System of Linear Equations:

\[
\begin{align*}
 a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n &= b_1 \\
 a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n &= b_2 \\
 &\vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n &= b_m
\end{align*}
\]
System of Linear Equations:

\[a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1 \]
\[a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2 \]
\[\vdots \]
\[a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m \]

can be written as matrix equation \(A\vec{x} = \vec{b} \).
System of Linear Equations:

\[a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1 \]
\[a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2 \]
\[\vdots \]
\[a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m \]

can be written as matrix equation \(A\vec{x} = \vec{b} \).

New perspective: think of the LHS as a “function/map/transformation”, \(T(\vec{x}) = A\vec{x} \). \(T \) maps/transforms a vector \(\vec{x} \) to another vector \(A\vec{x} \).
System of Linear Equations:

\[a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1 \]
\[a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2 \]
\[\vdots \]
\[a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m \]

can be written as matrix equation \(A\vec{x} = \vec{b} \).

New perspective: think of the LHS as a “function/map/ transformation”, \(T(\vec{x}) = A\vec{x} \). \(T \) maps/transforms a vector \(\vec{x} \) to another vector \(A\vec{x} \).

Two very nice properties it enjoys are

\[T(\vec{u} + \vec{v}) = A(\vec{u} + \vec{v}) = A\vec{u} + A\vec{v} = T(\vec{u}) + T(\vec{v}) \]
\[T(c\vec{u}) = A(c\vec{u}) = cA\vec{u} = cT(\vec{u}) \]
A linear transformation is a function $T : \mathbb{R}^n \to \mathbb{R}^m$ with these properties:

- For any vectors $\vec{u}, \vec{v} \in \mathbb{R}^n$, $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$
- For any vector $\vec{u} \in \mathbb{R}^n$ and any $c \in \mathbb{R}$, $T(c\vec{u}) = cT(\vec{u})$.

So T is a linear transformation.
Definition

A linear transformation is a function $T : \mathbb{R}^n \to \mathbb{R}^m$ with these properties:

- For any vectors $\vec{u}, \vec{v} \in \mathbb{R}^n$, $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$
- For any vector $\vec{u} \in \mathbb{R}^n$ and any $c \in \mathbb{R}$, $T(c\vec{u}) = cT(\vec{u})$.

Example: Let $T : \mathbb{R}^1 \to \mathbb{R}^1$ be defined by $T(x) = 5x$.
Definition

A **linear transformation** is a function $T : \mathbb{R}^n \to \mathbb{R}^m$ with these properties:

- For any vectors $\vec{u}, \vec{v} \in \mathbb{R}^n$, $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$
- For any vector $\vec{u} \in \mathbb{R}^n$ and any $c \in \mathbb{R}$, $T(c\vec{u}) = cT(\vec{u})$.

Example: Let $T : \mathbb{R}^1 \to \mathbb{R}^1$ be defined by $T(x) = 5x$.

For any $u, v \in \mathbb{R}^1$,

- $T(u + v) = 5(u + v) = 5u + 5v = T(u) + T(v)$ and

- for any $c \in \mathbb{R}$, $T(cu) = 5cu = c5u = cT(u)$.

Example: Let $T : \mathbb{R}^1 \to \mathbb{R}^1$ be defined by $T(x) = 5x$.

For any $u, v \in \mathbb{R}^1$,

- $T(u + v) = 5(u + v) = 5u + 5v = T(u) + T(v)$ and

- for any $c \in \mathbb{R}$, $T(cu) = 5cu = c5u = cT(u)$.

Example: Let $T : \mathbb{R}^1 \to \mathbb{R}^1$ be defined by $T(x) = 5x$.

For any $u, v \in \mathbb{R}^1$,

- $T(u + v) = 5(u + v) = 5u + 5v = T(u) + T(v)$ and

- for any $c \in \mathbb{R}$, $T(cu) = 5cu = c5u = cT(u)$.

Example: Let $T : \mathbb{R}^1 \to \mathbb{R}^1$ be defined by $T(x) = 5x$.

For any $u, v \in \mathbb{R}^1$,

- $T(u + v) = 5(u + v) = 5u + 5v = T(u) + T(v)$ and

- for any $c \in \mathbb{R}$, $T(cu) = 5cu = c5u = cT(u)$.

Example: Let $T : \mathbb{R}^1 \to \mathbb{R}^1$ be defined by $T(x) = 5x$.

For any $u, v \in \mathbb{R}^1$,

- $T(u + v) = 5(u + v) = 5u + 5v = T(u) + T(v)$ and

- for any $c \in \mathbb{R}$, $T(cu) = 5cu = c5u = cT(u)$.

Example: Let $T : \mathbb{R}^1 \to \mathbb{R}^1$ be defined by $T(x) = 5x$.

For any $u, v \in \mathbb{R}^1$,

- $T(u + v) = 5(u + v) = 5u + 5v = T(u) + T(v)$ and

- for any $c \in \mathbb{R}$, $T(cu) = 5cu = c5u = cT(u)$.

Example: Let $T : \mathbb{R}^1 \to \mathbb{R}^1$ be defined by $T(x) = 5x$.

For any $u, v \in \mathbb{R}^1$,

- $T(u + v) = 5(u + v) = 5u + 5v = T(u) + T(v)$ and

- for any $c \in \mathbb{R}$, $T(cu) = 5cu = c5u = cT(u)$.

Example: Let $T : \mathbb{R}^1 \to \mathbb{R}^1$ be defined by $T(x) = 5x$.

For any $u, v \in \mathbb{R}^1$,

- $T(u + v) = 5(u + v) = 5u + 5v = T(u) + T(v)$ and

- for any $c \in \mathbb{R}$, $T(cu) = 5cu = c5u = cT(u)$.

Example: Let $T : \mathbb{R}^1 \to \mathbb{R}^1$ be defined by $T(x) = 5x$.

