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Introduction

The adiabatic limit refers to the geometric degeneration in which the metric
is been blown up along certain directions. The study of the adiabatic limit of
geometric invariants is initiated by E. Witten [39], who relates the adiabatic limit
of the η-invariant to the holonomy of determinant line bundle, the so called “global
anomaly”. In this case the manifold is fibered over a circle and the metric is been
blown up along the circle direction. Witten’s result was given full mathematical
treatment in [8], [9] and [13], see also [16]. In [4], J.-M. Bismut and J. Cheeger
studied the adiabatic limit of the eta invariant for a general fibration of closed
manifolds. Assuming the invertibility of the Dirac family along the fibers, they
showed that the adiabatic limit of the η-invariant of a Dirac operator on the total
space is expressible in terms of a canonically constructed differential form, η̃, on
the base. The Bismut-Cheeger η̃ form is a higher dimensional analogue of the
η-invariant and it is exactly the boundary correction term in the families index
theorem for manifolds with boundary, [5], [6]. The families index theorem for
manifolds with boundary has since been established in full generality by Melrose-
Piazza in [31], [32].

Around the same time, Mazzeo and Melrose took on the analytic aspect of the
adiabatic limit [27] and studied the uniform structure of the Green’s operator of the
Laplacian in the adiabatic limit. Their analysis enables the first author to prove
the general adiabatic limit formula in [14]. The adiabatic limit formula is used in
[7] to prove a generalization of the Hirzebruch conjecture on the signature defect
(Cf. [1],[35]). Other applications of adiabatic limit technique can be found in [40],
[18] and [36].

The main purpose of this paper is to study the uniform behavior of the heat
kernel in the adiabatic limit. The adiabatic limit introduces degeneracy along the
base directions and gives rise to new singularity for the heat kernel which interacts in
a complicated way with the usual diagonal singularity. We resolve this difficulty by
lifting the heat kernel to a larger space obtained by blowing up certain submanifolds
of the usual carrier space of the heat kernel (times the adiabatic direction). The
new space is a manifold with corner and the uniform structure of the adiabatic heat
kernel can be expressed by stating that it gives rise to a polyhomogeneous conormal
distribution on the new space.

More precisely, if φ : M −→ Y is a fibration with typical fibre F, the adiabatic
metric is the one-parameter family of metrics x−2gx, with gx = φ∗h + x2g, on M,
where h is a metric on Y and g a symmetric 2-tensor on M which restricts to
Riemannian metrics on the fibers. Note that gx collapses the fibration to the base
space in the limit x → 0. Our main object of study is the regularity of the heat
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kernel exp(−t∆x) of the Laplacian for the metric gx. We prefer to write the heat
kernel as exp(− t

x2
a∆) where a∆ is the Laplacian of the adiabatic metric gx/x

2.
The techniques of [27] are extended to construct the ‘adiabatic heat calculus,’ of
which this heat kernel is a fairly typical element. In particular a∆ is considered
as an operator on the rescaled bundle aΛ∗ which is the bundle of exterior powers
of the adiabatic cotangent bundle aT ∗Ma, Ma = M × [0, 1]. This rescaling and
parabolic blow-up methods are used to define the ‘adiabatic heat space,’ M2

A, from
[0,∞)×M2× [0, 1]. The adiabatic heat calculus, Ψ∗,∗,∗

A (M ; aΛ∗), is defined in terms
of the Schwartz kernels of its elements which are smooth sections over M2

A of the
kernel bundle, a weighted version of the lift of the homomorphism bundle tensored
with a density bundle. The operator exp(−t∆x) is constructed in this calculus
directly using the three symbol homomorphisms. Each of these maps is defined by
evaluation of the Schwartz kernel at one of the boundary hypersurfaces of M2

A.
The first of the symbol maps is just a parametrized version of the corresponding

map for the ordinary heat calculus and is used in exactly the same way; in this
case it takes values in the fibrewise operators on the bundle aTMa over Ma. The
second map is more global and takes values in fibrewise operators on the space
[0,∞) × φ∗(TY ) as a bundle over Y. In fact the image consists of elements of the
heat calculus for the fibres TyY ×Fy = YTM(y,z) for each y ∈ Y, z ∈ F. The ordinary
heat calculus can be used to invert these operators. The third map is the ‘obvious’
boundary map obtained by setting x = 0. In practice it is necessary to consider a
‘reduced’ normal operator at this face.

Our first result is

Theorem 0.1. The heat kernel is an element

(0.1) exp(−x−2t a∆) ∈ Ψ−2,−2,0
A,E (M ; aΛk)

with normal operators

Nh,−2 = (4π)−
n
2 exp(−

1

4
|v|2a)(0.2)

NA,−2 = exp(−T∆A), T = x−2t,(0.3)

Na,0 = exp(−t∆Y )(0.4)

where ∆A is the fibrewise Laplacian on the bundle YTM and ∆Y is the reduced
Laplacian on Y , that is, the Laplacian on Y twisted by the flat bundle of the fiber
cohomologies.

