System (15) has the same linearization (14) as system (13); by reasoning similar to that above, you should predict that the solutions to (15) will spiral outward, making the equilibrium at the origin unstable.

Summary

An equilibrium solution of a nonlinear autonomous system can be analyzed by studying a closely related linear system called the linearization. In most cases the classification of this linearization according to the scheme of Chapter 6 predicts the stability of the solution of the nonlinear system, and often its geometry as well.

7.2 Problems

Original Equilibrium Show that the system in each of Problems 1-6 has an equilibrium point at the origin. Compute the Jacobian, then discuss the tree and stability of the equilibrium

1.
$$x' = -2x + 3y + xy$$

 $y' = -x + y - 2xy^2$

$$y' = x - y^3$$

$$y' = x - y^3$$

3.
$$x' = x + y + 2xy$$

 $y' = -2x + y + y^3$

3.
$$x' = x + y + 2xy$$

 $y' = -2x + y + y^3$
4. $x' = y$
 $y' = -\sin x - y$
5. $x' = x + y^2$
 $y' = x^2 + y^2$
 $y' = -\sin x + y$

5.
$$x' = x + y^2$$

 $y' = x^2 + y^2$

Almost Linear For each system in Problems 7-9, determine the type and stability of each real equilibrium point by calculating the Jacobian matrix at each equilibrium.

7.
$$x' = 1 - xy$$

 $y' = x - y^3$

7.
$$x' = 1 - xy$$

 $y' = x - y^3$
8. $x' = x - 3y + 2xy$
 $y' = 4x - 6y - xy$

- 10. Linearization Completion Complete the analysis of Example 1 by providing the details of the linearization about the point (-1, 0) for x' = y, $y' = -y + x - x^3$.
- 11. Strong Spring Determine the stability of the equilibrium solutions of the strong spring $\ddot{x} + \dot{x} + x + x^3 = 0$.
- 12. Weak Spring Determine the stability of the equilibrium solutions of the weak spring $\ddot{x} + \dot{x} + x - x^3 = 0$.

- 13. Liénard Equation A generalized damped mass-spring equation, the Liénard⁴ equation, is $\ddot{x} + p(x)\dot{x} + q(x) = 0$. If q(0) = 0, q'(0) > 0 and p(0) > 0, show that the origin is a stable equilibrium point.
- 14. Conservative Equation A second-order differential equation of the form $\ddot{x} + F(x) = 0$ is called a conservative differential equation. (See Sec. 4.6.) Find the equilibrium points of the conservative equation

$$\ddot{x} + x - x^2 - 2x^3 = 0$$

and determine their type and stability.

15. Predator-Prey Equations In Sec. 2.5 we introduced the Lotka-Volterra predator-prey system

$$x' = (a - by)x,$$

$$y' = (cx - d)y$$

and determined its equilibrium points (0,0) and (d/c, a/b). Use the Jacobian matrix to analyze the stability around the equilibrium point (d/c, a/b). Interpret the trajectories of this system as plotted in Fig. 2.5.3.

Lotka-Volterra

This tool lets you experiment on screen.

Damped Mass-Spring Systems The second-order linear differential equation $m\ddot{x} + b\dot{x} + kx = 0$ models vibrations of a mass m attached to a spring with spring constant k and with damping constant b. For the nonlinear variations in Problems 16–19, use your intuition to decide whether the zero solution $(x = \dot{x} \equiv 0)$ is stable or unstable. Check your intuition by transforming to a first-order system and linearizing.

⁴Alfred Liénard (1869–1958) was a French mathematician and applied physicist.