For any $u, v \in \mathbb{R}^1$,

- $T(u + v) = 5(u + v) = 5u + 5v = T(u) + T(v)$ and

- for any $c \in \mathbb{R}$, $T(cu) = 5cu = c5u = cT(u)$.

Example: Let $T : \mathbb{R}^1 \to \mathbb{R}^1$ be defined by $T(x) = 5x$.

For any $u, v \in \mathbb{R}^1$,

- $T(u + v) = 5(u + v) = 5u + 5v = T(u) + T(v)$ and

- for any $c \in \mathbb{R}$, $T(cu) = 5cu = c5u = cT(u)$.

Example: Let $T : \mathbb{R}^1 \to \mathbb{R}^1$ be defined by $T(x) = 5x$.

For any $u, v \in \mathbb{R}^1$,

- $T(u + v) = 5(u + v) = 5u + 5v = T(u) + T(v)$ and

- for any $c \in \mathbb{R}$, $T(cu) = 5cu = c5u = cT(u)$.

Example: Let $T : \mathbb{R}^1 \to \mathbb{R}^1$ be defined by $T(x) = 5x$.

For any $u, v \in \mathbb{R}^1$,

- $T(u + v) = 5(u + v) = 5u + 5v = T(u) + T(v)$ and

- for any $c \in \mathbb{R}$, $T(cu) = 5cu = c5u = cT(u)$.
Linear Transformations

Definition

A **linear transformation** is a function $T: \mathbb{R}^n \to \mathbb{R}^m$ with these properties:

- For any vectors $\vec{u}, \vec{v} \in \mathbb{R}^n$, $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$
- For any vector $\vec{u} \in \mathbb{R}^n$ and any $c \in \mathbb{R}$, $T(c\vec{u}) = cT(\vec{u})$.

Example: Let $T: \mathbb{R}^1 \to \mathbb{R}^1$ be defined by $T(x) = 5x$. For any $u, v \in \mathbb{R}^1$,

- $T(u + v) = 5(u + v) = 5u + 5v = T(u) + T(v)$ and
- for any $c \in \mathbb{R}$, $T(cu) = 5cu = c5u = cT(u)$.

So T is a linear transformation.
Some notes:
 - Most functions are **not** linear transformations.
Some notes:

- Most functions are **not** linear transformations. For example:
 \[\cos(x + y) \neq \cos(x) + \cos(y) \]. Or \((2x)^2 \neq 2(x^2)\).
Some notes:

- Most functions are not linear transformations. For example: $\cos(x + y) \neq \cos(x) + \cos(y)$. Or $(2x)^2 \neq 2(x^2)$.

- For any linear transformation $T(\vec{0}) = \vec{0}$ (this rules out function $f(x) = x + 5$):
Some notes:

- Most functions are not linear transformations. For example: \(\cos(x + y) \neq \cos(x) + \cos(y) \). Or \((2x)^2 \neq 2(x^2) \).

- For any linear transformation \(T(\vec{0}) = \vec{0} \) (this rules out function \(f(x) = x + 5 \)): Take \(c = 0 \), then
 \[
 T(\vec{0}) = T(0 \cdot \vec{0}) = 0 T(\vec{0}) = \vec{0}.
 \]

- The two conditions could be written as one: For any vectors \(\vec{u}, \vec{v} \in \mathbb{R}^n \) and real numbers \(a, b \in \mathbb{R} \),
 \[
 T(a\vec{u} + b\vec{v}) = aT(\vec{u}) + bT(\vec{v})
 \]
Some notes:

- Most functions are not linear transformations. For example: $\cos(x + y) \neq \cos(x) + \cos(y)$. Or $(2x)^2 \neq 2(x^2)$.
- For any linear transformation $T(\vec{0}) = \vec{0}$ (this rules out function $f(x) = x + 5$): Take $c = 0$, then
 \[T(\vec{0}) = T(0 \cdot \vec{0}) = 0 T(\vec{0}) = \vec{0}. \]
- The two conditions could be written as one: For any vectors $\vec{u}, \vec{v} \in \mathbb{R}^n$ and real numbers $a, b \in \mathbb{R}$,
 \[T(a \vec{u} + b \vec{v}) = a T(\vec{u}) + b T(\vec{v}) \].

Example
Important example:
Important example:

Let A be any $m \times n$ matrix. Define $T : \mathbb{R}^n \to \mathbb{R}^m$ by $T(\vec{x}) = A\vec{x}$. We have already seen that T has what it takes:
Important example:

Let \(A \) be any \(m \times n \) matrix. Define \(T : \mathbb{R}^n \to \mathbb{R}^m \) by \(T(\vec{x}) = A\vec{x} \). We have already seen that \(T \) has what it takes:

- For any vectors \(\vec{u}, \vec{v} \in \mathbb{R}^n \),
 \[
 T(\vec{u} + \vec{v}) = A(\vec{u} + \vec{v}) = A\vec{u} + A\vec{v} = T(\vec{u}) + T(\vec{v})
 \]
Important example:

Let A be any $m \times n$ matrix. Define $T : \mathbb{R}^n \to \mathbb{R}^m$ by $T(\vec{x}) = A\vec{x}$. We have already seen that T has what it takes:

- For any vectors $\vec{u}, \vec{v} \in \mathbb{R}^n$,
 \[T(\vec{u} + \vec{v}) = A(\vec{u} + \vec{v}) = A\vec{u} + A\vec{v} = T(\vec{u}) + T(\vec{v}) \]

- For any vector $\vec{u} \in \mathbb{R}^n$ and any $c \in \mathbb{R}$,
 \[T(c\vec{u}) = A(c\vec{u}) = c(A\vec{u}) = cT(\vec{u}). \]
Important example:

Let A be any $m \times n$ matrix. Define $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ by $T(\vec{x}) = A\vec{x}$. We have already seen that T has what it takes:

- For any vectors $\vec{u}, \vec{v} \in \mathbb{R}^n$,
 $$T(\vec{u} + \vec{v}) = A(\vec{u} + \vec{v}) = A\vec{u} + A\vec{v} = T(\vec{u}) + T(\vec{v})$$

- For any vector $\vec{u} \in \mathbb{R}^n$ and any $c \in \mathbb{R}$,
 $$T(c\vec{u}) = A(c\vec{u}) = c(A\vec{u}) = cT(\vec{u})$$

A linear transformation defined by a matrix is called a **matrix transformation**.