Here the subscript E indicates a refinement of the adiabatic heat calculus which
will be discussed in §3. Note that the right hand side of (0.2) is the Euclidean heat
kernel on the tangent space evaluated at time t = 1 and (v, 0). In (0.3) the fibers of
YTM are YTM(y,z) = TyY × Fy, hence the fiberwise Laplacian ∆A consists of the
Euclidean Laplacian on TyY together with the Laplacian of Fy. The heat kernel
for the Eucildean Laplacian here should be evaluated at (v, 0). As we will see later,
Theorem 0.1 contains all the usual uniform regularity property of the adiabatic
heat kernel.

However, in applications to geometric problems such as the study of the eta
invariant and the analytic torsion, one needs to incorporate the Getzler’s rescaling
[23], which has important implication for supertrace cancellations. We show how to
build it into the calculus using bundle filtrations, resulting in the rescaled adiabatic
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heat calculus Ψ∗
A,G(M ; aΛ∗). This enables us to refine Theorem 0.1 to obtain our

main result.

Theorem 0.2. The heat kernel is an element of the rescaled adiabatic heat calculus
Ψ∗

A,G(M ; aΛ∗),

(0.5) exp(−
t

x2
a∆) ∈ Ψ−2,−2,0

A,G (M ; aΛ∗).

Moreover, the normal operator at the temporal front face is given by

(0.6) Nh,G,−2 = e−[H− 1
8C(R)]

where H is the generalized harmonic oscillator on the tangent space TpM defined
in (5.39) and C(R) is the quantization of the curvature tensor R defined in (5.38).
The normal operator at the adiabatic front face is

(0.7) NA,G,−2 = exp(−HY ) exp(
1

8
C(RY )) exp(−A2

T ).

Here HY is the generalized harmonic oscillator on the fibres of xTY, and AT is the
rescaled Bismut superconnection:
(0.8)

A2
T = −T [∇ei

+
1

2
T− 1

2 〈∇ei
ej , fα〉cl(ei)cl(fα)+

1

4
〈∇ei

fα, fβ〉cl(fα)cl(fβ)]2+
1

4
TKF ,

where ei is an orthonormal basis of the fibers and fα that of the base, and KF

denotes the scalar curvature of the fibers.

We then apply this to the study of the adiabatic limit of the analytic torsion.
The analytic torsion, Tρ(M, g), introduced by Ray and Singer [37], is a geometric
invariant associated to each orthogonal representation, ρ, of the fundamental group
of a compact manifold M with Riemann metric g (later extended to more general
representations such as unimodular ones [34], [11]). It depends smoothly on g and
is identically equal to 1 in even dimensions. As conjectured in [37] it has been
identified with the Reidemeister torsion and this is the celebrated Cheeger-Müller
theorem ([12], [33]. See also [34], [11] for generalizations.). Using the uniform
behavior of the heat kernel, we show that the torsion (our normalization corresponds
to the square of that in [37]) in the adiabatic limit satisfies

(0.9) Tρ(M, gx) = x−2αb(x), α ∈ N, b ∈ C∞([0, 1]).

Thus, whilst not necessarily smooth in the adiabatic limit, x ↓ 0, the analytic
torsion behaves quite simply.

The characteristic exponent in (0.9) can be expressed in terms of the Leray
spectral sequence for the cohomology twisted by ρ as

(0.10) α = −χ2(M) + χ2(Y,H
∗(F )) +

∑

r≥2

(r − 1)[χ2(Er)− χ2(Er+1)].

Here if βj is the dimension in degree j of the cohomology then χ2(Er) =
∑

j j(−1)jβj .

For χ2(M) the βj are the Betti numbers of M, for χ2(Y,H
∗(F )) they are the dimen-

sions of the twisted cohomology spaces of Y and for Er they are the dimensions,
βj,r, of the rth term, (Er, dr), of the spectral sequence.
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The limiting value of the smooth factor in (0.9) depends on the parity of the
dimension of the fibres. If the fibres are even-dimensional then

(0.11) b(0) =

dim F∏

j=1

[
Tφ∗(ρ)⊗ρ′

j
(Y, h)

](−1)jj ∏

r≥2

τ(Er , dr), dimY odd,

where ρ′j is the representation of π1(Y ) associated to the flat bundle given by the
fibre cohomology in dimension j, twisted by ρ↾π1(F ), and τ(Er , dr) is the torsion of
the finite complex. The other case, when the fibres are odd-dimensional, is only
a little more complicated. If RY is the curvature operator of the metric h on Y
then the Gauss-Bonnet theorem states that the Euler characteristic of Y is given
by the integral over Y of the Pfaffian density (2π)−n Pf(RY ), n = dimY. Consider
the weighted integral

(0.12) χρ(Y, φ, g, h) = (2π)−n

∫

Y

Pf(RY ) logTρ(y)(Fy , gy)

where gy is the restriction of g to the fibre Fy = φ−1(y), y ∈ Y, and ρ(y) is the
representation of π1(Fy) induced by ρ. Then (0.10) still holds and

(0.13) b(0) = eχρ(Y,φ,g,h)
∏

r≥2

τ(Er , dr), dimY even.

