publishing until the ‘minimax
theorem’ was proved. [von Neumann, 1953, p. 124–125]

34 The translation of the notes of Borel was published inEconometricain 1953 together with an
introduction by Fŕechet. The translation was followed first by “Commentary on the Three Notes
of Emile Borel” also by Fŕechet and second by “Communication on the Borel Notes” by von
Neumann. All of it was published together with the translation of the notes of Borel.
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What I find interesting is not so much the priority debate in itself but more the fol-
lowing remark by Fŕechet, in the “Commentary on the Three Notes of Emile Borel”
which shows a view very different from that of von Neumann on the importance of the
minimax theorem:

Again, it may be mentioned, that even if Borel had, before von Neumann, established the
minimax theorem in its full generality; the profound originality of Borel’s notes would
not have been augmented nor even touched from the economic point of view. He would
not thereby have even enriched the set of properly mathematical discoveries for which
Borel has acquired a world-wide reputation. He would have, like von Neumann, simply
entered an open door.. . . the same theorem and even more general theorems had been
independently demonstrated by several authors well before the notes of Borel and the first
paper of von Neumann. [Fréchet, 1953b, p. 122]

The proofs Fŕechet is referring to are proofs of theorems similar to von Neumann and
Morgenstern’s “Alternatives for Matrices”, i.e., theorems about solutions to systems of
linear inequalities by Minkowski, Farkas, Stiemke, and Weyl.35

In 1953 the minimax theorem was realized to be a simple consequence of those
classical theorems about solutions to systems of linear inequalities, but von Neumann
derived the minimax theorem in a theory of “Gesellsschaftsspiele” which was a com-
pletely different mathematical context. The techniques used by von Neumann in 1928
had at first nothing to do with linear inequalities, and it was not until Ville’s proof in
1938 that this connection was recognized, a connection von Neumann and Morgenstern
then developed further in their book of 1944. But as von Neumann’s 1928 proof and his
1937 proof clearly demonstrate and as he himself wrote in 1953 in his answer to Fréchet:

This connection may now seem very obvious to someone who first saw the theory after it
had obtained its present form. (O. Morgenstern and myself, in our presentation in 1943,
made, for didactical reasons, every effort to emphasize this connection.) However, this
was not at all the aspect of the matter in 1921–1938. The theorem, and its relation to the
theory of convex sets were far from being obvious. . .. It is common and tempting fallacy
to view the later steps in a mathematical evolution as much more obvious and cogent after
the fact than they were beforehand. [von Neumann, 1953, p. 125]

7. Conclusion on the significance of the context

In this discussion Fŕechet advocates the point of view, that the significance of a math-
ematical theorem is independent of the mathematical context in which it was derived.
The history of von Neumann’s development and conception of the minimax theorem
shows that it was far from being trivial and took a larger effort to realize the connection
between solutions of systems of linear inequalities and the existence of optimal strat-
egies for two-person zero-sum games. The fact that the minimax theorem later turned
out to be a simple consequence of theorems of inequalities proved earlier, does not

35 See [Farkas, 1901, p. 5–7], [Stiemke, 1915, p. 340], [Gordan, 1873, p. 23–28], [Minkowski,
1896, p. 39–45], [Weyl, 1935].
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render the minimax theorem superfluous or worthless in relation to the development of
mathematics, as Fréchet seems to imply. In his assessment whether the minimax theo-
rem has “enriched the set of properly mathematical discoveries” or not, an evaluation
of the significance of the theorem for the developing of new mathematics is lacking.
The mathematical context in which a result is derived determines its formulation and
interpretation and thereby also which kind of new research it can lead to. The questions
that guide research in game theory are not necessarily the same as those guiding research
in the abstract theory of linear inequalities. Hence, the minimax theorem can, from a
game-theoretic point of view, be very different from the theorems of linear inequalities.

The minimax theorem of von Neumann had a tremendeous influence on the further
development of game theory which became a very active field of research after World
War II.36 It also had a decisive influence on the development of some new disciplines in
applied mathematics, especially linear and nonlinear programming which originated in
connection with the Second World War.37
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Fréchet, M. (1953a): “Emile Borel, Initiator of the Theory of Psychological Games and its Appli-
cation.”Econometrica, 21, 1953, pp. 95–96.
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von Neumann, J. (1937): “Über einökonomische Gleichungssystem und eine Verallgemeinerung
des Brouwerschen Fixpunktsatzes.” In K. Menger (ed.)Ergebnisse eines Mathematischen
Kolloquiums.Wien, 1937, pp. 73–83.

von Neumann, J. (1945): “A Model of General Economic Equilibrium.” (English translation of
[von Neumann, 1937]) inReview of Economic studies, vol. 13, 1945, pp. 1–9.

von Neumann, J. (1953): “Communication on the Borel Notes.”Econometrica, 21, 1953, pp.
124–125.

von Neumann, J. (1959): “On the Theory of Games of Strategy.” (English translation of [von Neu-
mann, 1928]) in A. W. Tucker and R. D. Luce (eds.:)Contributions to the Theory of Games.
Princeton, New Jersey: Princeton University Press, 1959, pp. 13–42.



68 T. H. Kjeldsen

von Neumann, J. (1963):Collected Works, (ed.:) A. H. Taub, Pergamon Press: New York, 1963.
von Neumann, J. and Morgenstern, O. (1944):Theory of Games and Economic Behavior.Prince-

ton: Princeton University Press, Princeton, 1944.
Weyl, H. (1935): “Elementare Theorie der konvexen Polyeder.”Mathematici Helvetici, 7, 1935,

pp. 209–306.

Department of Mathematics
Roskilde University

P.O. Box 260
4000 Roskilde

Denmark
thk@ruc.dk

(Received March 1, 2001)