Important Fact: Conversely, any linear transformation is associated to a matrix transformation (by using bases).
Important example:

Let A be any $m \times n$ matrix. Define $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ by $T(\vec{x}) = A\vec{x}$. We have already seen that T has what it takes:

- For any vectors $\vec{u}, \vec{v} \in \mathbb{R}^n$,
 $T(\vec{u} + \vec{v}) = A(\vec{u} + \vec{v}) = A\vec{u} + A\vec{v} = T(\vec{u}) + T(\vec{v})$
- For any vector $\vec{u} \in \mathbb{R}^n$ and any $c \in \mathbb{R}$,
 $T(c\vec{u}) = A(c\vec{u}) = c(A\vec{u}) = cT(\vec{u})$.

A linear transformation defined by a matrix is called a matrix transformation.

Important Fact Conversely any linear transformation is associated to a matrix transformation (by using bases).
Mona Lisa transformed
Matrix transformations are **important** and are also **cool**!
Matrix transformations are important and are also cool!

Example 1, a shear: Consider the matrix transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ given by the 2×2 matrix

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}$$
Matrix transformations are important and are also cool!

Example 1, a shear: Consider the matrix transformation $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ given by the 2×2 matrix

$$A = \begin{bmatrix} 1 & 3/2 \\ 0 & 1 \end{bmatrix}$$

For any horizontal vector $\vec{x} = \begin{bmatrix} x_1 \\ 0 \end{bmatrix}$

$$T(\vec{x}) = A\vec{x} = \begin{bmatrix} 1 & 3/2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ 0 \end{bmatrix} = \begin{bmatrix} x_1 + 3/2 \cdot 0 \\ 0 \cdot x_1 + 1 \cdot 0 \end{bmatrix} = \begin{bmatrix} x_1 \\ 0 \end{bmatrix}$$
Matrix transformations are important and are also cool!

Example 1, a shear: Consider the matrix transformation \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) given by the 2 \(\times \) 2 matrix

\[
A = \begin{bmatrix}
1 & 3 \\
0 & 1
\end{bmatrix}
\]

For any horizontal vector \(\vec{x} = \begin{bmatrix} x_1 \\ 0 \end{bmatrix} \)

\[
T(\vec{x}) = A\vec{x} = \begin{bmatrix}
1 & 3 \\
0 & 1
\end{bmatrix} \begin{bmatrix} x_1 \\ 0 \end{bmatrix} = \begin{bmatrix} x_1 + \frac{3}{2} \cdot 0 \\ 0 \cdot x_1 + 1 \cdot 0 \end{bmatrix} = \begin{bmatrix} x_1 \\ 0 \end{bmatrix}
\]

So \(T \) is the identity on horizontal vectors.
For any vertical vector \(\vec{x} = \begin{bmatrix} 0 \\ x_2 \end{bmatrix} \)
For any vertical vector $\vec{x} = \begin{bmatrix} 0 \\ x_2 \end{bmatrix}$

$$T(\vec{x}) = A\vec{x} = \begin{bmatrix} 1 & \frac{3}{2} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \cdot 0 + \frac{3}{2} \cdot x_2 \\ 0 \cdot 0 + 1 \cdot x_2 \end{bmatrix} = \begin{bmatrix} \frac{3}{2} x_2 \\ x_2 \end{bmatrix}$$
For any **vertical** vector $\vec{x} = \begin{bmatrix} 0 \\ x_2 \end{bmatrix}$

$$T(\vec{x}) = A\vec{x} = \begin{bmatrix} 1 & \frac{3}{2} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \cdot 0 + \frac{3}{2} \cdot x_2 \\ 0 \cdot 0 + 1 \cdot x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ x_2 \end{bmatrix} + \begin{bmatrix} \frac{3}{2}x_2 \\ 0 \end{bmatrix}$$
For any \textit{vertical} vector \(\vec{x} = \begin{bmatrix} 0 \\ x_2 \end{bmatrix} \)

\[
T(\vec{x}) = A\vec{x} = \begin{bmatrix} 1 & \frac{3}{2} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \cdot 0 + \frac{3}{2} \cdot x_2 \\ 0 \cdot 0 + 1 \cdot x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ x_2 \end{bmatrix} + \begin{bmatrix} \frac{3}{2}x_2 \\ 0 \end{bmatrix}
\]

So a vertical vector is pushed perfectly horizontally, a distance \(\frac{3}{2} \) times its length:
For any vertical vector \(\vec{x} = \begin{bmatrix} 0 \\ x_2 \end{bmatrix} \)

\[
T(\vec{x}) = A\vec{x} = \begin{bmatrix} 1 & \frac{3}{2} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \cdot 0 + \frac{3}{2} \cdot x_2 \\ 0 \cdot 0 + 1 \cdot x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ x_2 \end{bmatrix} + \begin{bmatrix} \frac{3}{2}x_2 \\ 0 \end{bmatrix}
\]

So a vertical vector is pushed perfectly horizontally, a distance \(\frac{3}{2} \) times its length:

\((0, 1)\) \(\to\) \((3/2, 1)\) \(\to\) \((2, 1)\) \(\to\) \((2+3/2, 1)\)
Example 2, scaling:

Use

$$A = \begin{bmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$$
Example 2, scaling:

Use

\[A = \begin{bmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \]

For any vector \(\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \)

\[T(\vec{x}) = A\vec{x} = \begin{bmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2x_1 + 0 \cdot x_2 \\ 0 \cdot x_1 + \frac{1}{2} \cdot x_2 \end{bmatrix} = \begin{bmatrix} 2x_1 \\ \frac{x_2}{2} \end{bmatrix} \]
Example 2, scaling:

Use

$$A = \begin{bmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$$

For any vector $$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$T(\vec{x}) = A\vec{x} = \begin{bmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2x_1 + 0 \cdot x_2 \\ 0 \cdot x_1 + \frac{1}{2} \cdot x_2 \end{bmatrix} = \begin{bmatrix} 2x_1 \\ \frac{x_2}{2} \end{bmatrix}$$

So $$T$$ stretches horizontally and contracts vertically:
Example 2, scaling:

Use

\[A = \begin{bmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \]

For any vector \(\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \)

\[T(\vec{x}) = A\vec{x} = \begin{bmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2x_1 + 0 \cdot x_2 \\ 0 \cdot x_1 + \frac{1}{2} \cdot x_2 \end{bmatrix} = \begin{bmatrix} 2x_1 \\ \frac{x_2}{2} \end{bmatrix} \]

So \(T \) stretches horizontally and contracts vertically:
Example 3, reflection through a line:
Use

\[A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \]
Example 3, reflection through a line:

Use

\[A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \]

\[T \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \cdot x_1 + 1 \cdot x_2 \\ 1 \cdot x_1 + 0 \cdot x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_1 \end{bmatrix} \]
Example 3, reflection through a line:

Use

\[A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \]

\[T \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0x_1 + 1 \cdot x_2 \\ 1 \cdot x_1 + 0 \cdot x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_1 \end{bmatrix} \]

So \(T \) exchanges the two coordinates.
Example 3, reflection through a line:

Use

\[
A = \begin{bmatrix}
0 & 1 \\
1 & 0 \\
\end{bmatrix}
\]

\[
T\left(\begin{bmatrix}
x_1 \\
x_2 \\
\end{bmatrix}\right) = A \begin{bmatrix}
x_1 \\
x_2 \\
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
1 & 0 \\
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2 \\
\end{bmatrix} = \begin{bmatrix}
0x_1 + 1 \cdot x_2 \\
1 \cdot x_1 + 0 \cdot x_2 \\
\end{bmatrix} = \begin{bmatrix}
x_2 \\
x_1 \\
\end{bmatrix}
\]

So \(T \) exchanges the two coordinates. Looks like reflection through the line \(x_1 = x_2 \):
Example 3, reflection through a line:

Use

\[A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \]

\[T(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0x_1 + 1 \cdot x_2 \\ 1 \cdot x_1 + 0 \cdot x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_1 \end{bmatrix} \]

So \(T \) exchanges the two coordinates. Looks like reflection through the line \(x_1 = x_2 \):
Example 4, rotation:

Use

\[
A = \begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}
\]
Example 4, rotation:

Use

\[A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \]

\[T\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = A \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} \]

So horizontal unit vector is rotated \(\theta \) clockwise.

Similarly, for the vertical unit vector \(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \), so all of plane rotates:
Example 4, rotation:

Use

\[A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \]

\[T(\begin{bmatrix} 1 \\ 0 \end{bmatrix}) = A \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} \]

So horizontal unit vector is rotated c-clockwise an angle \(\theta \).
Example 4, rotation:

Use

\[
A = \begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}
\]

\[
T\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) = A \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}
\]

So horizontal unit vector is rotated c-clockwise an angle \(\theta \).

Similarly, for the vertical unit vector \(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \),
Example 4, rotation:

Use

\[
A = \begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}
\]

\[
T\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) = A \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}
\]

So horizontal unit vector is rotated \(c \)-clockwise an angle \(\theta \).

Similarly, for the vertical unit vector \(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \), so all of plane rotates:
Some types of problems that can come up:
Some types of problems that can come up:

Question: Suppose \(T : \mathbb{R}^n \to \mathbb{R}^m \) is a matrix linear transformation. Suppose \(A \) is the matrix of \(T \) and \(\vec{u} \in \mathbb{R}^n \) is given. What is \(T(\vec{u}) \)?
Some types of problems that can come up:

Question: Suppose $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is a matrix linear transformation. Suppose A is the matrix of T and $\vec{u} \in \mathbb{R}^n$ is given. What is $T(\vec{u})$?

Answer: Just do matrix-vector multiplication $A\vec{u}$. The result is a vector in \mathbb{R}^m.
Some types of problems that can come up:

Question: Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a matrix linear transformation. Suppose A is the matrix of T and $\vec{u} \in \mathbb{R}^n$ is given. What is $T(\vec{u})$?

Answer: Just do matrix-vector multiplication $A\vec{u}$. The result is a vector in \mathbb{R}^m.

Question: Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a matrix linear transformation. Suppose A is the matrix of T and $\vec{b} \in \mathbb{R}^m$ is given.
Some types of problems that can come up:

Question: Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a matrix linear transformation. Suppose A is the matrix of T and $\vec{u} \in \mathbb{R}^n$ is given. What is $T(\vec{u})$?

Answer: Just do matrix-vector multiplication $A\vec{u}$. The result is a vector in \mathbb{R}^m.

Question: Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a matrix linear transformation. Suppose A is the matrix of T and $\vec{b} \in \mathbb{R}^m$ is given. Find a vector \vec{u} so that

$$T(\vec{u}) = \vec{b}.$$
Some types of problems that can come up:

Question: Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a matrix linear transformation. Suppose A is the matrix of T and $\vec{u} \in \mathbb{R}^n$ is given. What is $T(\vec{u})$?

Answer: Just do matrix-vector multiplication $A\vec{u}$. The result is a vector in \mathbb{R}^m.