If dimY is even the twisted torsion factor in (0.11) reduces to 1 and if dimY is
odd the weighted Euler characteristic in (0.12) is zero, so these two formulæ can
be combined to give one in which the parity does not appear explicitly.

Theorem 0.3. The analytic torsion of an adiabatic metric gx for a fibration sat-
isfies
(0.14)

logTρ(M, gx)

= −2


−χ2(M) + χ2(Y,H

∗(F )) +
∑

r≥2

(r − 1)[χ2(Er)− χ2(Er+1)]


 log x

+χρ(Y, φ, g, h) +

dim F∑

j=1

(−1)jj logTφ∗(ρ)⊗ρ′(Y, h) +
∑

r≥2

log τ(Er , dr) + xb′(x),

b′ ∈ C∞([0, 1]).

Remark 1 For the holomorphic analogue see [3]. It should be pointed out that,
in our case, the analytic torsion form of [10] did appear in the formula. However
the higher degree terms in the torsion form are cancelled by the Pffafian term. Our
proof also extends to the holomorphic case.

Remark 2 Under appropriate acyclicity conditions formula (0.14) reduces to
the purely topological formulas for the Reidemeister torsion obtained by D. Fried
[21], D. Freed [22], and Lück-Schick-Thielman [26].

The analytic torsion is defined in terms of the torsion zeta function

(0.15) logTρ(M, g) = ζ′T (0)
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where ζT (s) is a meromorphic function of s ∈ C which is regular at s = 0. For
Re s >> 0

(0.16) ζT (s) =
1

Γ(s)

dim M∑

j=1

(−1)jj

∞∫

0

ts Tr
(
exp(−t∆j)

) dt
t

where ∆j is the Laplacian on j-forms with null space removed (i.e. acting on the
orthocomplement of the harmonic forms). The proof of (0.14) is thus reduced to a
sufficiently fine understanding of the heat kernel in the adiabatic limit.

The paper is organized as follows. In §1 we recall the construction of the heat
kernel in the standard case of a compact manifold. This is done to introduce, in
a simple context, the approach via parabolic blow-up, which is used here. The
appropriate notion of parabolic blow up is described in §2. The important finite
time properties are then summarized by the statement that the heat kernel is an
element of order −2 of the even part of the heat calculus acting on the exterior
bundle

(0.17) exp(−t∆) ∈ Ψ−2
h,E(M ;Λ∗).

This in turn is a regularity statement for the lift of the Schwartz kernel from the
space [0,∞) × M2, where it is usually defined, to the heat space, M2

h , obtained
by t-parabolic blow-up of the diagonal at t = 0. This is discussed in §3. The heat
calculus has a ‘symbol map’, the normal homomorphism, into the homogeneous
and translation-invariant part of the heat calculus on (the compactification of) the
fibres of the tangent bundle to M. Under this map the heat kernel is carried to the
family (over M) of heat kernels for the fibrewise Laplacian on TM :

(0.18)

Nh,−2(exp(−t∆))(m, v) = exp(−∆m)(v),

∆m =

dim M∑

j,k=1

gjk(m)DvjDvk on TmM.

Conversely (0.18) allows an iterative construction of the heat kernel. The appropri-
ate composition properties for the heat calculus, allowing this iterative approach,
are also discussed in §3.

For a general Laplacian, P, without null space, the heat kernel is, for t > 0, a
smoothing operator which decreases exponentially as t → ∞. As a result the zeta
function, obtained by Mellin transform of the heat kernel is, following Seeley [38],
meromorphic with poles in Re s ≥ 0 only at s = 1

2 dimM − k, k = 0, 1, . . . . These
poles come from the short-time asymptotics of the heat kernel. If ∆ is the Laplacian
on forms then (0.16) can be rewritten

(0.19) ζT (s) =
1

Γ(s)

∞∫

0

ts STr (N exp(−t∆))
dt

t

where N is the number operator, acting as k on Λk, and STr is the supertrace
functional, i.e.

(0.20) STr(A) = Tr(QA), Q = (−1)k on Λk.

The algebraic properties of the supertrace imply that there are actually no poles of
ζT (s) in s > 1

2 .



6 XIANZHE DAI AND RICHARD B. MELROSE

To see this, in §5, the rescaling argument of Getzler [23] (see also [2]) is formulated
in terms of the heat calculus. This is done by defining a ‘rescaled’ version of the
homomorphism bundle over M2

h , of which the heat kernel is a smooth section, and
then showing that the kernel is again a smooth section of the rescaled bundle. The
general process of rescaling a bundle is discussed in §4. Under this rescaling (of
length dimM + 1), defined by extension of the Clifford degree of a homomorphism
of the exterior algebra, the (pointwise) supertrace functional lies in the maximal
graded quotient. The number operator has degree two so it follows that

(0.21)

str (N exp(−t∆)) ∈ t−
1
2 C∞([0,∞)×M ; ΩM),

STr (N exp(−t∆)) =

∫

M

str (N exp(−t∆)) ∈ t−
1
2 C∞([0,∞)).

