CHAPTER 7 | NOMLINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS
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13. Liénard Equation A generalized damped mass-spring
the Liénard® equation, is ¥ + p(x)% +q(x) = 0.
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1fq(0) =0,4'0) >0 and p(®) > 0,
is a stable equilibrium point.

A second-order differential
equation of the form ¥ 4 F(x) = 0 is called a conser-
vative differential equation. (See Sec. 4.6.) Find the
equilibrium points of the conservaiive equation

14. Conservative Equation

fox—xt—2x =0
and determine their type and stability.
-Prey Equations In Sec. 2.5 we introduced the

15. Predator
Totka-Volterra predator-prey system
x' = (a — by)x,
y =(cx —d)y

and determined its equilibrium points (0, 0) and
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ity around the equilibrium point (d/c¢, a/b). Interpret the
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This tool lets you experiment on SCreeil.

¢ second-order linear dif-

Damped Mass-Spring Systems Th
0 models vibrations of @

ferential equation m¥ + bt +kx =
mass m attached to a Spring with spring constant k and with
damping constant b. For the nonlinear variations in Prob-
lems 16—19, use your intuition fo decide whether the zero 50
fution (x = % =0} is stable or unstable. Check your intuition

by transforming 10 a first-order system and linearizing.

physicist.