Question: Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a matrix linear transformation. Suppose A is the matrix of T and $\vec{b} \in \mathbb{R}^m$ is given. Find a vector \vec{u} so that

$$T(\vec{u}) = \vec{b}.$$

Answer: Solve the system of equations given by $A\vec{x} = \vec{b}$. Any solution is such a vector \vec{u}.

Reminder: There may be no solution or exactly one solution or a parameterized family of solutions.
Some types of problems that can come up:

Question: Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a matrix linear transformation. Suppose A is the matrix of T and $\vec{u} \in \mathbb{R}^n$ is given. What is $T(\vec{u})$?

Answer: Just do matrix-vector multiplication $A\vec{u}$. The result is a vector in \mathbb{R}^m.

Question: Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a matrix linear transformation. Suppose A is the matrix of T and $\vec{b} \in \mathbb{R}^m$ is given. Find a vector \vec{u} so that $T(\vec{u}) = \vec{b}$.

Answer: Solve the system of equations given by $A\vec{x} = \vec{b}$. Any solution is such a vector \vec{u}.

Reminder: There may be

- no solution or
- exactly one solution or
- a parameterized family of solutions.
Suppose T is a matrix linear transformation with matrix A below, and we are seeking all vectors \vec{u} so that $T(\vec{u}) = \vec{b}$.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 0 \end{bmatrix}, \quad \vec{b} = \begin{bmatrix} 6 \\ 7 \\ 8 \end{bmatrix}$$

How many solutions are there?

A) Zero.
B) One
C) Infinity
D) Can’t tell
iClicker question

Suppose T is a matrix linear transformation with matrix A below, and we are seeking all vectors \vec{u} so that $T(\vec{u}) = \vec{b}$.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 0 \end{bmatrix} \quad \vec{b} = \begin{bmatrix} 6 \\ 7 \\ 8 \end{bmatrix}$$

How many solutions are there?

A) Zero.
B) One
C) Infinity
D) Can’t tell

What if $\vec{b} = \begin{bmatrix} 6 \\ 7 \\ 0 \end{bmatrix}$?
Question: Describe all vectors \vec{u} so that $T(\vec{u}) = \vec{b}$.
Question: Describe all vectors \(\vec{u} \) so that \(T(\vec{u}) = \vec{b} \).

Answer: This is the same as finding all vectors \(\vec{u} \) so that \(A\vec{u} = \vec{b} \). Could be no \(\vec{u} \), could be exactly one \(\vec{u} \), or could be a parametrized family of such \(\vec{u} \)'s.
Question: Describe all vectors \(\vec{u} \) so that \(T(\vec{u}) = \vec{b} \).

Answer: This is the same as finding all vectors \(\vec{u} \) so that \(A\vec{u} = \vec{b} \). Could be no \(\vec{u} \), could be exactly one \(\vec{u} \), or could be a parametrized family of such \(\vec{u} \)'s.

Recall the idea: row reduce the augmented matrix \([A : \vec{b}]\) to merely echelon form.
Question: Describe all vectors \vec{u} so that $T(\vec{u}) = \vec{b}$.

Answer: This is the same as finding all vectors \vec{u} so that $A\vec{u} = \vec{b}$. Could be no \vec{u}, could be exactly one \vec{u}, or could be a parametrized family of such \vec{u}’s.

Recall the idea: row reduce the augmented matrix $[A : \vec{b}]$ to merely echelon form.

- Augmentation column is pivot column \iff no solutions.
- Augmentation column is only non-pivot column \iff unique solution.
- There are free variables \iff there is a parameterized family of solutions whose dimension is the number of free variables.

If there are solutions, reduced echelon form makes it easy to describe them.
Question: Describe all vectors \vec{u} so that $T(\vec{u}) = \vec{b}$.

Answer: This is the same as finding all vectors \vec{u} so that $A\vec{u} = \vec{b}$. Could be no \vec{u}, could be exactly one \vec{u}, or could be a parametrized family of such \vec{u}’s.

Recall the idea: row reduce the augmented matrix $[A : \vec{b}]$ to merely echelon form.

- Augmentation column is pivot column \iff no solutions.
- Augmentation column is only non-pivot column \iff unique solution.
- There are free variables \iff there is a parameterized family of solutions whose dimension is the number of free variables.

If there are solutions, reduced echelon form makes it easy to describe them.
Definition

A **linear transformation** is a function $T : \mathbb{R}^n \to \mathbb{R}^m$ with these properties:

- For any vectors $\vec{u}, \vec{v} \in \mathbb{R}^n$, $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$
- For any vector $\vec{u} \in \mathbb{R}^n$ and any $c \in \mathbb{R}$, $T(c\vec{u}) = cT(\vec{u})$.
Definition

A **linear transformation** is a function $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ with these properties:

- For any vectors $\vec{u}, \vec{v} \in \mathbb{R}^n$, $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$
- For any vector $\vec{u} \in \mathbb{R}^n$ and any $c \in \mathbb{R}$, $T(c\vec{u}) = cT(\vec{u})$.

For any linear transformation $T(\vec{0}) = \vec{0}$
Definition

A **linear transformation** is a function $T : \mathbb{R}^n \to \mathbb{R}^m$ with these properties:

- For any vectors $\vec{u}, \vec{v} \in \mathbb{R}^n$, $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$
- For any vector $\vec{u} \in \mathbb{R}^n$ and any $c \in \mathbb{R}$, $T(c\vec{u}) = cT(\vec{u})$.

For any linear transformation $T(\vec{0}) = \vec{0}$

$$T(a\vec{u} + b\vec{v}) = aT(\vec{u}) + bT(\vec{v})$$
Definition

A **linear transformation** is a function $T : \mathbb{R}^n \to \mathbb{R}^m$ with these properties:

- For any vectors $\vec{u}, \vec{v} \in \mathbb{R}^n$, $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$
- For any vector $\vec{u} \in \mathbb{R}^n$ and any $c \in \mathbb{R}$, $T(c\vec{u}) = cT(\vec{u})$.