Moreover the leading term can be deduced from the normal operator for the rescaled
calculus:

(0.22)
t

1
2 str (N exp(−t∆j))↾t=0 = c(n)

dim M∑

k=1

(−1)k Pf(Rk) ∧ ωk ∈ C
∞(M ; ΩM)

c(n) = 2i(−1)
1
2 (n+1)(16π)−

1
2n

where with respect to any local orthonormal frame, ωk of T ∗M, Rk is the curvature
operator with kth row and column deleted,

(0.23) Rk =
∑

i,j 6=k

Rijkℓωiωj ,

and Pf(Rk) is its Pfaffian as an antisymmetric matrix. The cancellation formula
(0.21) shows that ζT (s) has only one pole in Re s ≥ 0, at s = 1

2 , and (0.22) gives
its residue. It is thus straightforward to give a formula for ζT (s) which is explicitly
regular near s = 0; see Corollary 5.2.

This representation is used to obtain (0.9). As already noted, the main step is
a clear analysis of the regularity of the heat kernel exp(−t∆x) of the Laplacian for
the metric gx; this is carried out in §6-§9. In §10 the incorporation of Getzler’s
rescaling into the ordinary heat calculus is extended to the adiabatic heat calculus
to give the cancellation effects for the supertrace. Two related but distinct rescaling
are required, one just as in the standard case and the other at the adiabatic front
face. For finite times this results in the following description of the regularity of
the supertrace. Consider the space Q = [0,∞)t × [0, 1]x on the interior of which
STr(exp(−t∆x)) is defined and C∞. Let Q2 be obtained by t-parabolic blow-up of
the corner {t = x = 0} with β1 : Q2 −→ Q the blow-down map; the subscripts 1
and 2 here refer to the Leray spectral sequence. Then Q2 has boundary lines tf,
arising from t = 0, af from the blow-up, ab from x = 0 and ef from x = 1. For
appropriate defining functions, ρF , for the boundary lines, F, the lift to Q2 satisfies

(0.24) β∗
1 STr (exp(−t∆x)) ∈

{
ρ−1
tf ρ

−1
af C

∞(Q2), dimY odd

ρ−1
tf C

∞(Q2), dimY even.

We also need to discuss the behaviour of the heat kernel as t→∞. To do so we
use results from [14]. The kernel decomposes as t→∞ into a part which is rapidly
decreasing, and uniformly smoothing, plus finite rank parts corresponding to the
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Q

t

x

ab

af

tf

t

x

Figure 1. β1 : Q2 → Q

small eigenvalues of the Laplacian. These are in turn associated to the individual
terms (Er, dr), r ≥ 2, of the Leray spectral sequence.

The leading terms at the boundary faces in (0.24) can be deduced from the
construction of the heat kernel, and ultimately therefore from the solutions of the
three model problems arising from the rescaled symbol maps. Together with the
behaviour of the small eigenvalues this leads directly to (0.9), (0.10) and (0.14); the
final derivation is given in §11.

In a continuation of this paper, [17], these results on the analytic torsion are
extended to manifolds with boundary. In [30] there is a related discussion of the
analytic torsion for a b-metric on a compact manifold with boundary.

Acknowledgement: The authors would like to thank Jeff Cheeger, Charlie Ep-
stein, Ezra Getzler, Rafe Mazzeo, Paolo Piazza and Is Singer for helpful discussion
during the preparation of this paper. The authors are especially grateful to Pierre
Albin, Paolo Piazza and Eric Leichtnam for reading through the manuscript and
for their many valuable suggestions.

1. Hadamard’s construction

To orient the reader towards our detailed description of the behaviour in the
adiabatic limit of the heat kernel, and in particular its trace, we shall first recall
the ‘classical’ case. Thus we shall show how to construct the heat kernel for an
elliptic differential operator, P, of second order on a compact C∞ manifold under the
assumption that P has positive, diagonal, principal symbol. Such a construction is
well-known and can certainly be carried out by the method developed by Hadamard
[24] for the wave equation. The construction below proceeds rather formally, in
terms of the heat calculus. The only novelty here is in the definition, and discussion,
of the calculus itself in §3 in which a systematic use of the process of parabolic blow-
up is made. As opposed to the standard construction of Hadamard this allows us
to generalize, to the adiabatic limit and, later, to the case of boundary problems
with limited changes.

The basic model for the heat kernel is the Euclidean case, ∆E = D2
1 + · · ·+D2

n

where Dj = −i∂/∂xj on Rn. Then the function

(1.1) Φ′(t, x) = (4πt)−
n
2 exp

(
−
|x|2

4t

)
, t > 0, x ∈ Rn
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has a unique extension to Φ̃′ ∈ S′(R1+n) which is locally integrable in t with values
in S′(Rn) and vanishes in t < 0. Acting as a convolution operator this is the unique
tempered forward inverse of ∂t +∆E .

The convolution operator defined by Φ̃′ can be embedded into a graded algebra
of operators by generalizing (1.1). For p < 0 the operators of order p in this
Euclidean heat calculus, or perhaps more correctly homogeneous and translation-
invariant heat calculus, have kernels of the form

(1.2) K(t, x) =

{
t−

n
2 −1−p

2 κ( x

t
1
2
)|dx|, t > 0

0, t ≤ 0

where κ ∈ S(Rn). Again K is locally integrable in t as a function with values in
S′(Rn) and so fixes a convolution operator on R1+n. We shall denote this space
of operators as Ψp

th(R
n). For p = 0 there is a similar, but slightly more subtle,

definition of the space of operators Ψ0
th(R

n). Namely this space is the span of the
identity and the convolution operators given by distributions as in (1.2) with p = 0
and satisfying in addition the condition

(1.3)

∫

Rn

κ(x)dx = 0.

In this case the kernel is not locally integrable as a function of t; nevertheless the
mean value condition (1.3) means that

(1.4) 〈K,φ〉 = lim
δ↓0

∫

|x|2+t>δ2, t≥0

φ(t, x)κ(
x

t
1
2

)t−
n
2 −1dxdt, φ ∈ S(R1+n)

defines K ∈ S′(R1+n). It is also straightforward to check that these spaces of
operators are invariant under linear transformations of Rn, so the spaces Ψp

th(V )
are well defined for any vector space V and p ≤ 0. Essentially by definition we have
‘normal operators’ for the spaces which are isomorphisms

(1.5)
Nh,p : Ψp

th(V ) ∋ K −→ κ ∈ S(V ; Ω), p < 0

Nh,0 : Ψ0
th(V ) ∋ (c Id +K) −→ (c, κ) ∈ C⊕ S(V ; Ω),

where S(V ; Ω) is the null space of the integral on S(V ; Ω).
For Schwartz densities on a vector space, V, we can define a two-parameter family

of products in any linear coordinates by

(1.6)

a ⋆p,q b(x)|dx| =
∫ 1

0

∫

V

a((1− s)−
1
2x− y)b(s−

1
2 y)dy(1 − s)−

n
2 −1+ps−

n
2 −1+qds|dx|, p, q < 0.

If a (resp b) has mean value 0 the definition extends to p = 0 (resp q = 0); in case
both p and q are zero the result has mean value zero. The product is extended to
the sum in (1.5) by letting C act as multiples of the identity. These products give
the composition law for the normal operators in the Euclidean heat calculus

(1.7)
Ψp

th(V ) ◦Ψq
th(V ) ⊂ Ψp+q

th (V ), p, q ≤ 0

Nh,p+q(A ◦B) = Nh,p(A) ⋆p,q Nh,q(B)

as follows by a simple computation. Since the calculus and products are invariant
under linear transformations both extend to the fibres of any vector bundle and
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can be further generalized to act on sections of the lift of another vector bundle
over the base.

Replacing the Euclidean Laplacian by a differential operator P, as described
above, acting on sections of an Hermitian vector bundle over the Riemann mani-
fold M and having principal symbol |ξ|2x Id at (x, ξ) ∈ T ∗M we wish to construct

an analogue of Φ̃′; this will be the kernel of an operator which is still a convo-
lution operator in t but not in the spatial variables. These operators, which will
be discussed in §3, are defined directly in terms of their Schwartz’ kernels. The
kernels are sections of a density bundle over the manifold M2

h , which is the product
[0,∞)t ×M

2 with the product manifold {0} × Diag blown up. Here Diag ⊂ M2

is the diagonal, so functions on Mh which are smooth up to the new boundary
hypersurface (the ‘front face’) produced by the blow up are really singular, in the
manner appropriate for the heat kernel, at {0}×Diag when considered as functions
on (0,∞)×M2.

If U is a vector bundle over M we denote by Ψ−k
h (M ;U) this space of heat

operators, discussed in detail in §3, of order −k, for k ∈ N0 = {0, 1, . . .}. These

operators act on Ċ∞([0,∞)×M ;U), which is the space of C∞ sections of U, lifted
to [0,∞) ×M, vanishing with all derivatives at {0} ×M. There is a well-defined
normal operator:

(1.8) Nh,−k : Ψ−k
h (M ;U) ։ S(TM ; Ωfibre ⊗ π

∗
M hom(U)), k ∈ N.

Here S denotes the (fibre) Schwartz space on TM. This normal operator is deter-
mined by the leading coefficient of the Scwartz kernel at the front face of M2

h . For
operators of order 0 the normal operator becomes

(1.9) Nh,0 : Ψ0
h(M ;U) ։ C⊕ S(TM ; Ωfibre ⊗ π

∗
M hom(U)),

where S(TM ; Ωfibre) denotes the space of Schwartz fibre densities with mean value
zero on each fibre. The following result is proved in §3.

Proposition 1.1. The maps (1.8) and (1.9) extend to normal homomorphisms

which filter Ψ0
h(M ;U) as an asymptotically complete algebra of operators on Ċ∞([0,∞)×

M ;U) i.e. the null space of Nh,p is exactly Ψp−1
h (M ;U) and

(1.10)

A ∈ Ψ−k
h (M ;U), B ∈ Ψ−j

h (M ;U) =⇒ A ◦B ∈ Ψ−k−j
h (M ;U), j, k ∈ N, with

Nh,−k−j(A ◦B) = Nh,−k(A) ⋆k,j Nh,−j(B).