For any linear transformation $T(\vec{0}) = \vec{0}$

$$T(a\vec{u} + b\vec{v}) = aT(\vec{u}) + bT(\vec{v})$$

This has important implications: if you know $T(\vec{u})$ and $T(\vec{v})$, then you know the values of T on all the linear combinations of \vec{u} and \vec{v}.
Definition

A **linear transformation** is a function $T : \mathbb{R}^n \to \mathbb{R}^m$ with these properties:

- For any vectors $\vec{u}, \vec{v} \in \mathbb{R}^n$, $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$
- For any vector $\vec{u} \in \mathbb{R}^n$ and any $c \in \mathbb{R}$, $T(c\vec{u}) = cT(\vec{u})$.

For any linear transformation $T(\vec{0}) = \vec{0}$

$$T(a\vec{u} + b\vec{v}) = aT(\vec{u}) + bT(\vec{v})$$

This has important implications: if you know $T(\vec{u})$ and $T(\vec{v})$, then you know the values of T on all the linear combinations of \vec{u} and \vec{v}.

Matrix transformation: Let A be any $m \times n$ matrix. Define $T : \mathbb{R}^n \to \mathbb{R}^m$ by $T(\vec{x}) = A\vec{x}$.
Example: Suppose $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation so that

$$T\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 5 \\ 2 \end{bmatrix}; \quad T\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
Matrix Is Everywhere

Example: Suppose $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation so that

\[
T\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 5 \\ 2 \end{bmatrix}; \quad T\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 3 \\ 4 \end{bmatrix}
\]

What is $T\left(\begin{bmatrix} -1 \\ 7 \end{bmatrix} \right)$?
Example: Suppose $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is a linear transformation so that

\[
T\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} 5 \\ 2 \end{bmatrix}; \quad T\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right) = \begin{bmatrix} 3 \\ 4 \end{bmatrix}
\]

What is $T\left(\begin{bmatrix} -1 \\ 7 \end{bmatrix}\right)$?

\[
T\left(\begin{bmatrix} -1 \\ 7 \end{bmatrix}\right) = T\left(-1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 7 \begin{bmatrix} 0 \\ 1 \end{bmatrix}\right) = -1 T\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) + 7 T\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right)
\]

\[
= -1 \begin{bmatrix} 5 \\ 2 \end{bmatrix} + 7 \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 16 \\ 26 \end{bmatrix}
\]
Matrix Is Everywhere

Example: Suppose $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is a linear transformation so that

$$T\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 5 \\ 2 \end{bmatrix}; \quad T\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

What is $T\left(\begin{bmatrix} -1 \\ 7 \end{bmatrix} \right)$?

$$T\left(\begin{bmatrix} -1 \\ 7 \end{bmatrix} \right) = T\left(-1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 7 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = -1 T\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) + 7 T\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)$$

$$= -1 \begin{bmatrix} 5 \\ 2 \end{bmatrix} + 7 \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 16 \\ 26 \end{bmatrix}$$

In fact, nothing can stop us from using the same idea to compute $T\left(\begin{bmatrix} 2 \\ -4 \end{bmatrix} \right)$ or $T(\vec{x})$ for any vector $\vec{x} \in \mathbb{R}^2$:
We can carry this much further: All linear transformations $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ are matrix linear transformations.
We can carry this much further: All linear transformations $T : \mathbb{R}^n \to \mathbb{R}^m$ are matrix linear transformations.

Why?

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} + \ldots + x_n \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

is a linear combination of the vectors

$$\begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \ldots, \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

(standard basis of \mathbb{R}^n)
So by the property of linear transformation

\[T(\vec{x}) = x_1 T \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + x_2 T \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} + \ldots + x_n T \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} \]

only need to know each \(T(\vec{e}_j) \) where

\[\vec{e}_j = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \leftarrow j^{th} \text{entry} \]
So by the property of linear transformation

\[T(\vec{x}) = x_1 T\left(\begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}\right) + x_2 T\left(\begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}\right) + \ldots x_n T\left(\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}\right) \]

only need to know each \(T(\vec{e}_j) \) where

\[\vec{e}_j = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} \leftarrow j^{th} \text{entry} \]

Denote \(\vec{a}_j = T(\vec{e}_j) \)

\[T(\vec{x}) = x_1 \vec{a}_1 + x_2 \vec{a}_2 + \ldots x_n \vec{a}_n \]
Ahha: In matrix notation this is written:

\[
T(\vec{x}) = \begin{bmatrix}
\vec{a}_1 & \vec{a}_2 & \ldots & \vec{a}_n
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix} = A\vec{x}
\]
Ahha: In matrix notation this is written:

\[T(\vec{x}) = [\vec{a}_1 \quad \vec{a}_2 \quad \ldots \quad \vec{a}_n] \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = A\vec{x} \]

That is, the matrix

\[A = [\vec{a}_1 \quad \vec{a}_2 \quad \ldots \quad \vec{a}_n]\]

is the matrix of \(T \)!
Recap:
Recap: Since T is a linear transformation,

$$T(\vec{x}) = T(x_1 \vec{e}_1 + x_2 \vec{e}_2 + \ldots + x_n \vec{e}_n) = x_1 T(\vec{e}_1) + x_2 T(\vec{e}_2) + \ldots + x_n T(\vec{e}_n) =$$
Recap: Since T is a linear transformation,

$$T(\vec{x}) = T(x_1\vec{e}_1+x_2\vec{e}_2+\ldots+x_n\vec{e}_n) = x_1 T(\vec{e}_1)+x_2 T(\vec{e}_2)+\ldots+x_n T(\vec{e}_n) = x_1\vec{a}_1 + x_2\vec{a}_2 + \ldots x_n\vec{a}_n = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \ldots & \vec{a}_n \end{bmatrix} \begin{bmatrix}x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = A\vec{x}.$$
Recap: Since T is a linear transformation,

$$T(\vec{x}) = T(x_1 \vec{e}_1 + x_2 \vec{e}_2 + \ldots + x_n \vec{e}_n) = x_1 T(\vec{e}_1) + x_2 T(\vec{e}_2) + \ldots + x_n T(\vec{e}_n) =$$

$$x_1 \vec{a}_1 + x_2 \vec{a}_2 + \ldots + x_n \vec{a}_n = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = A\vec{x}.$$

Example
Suppose \(T : \mathbb{R}^n \to \mathbb{R}^m \) is a (matrix) linear transformation.