Any element of Id +Ψ−1
h (M ;U) is invertible with inverse in the same space.

In view of (1.5), the maps in (1.8) and (1.9) can be interpreted as homomorphisms
into the homogeneous and translation-invariant heat calculus on the fibres of TM.

This calculus of operators of non-positive order can be extended to non-positive
real orders and positive orders as well, but all we need is the composition properties
with differential operators. The following result, which follows easily from the
definition, is also proved in §3.

Proposition 1.2. If P ∈ Diffk(M ;U) and j ≥ k composition gives

(1.11)
Ψ−j

h (M ;U) ∋ A 7−→ P ◦A ∈ Ψk−j
h (M ;U)

Nk−j(P ◦A) = σk(P )N−j(A)
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where the symbol of P is considered as a homogeneous differential operator with
constant coefficients on the fibres of TM ; similarly if Vr is the radial vector field
on the fibres of TM then

(1.12)

Ψ−j
h (M ;U) ∋ A 7−→ Dt ◦A ∈ Ψ−j+2

h (M ;U) if j ≥ 2 with

Nh,−j+2(DtA) =
i

2
(Vr + n− j + 2)Nh,−j(A), j > 2

DtA = a Id +B, B ∈ Ψ
0

h(M ;U), if A ∈ Ψ−2
h (M ;U) with

a = −i

∫

fibre

Nh,−2(A), N0(B) =
i

2
(Vr + n)Nh,−2(A).

This calculus allows us to give a direct construction of the heat kernel. Namely
we look for E ∈ Ψ−2

h (M ;U) satisfying

(1.13) (∂t + P )E = Id .

Here Id ∈ Ψ0
h(M ;U) has symbol 1. From (1.12) this imposes conditions on the

‘normal operator’ Nh,−2(E1), viz

(1.14)

∫

fibre

Nh,−2(E1) = 1,

[
σ2(P )−

1

2
(Vr + n)

]
Nh,−2(E1) = 0.

This has a unique Schwartz solution, namely that derived from (1.1) in any linear
coordinates on TM induced by a local orthonormal basis:

(1.15) Nh,−2(E1) = (4π)−
n
2 exp(−

1

4
|v|2x) IdU , at (x, v) ∈ TM.

The surjectivity of the map (1.8) means that we can indeed find E1 with properties
(1.14) which therefore satisfies

(1.16) (∂t + P )E1 = Id +R, R ∈ Ψ−1
h (M ;U).

From the last part of Proposition 1.1 we conclude that the inverse exists (Id +R)−1 =
Id +S with S ∈ Ψ−1

h (M ;U) and so

(1.17) E = E1 ◦ (Id +S) = E1 + E1 ◦ S ∈ Ψ−2
h (M ;U)

satisfies (1.13).
There is a further refinement of the calculus. Namely let Ψ0

h,E(M ;U) ⊂ Ψ0
h(M ;U)

be the subspace which extends (by duality) to define an operator on C∞([0,∞)×M).
This space is characterized in terms of kernels in §3. It is a filtered subalgebra with
normal homomorphism taking values in the even subspace of the Schwartz space
under the involution v 7−→ −v on the fibres of TM. Proposition 1.1 and Propo-
sition 1.2 extend directly to this smaller algebra, so the construction of the heat
kernel above actually shows that

(1.18) exp(−tP ) ∈ Ψ−2
h,E(M ;U).

The point of this improvement is that the trace tensor on the kernel restricted to
the diagonal gives in general

(1.19) tr : Ψ−k
h (M ;U) −→ t−

1
2 (dim M−k+2)C∞([0,∞) 1

2
×M)
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where the subscript denotes that t
1
2 is the C∞ variable. For the even subspace

however

(1.20) tr : Ψ−k
h,E(M ;U) −→ t−

1
2 (dim M−k+2)C∞([0,∞)×M)

and apart from the singular factor the trace is C∞ in the usual sense up to t = 0.
This gives a rather complete description of the heat kernel for finite times.

We are also interested in the behaviour as t → ∞. In the case of a compact
manifold this is easily described. The variable t/(1 + t) ∈ [0, 1] can be used to
compactify the heat space near t = ∞. Thus 1/t is a C∞ defining function for
‘temporal infinity,’ ti = {1} × M2 in the new heat space; this leads to a new
heat calculus Ψ0

H(M ;U) with smoothness as t → ∞ added. This refined heat
calculus has another ‘normal operator,’ with values in the smoothing operators on
M, namely

(1.21) Nh,∞ : Ψ0
H(M ;U) −→ Ψ−∞(M ;U).

Proposition 1.3. If P ∈ Diff2(M ;U) is a differential operator on sections of
U over M which is elliptic, non-negative self-adjoint and with diagonal principal
symbol the heat kernel

(1.22) exp(−tP ) ∈ Ψ−2
H,E(M ;U)

has normal operator (1.15) at tf and at ti has normal operator the orthogonal
projection onto the zero eigenspace of P.

It is this (well-known) result which we wish to generalize in various ways, in
particular to the adiabatic limit.