Definition

\(T \) is 1 to 1 if \(\vec{u} \neq \vec{v} \) implies that \(T(\vec{u}) \neq T(\vec{v}) \).
Suppose $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is a (matrix) linear transformation.

Definition

T is 1 to 1 if $\vec{u} \neq \vec{v}$ implies that $T(\vec{u}) \neq T(\vec{v})$.

Put another words, $T(\vec{u}) = T(\vec{v})$ implies $\vec{u} = \vec{v}$.
Suppose \(T : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is a (matrix) linear transformation.

Definition

\(T \) is **1 to 1** if \(\vec{u} \neq \vec{v} \) implies that \(T(\vec{u}) \neq T(\vec{v}) \).

Put another words, \(T(\vec{u}) = T(\vec{v}) \) implies \(\vec{u} = \vec{v} \).

If \(T(\vec{u}) = T(\vec{v}) \) we see that \(T(\vec{u} - \vec{v}) = \vec{0} \) (\(T \) linear transformation).
Suppose \(T : \mathbb{R}^n \to \mathbb{R}^m \) is a (matrix) linear transformation.

Definition

\(T \) is 1 to 1 if \(\vec{u} \neq \vec{v} \) implies that \(T(\vec{u}) \neq T(\vec{v}) \).

Put another words, \(T(\vec{u}) = T(\vec{v}) \) implies \(\vec{u} = \vec{v} \).

If \(T(\vec{u}) = T(\vec{v}) \) we see that \(T(\vec{u} - \vec{v}) = \vec{0} \) (\(T \) linear transformation).

Saying that \(T \) is 1 to 1 is the same as saying that \(T(\vec{w}) = \vec{0} \) exactly when \(\vec{w} = \vec{0} \) (only trivial solution).
Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a (matrix) linear transformation.

Definition

T is **1 to 1** if $\vec{u} \neq \vec{v}$ implies that $T(\vec{u}) \neq T(\vec{v})$.

Put another words, $T(\vec{u}) = T(\vec{v})$ implies $\vec{u} = \vec{v}$.

If $T(\vec{u}) = T(\vec{v})$ we see that $T(\vec{u} - \vec{v}) = \vec{0}$ (*T linear transformation*).

Saying that T is **1 to 1** is the same as saying that $T(\vec{w}) = \vec{0}$ exactly when $\vec{w} = \vec{0}$ (*only trivial solution*).

This means that the reduced echelon form of the matrix of T must have exactly n non-zero rows.
Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a (matrix) linear transformation.

Definition

T is **1 to 1** if $\vec{u} \neq \vec{v}$ implies that $T(\vec{u}) \neq T(\vec{v})$.

Put another words, $T(\vec{u}) = T(\vec{v})$ implies $\vec{u} = \vec{v}$.

If $T(\vec{u}) = T(\vec{v})$ we see that $T(\vec{u} - \vec{v}) = \vec{0}$ (\textit{T} linear transformation).

Saying that T is **1 to 1** is the same as saying that $T(\vec{w}) = \vec{0}$ exactly when $\vec{w} = \vec{0}$ (only trivial solution).

This means that the reduced echelon form of the matrix of T must have exactly n non-zero rows.

The only solution to the homogeneous equation is the zero solution. And, as a consequence, $n \leq m$.
Suppose \(T : \mathbb{R}^n \to \mathbb{R}^m \) is a (matrix) linear transformation.

Definition

\(T \) is 1 to 1 if \(\vec{u} \neq \vec{v} \) implies that \(T(\vec{u}) \neq T(\vec{v}) \).

Put another words, \(T(\vec{u}) = T(\vec{v}) \) implies \(\vec{u} = \vec{v} \).

If \(T(\vec{u}) = T(\vec{v}) \) we see that \(T(\vec{u} - \vec{v}) = \vec{0} \) (\(T \) linear transformation).

Saying that \(T \) is 1 to 1 is the same as saying that \(T(\vec{w}) = \vec{0} \) exactly when \(\vec{w} = \vec{0} \) (only trivial solution).

This means that the reduced echelon form of the matrix of \(T \) must have exactly \(n \) non-zero rows.

The only solution to the homogeneous equation is the zero solution. And, as a consequence, \(n \leq m \).

Examples: shears, contractions and expansions, rotations, reflections.
Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a (matrix) linear transformation.

Definition

T is **onto** if, for any $\vec{v} \in \mathbb{R}^m$, is there a $\vec{u} \in \mathbb{R}^n$ such that $T(\vec{u}) = \vec{v}$.

Saying that T is onto is the same as saying that $T(\vec{u}) = \vec{v}$ always has a solution.

This means that the reduced echelon form of the matrix of T must have exactly m non-zero rows. The non-homogeneous equation must always have a solution. And, as a consequence, $m \leq n$. Examples: shears, contractions and expansions, rotations, reflections.
Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a (matrix) linear transformation.

Definition

T is **onto** if, for any $\mathbf{v} \in \mathbb{R}^m$, there is a $\mathbf{u} \in \mathbb{R}^n$ such that $T(\mathbf{u}) = \mathbf{v}$.