2. Parabolic blow up

Since it is used extensively in the discussion of the heat kernel we give a brief
description of the notion of the parabolic blow up of a submanifold of a manifold
with corners. More specifically we define the notation

(2.1) [X ;Y, S], β : [X ;Y, S] −→ X, β = β[X ;Y, S],

where Y ⊂ X is a submanifold and S ⊂ N∗Y is a subbundle, satisfying certain extra
conditions. The result, [X ;Y, S] is ‘X blown up along Y with parabolic directions
S.’ A more extensive discussion of this operation will be given in [19], see also [20].

The basic model case we consider is X = Rn,k = [0,∞)k×Rn−k with coordinates
xi, i = 1, . . . , k, yj , j = 1, . . . , n− k,

(2.2) Y = Yl,p = {x1 = · · ·xl = 0, y1 = · · · yp = 0}

for some 1 ≤ l ≤ k, 1 ≤ p ≤ n− k and

(2.3) S = Sr = sp{dx1, . . . dxr} ⊂ Rn

for some r ≤ l. Then the blown-up manifold is, by definition, the product

(2.4) [Rn,k;Yl,p, Sr] = S
l+p−1,l,r
1
2

× [0,∞)× Rn−p−l,k−l

where

(2.5) S
l+p−1,l,r
1
2

=



(x′, x′′, y′) ∈ Rl+p,l;

∑

1≤i≤r

x2
i +

∑

r<i≤l

x4
i +

∑

1≤j≤p

y4
j = 1



 .
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The ‘blow-down map’ is by definition
(2.6)
β : [Rn,k;Yl,p, Sr] −→ Rn,k, β((x′, x′′, y′), r, (x′′′, y′′)) = (r2x′, rx′′, x′′′, ry′, y′′),

where x′ = (x1, . . . , xr), x
′′ = (xr+1, . . . , xl), x

′′′ = (xl+1 . . . , xk),

y′ = (y1, . . . , yp) and y′′ = (yp+1, . . . , yn−k).

Let us note some properties of the triple of blown-up space, blow-down map
and original space which are easily checked by direct computation. Both Rn,k and
[Rn,k;Yl,p, Sr] are manifolds with corners, [Rn,k;Yl,p, Sr] has one more boundary
hypersurface than Rn,k. Clearly β is smooth and surjective, it is a diffeomorphism
from Sl+p−1,l,r× (0,∞)×Rn−p−l,k−l onto Rn,k \Yl,p and a fibration from the ‘front
face’

(2.7) β : ff[Rn,k;Yl,p, Sr] = S
l+p−1,l,r
1
2

× {0} × Rn−p−l,k−l −→ Rn−p−l,k−l.

Any smooth function on Rn,k \ Yl,p which is homogeneous of non-negative integral
degree under the R+ action

(2.8) (x′, x′′, x′′′, y′, y′′) 7−→ (s2x′, sx′′, x′′′, sy′, y′′), s ∈ (0,∞)

lifts to be C∞ on [Rn,k;Yl,p, Sr].Moreover these functions generate the C∞ structure,
i.e. give local coordinates near each point on the blown up manifold. In fact the
front face, ff[Rn,k;Yl,p, Sr] can be identified with the quotient of Rn,k \ Yl,p under
this R+ action. As a set the blown up manifold can then be written

(2.9) [Rn,k;Yl,p, Sr] = ff[Rn,k;Yl,p, Sr] ⊔
(
Rn,k \ Yl,p

)
.

Any smooth vector field on Rn,k, which is homogeneous of non-negative integral
degree under (2.8) lifts to be smooth on [Rn,k;Yl,p, Sr]; if the vector field is tan-
gent to all boundary hypersurfaces of Rn,k then the lift is tangent to all boundary
hypersurfaces (including the new front face) of [Rn,k;Yl,p, Sr]. The lifts of these
homogeneous vector fields tangent to all boundary hypersurfaces of Rn,k \ Yl,p lift
to span, over C∞([Rn,k;Yl,p, Sr]), all smooth vector fields tangent to the boundary
hypersurfaces of [Rn,k;Yl,p, Sr]. It follows from these results, or direct computation,
that any local diffeomorphism on Rn,k, F : O −→ O′ = F (O), which preserves both
Yl,p and Sr in the sense that

(2.10) F (O ∩ Yl,p) = O′ ∩ Yl,p, F
∗(Sr) = Sr,

lifts to a diffeomorphism on the blown up space, i.e. there is a uniquely defined
smooth diffeomorphism F̃ : β−1(O) −→ β−1(O′) giving a commutative diagram

(2.11) [Rn,k;Yl,p, Sr]

β

��

β−1(O)

��

? _oo
F̃

//

β

��

β−1(O′)
� � //

β

��

[Rn,k;Yl,p, Sr]

β

��
Rn,k O?