Saying that T is **onto** is the same as saying that $T(\mathbf{u}) = \mathbf{v}$ always has a solution.
Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a (matrix) linear transformation.

Definition

T is **onto** if, for any $\vec{v} \in \mathbb{R}^m$, is there a $\vec{u} \in \mathbb{R}^n$ such that $T(\vec{u}) = \vec{v}$.

Saying that T is **onto** is the same as saying that \(T(\vec{u}) = \vec{v} \) always has a solution.

This means that the reduced echelon form of the matrix of T must have exactly m non-zero rows.
Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a (matrix) linear transformation.

Definition

T is onto if, for any $\vec{v} \in \mathbb{R}^m$, is there a $\vec{u} \in \mathbb{R}^n$ such that $T(\vec{u}) = \vec{v}$.

Saying that T is onto is the same as saying that $T(\vec{u}) = \vec{v}$ always has a solution.

This means that the reduced echelon form of the matrix of T must have exactly m non-zero rows.

The non-homogeneous equation must always have a solution. And, as a consequence, $m \leq n$.
Suppose $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is a (matrix) linear transformation.

Definition

T is onto if, for any $\vec{v} \in \mathbb{R}^m$, is there a $\vec{u} \in \mathbb{R}^n$ such that $T(\vec{u}) = \vec{v}$.

Saying that T is onto is the same as saying that $T(\vec{u}) = \vec{v}$ always has a solution.

This means that the reduced echelon form of the matrix of T must have exactly m non-zero rows.

The non-homogeneous equation must always have a solution. And, as a consequence, $m \leq n$.

Examples: shears, contractions and expansions, rotations, reflections
Suppose $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is a (matrix) linear transformation.

Definition

T is an **isomorphism** if T is both 1 to 1 and onto.
Suppose $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is a (matrix) linear transformation.

Definition

T is an **isomorphism** if T is both 1 to 1 and onto.

Saying that T is **isomorphism** is the same as saying that T is a bijection that respects the vector space structure.
Suppose $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is a (matrix) linear transformation.

Definition

T is an **isomorphism** if T is both 1 to 1 and onto.

Saying that T is **isomorphism** is the same as saying that T is a bijection that respects the vector space structure.

This means that the reduced echelon form of the matrix of T must have exactly n non-zero rows, the same as the number of columns.
Suppose $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is a (matrix) linear transformation.

Definition

T is an **isomorphism** if T is both 1 to 1 and onto.

Saying that T is **isomorphism** is the same as saying that T is a bijection that respects the vector space structure.

This means that the reduced echelon form of the matrix of T must have exactly n non-zero rows, the same as the number of columns.

The non-homogeneous equation must always have exactly one solution.
Suppose \(T : \mathbb{R}^n \rightarrow \mathbb{R}^n \) is a (matrix) linear transformation.

Definition

\(T \) is an **isomorphism** if \(T \) is both 1 to 1 and onto.

Saying that \(T \) is isomorphism is the same as saying that \(T \) is a bijection that respects the vector space structure.

This means that the reduced echelon form of the matrix of \(T \) must have exactly \(n \) non-zero rows, the same as the number of columns.

The non-homogeneous equation must always have exactly one solution.

Examples: shears, contractions and expansions, rotations, reflections
Summarizing Suppose $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is a (matrix) linear transformation.
Summarizing Suppose $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is a (matrix) linear transformation.

T is 1 to 1 if there is a pivot 1 in every column of the reduced echelon form, i.e. there are no free variables.
Summarizing Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a (matrix) linear transformation.

T is 1 to 1 if there is a pivot 1 in every column of the reduced echelon form, i.e. there are no free variables. Said differently, the column vectors of the matrix of T are linearly independent.

T is onto if there is a pivot 1 in every row of the reduced echelon form. Said differently, the column vectors of the matrix of T span the whole space \mathbb{R}^m.

T is an isomorphism if there is a pivot 1 in every row and column, i.e. the reduced echelon matrix is the identity matrix. Said differently, the column vectors of the matrix of T are linearly independent and span the whole space.
Summarizing Suppose $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is a (matrix) linear transformation.

T is **1 to 1** if there is a pivot 1 in every column of the reduced echelon form, i.e. there are no free variables. Said differently, the column vectors of the matrix of T are linearly independent.

T is **onto** if there is a pivot 1 in every row of the reduced echelon form.
Summarizing Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a (matrix) linear transformation.

T is **1 to 1** if there is a pivot 1 in every column of the reduced echelon form, i.e. there are no free variables. Said differently, the column vectors of the matrix of T are linearly independent.

T is **onto** if there is a pivot 1 in every row of the reduced echelon form. Said differently, the column vectors of the matrix of T span the whole space \mathbb{R}^m.
Summarizing Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a (matrix) linear transformation.

T is **1 to 1** if there is a pivot 1 in every column of the reduced echelon form, i.e. there are no free variables. Said differently, the column vectors of the matrix of T are linearly independent.

T is **onto** if there is a pivot 1 in every row of the reduced echelon form. Said differently, the column vectors of the matrix of T span the whole space \mathbb{R}^m.

T is an **isomorphism** if there is a pivot 1 in every row and column, i.e. the reduced echelon matrix is the identity matrix.
Summarizing Suppose $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is a (matrix) linear transformation.

T is **1 to 1** if there is a pivot 1 in every column of the reduced echelon form, i.e. there are no free variables. Said differently, **the column vectors of the matrix of T are linearly independent**.

T is **onto** if there is a pivot 1 in every row of the reduced echelon form. Said differently, **the column vectors of the matrix of T span the whole space \mathbb{R}^m**.

T is an isomorphism if there is a pivot 1 in every row and column, i.e. the reduced echelon matrix is the identity matrix. Said differently, **the column vectors of the matrix of T are linearly independent and span the whole space**.