_oo
F

// O′ �
� //

Rn,k

This invariance allows the blow up to be defined more generally. Suppose that
X is a manifold with corners (in particular each of the boundary hypersurfaces
should be embedded.) Let Y ⊂ X be a closed embedded submanifold which is of
product type (a p-submanifold), in the sense that near each point of Y there is a
local diffeomorphism of X to a neighborhood of 0 ∈ Rn,k which reduces Y locally
to some Yl,p. In particular this means that the conormal bundle of Y is reduced to
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a product. Let S ⊂ N∗Y be a subbundle which can be simultaneously reduced to
Sr in (2.3) by such a diffeomorphism. The blown up manifold is then given as a set
by the extension of (2.9)

(2.12) [X ;Y, S] = ff[X ;Y, S] ⊔ (X \ Y ) .

Here the front face can be defined as the set of equivalence classes of curves with
initial point on Y which are S-tangent to it. That is, consider the set of all curves

(2.13)

χ [0, ǫ), ǫ > 0, C∞ with

χ(0) ∈ Y,
d(χ∗f)

ds
(0) = 0 if f ∈ C∞(X), df(y) ∈ Sy ∀ y ∈ Y.

The first equivalence relation imposed on this set is that

(2.14)
χ1 ∼ χ2 if χ1(0) = χ2(0),

d(χ∗
1f − χ

∗
2f)

ds
(0) = 0 and

d2(χ∗
1f − χ

∗
2f)

ds2
(0) = 0 if f ∈ C∞(X) has df(y) ∈ Sy for y ∈ Y.

For each y ∈ Y the curve with χ(s) ≡ y gives a base, or zero section. The second
equivalence relation is on the curves which are non-zero in this sense, in which
χ(ts) ∼ χ(s) for any t > 0. The resulting space ff[X ;Y, S] is a fibre bundle over

Y with fibre diffeomorphic to S
p−1,r
1
2

. In particular it reduces to S
l+p−1,l,r
1
2

in the

model case discussed above. The invariance properties just described show that
local identification with [Rn,k;Yl,p, Sr] leads to a C∞ structure on [X ;Y, S]. The
blow down map is the obvious map from [X ;Y, S] to X, it has similar properties to
those described above in the model case.

If Y ′ ⊂ X is a closed submanifold the lift β∗(Y ′) ⊂ [X ;Y, S] is defined if Y ′ ⊂ Y
(respectively Y ′ = cl(Y \ Y ′)) to be β−1(Y ′) (resp. cl(β−1(Y ′ \ Y )). The lift of a
subbundle S′ ⊂ N∗Y ′, denoted β∗(S′), is defined in these two cases as, respectively,
β∗(S′) and the closure in T ∗[X ;Y, S] of β∗(S′ ↾ (Y ′ \Y ). If this lifted manifold and
the lift of S′ satisfy the decomposition conditions introduced above then the iterated
blow up is defined. In this case we use the notation

(2.15) [X ;Y, S;Y ′, S′] = [[X ;Y, S];β∗(Y ′), β∗(S′)].

3. Heat calculus

To define the heat calculus we shall extrapolate from the properties of the model

convolution operator Φ̃′ considered in §1. The kernel of this operator, Φ′ from (1.1),
is ‘simple’ in a sense that is related to homogeneity under the transformation

(3.1) µs : (t, x) 7−→ (s2t, sx), s ∈ R+.

Thus, set Z = [0,∞)×M2 and consider its t-parabolic blow-up along the subman-
ifold

(3.2) B = {(0, x, x) ∈ Z;x ∈M} .

Following the notation for parabolic blow-up in (2) above, this can be written

(3.3) M2
h = [Z;B,S]

βh
−→ Z where S = sp(dt) ⊂ N∗B.
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In case M = Rn the space M2
h is easily identified. Let ∼µ be the equivalence

relation on Z \B generated by (3.1) in the sense that p = (t, x, x′) ∼µ p
′ = (r, y, y′)

if and only if µs(t, x) = (r, y) and µs(t, x
′) = (r, y′) for some s > 0. Then

(3.4) M2
h = [(Z \B)/ ∼µ] ⊔ [Z \B] .

For M = Rn this space has a natural C∞ structure, as a manifold with corners,
which restricts to that on Z \B and which is generated by those C∞ functions on
Z \B which are homogeneous of non-negative integral degrees under µs (meaning
this space of functions includes local coordinate systems). This C∞ structure is
independent of the coordinates in Rn and so is defined in the general case of a
manifold M. In terms of the definition (2.12)

(3.5) M2
h = +SN {Z;B,S} ⊔ [Z \B]

where +SN {Z;B,S} is the inward-pointing part of the S-parabolic normal bundle
toB in Z. The first term in (3.5) forms the front face, denoted tf, the other boundary
face will be denoted tb . Defining functions for these faces will be written ρtf and
ρtb. Notice that

(3.6) β∗
ht = ρ2

tfρtb

for an appropriate choice of these defining functions.

x−x’

t t

tb

tf

x−x’
tb

Figure 2. βh : Zh = M2
h → Z

Since we wish to consider Φ̃′ as a convolution operator we need to consider
density factors; for the usual reasons of simplicity we work with half-densities as
the basic coefficient bundle. In case M = Rn the half-density

(3.7) Φ′′ = Φ′(t, x− x′)|dtdxdx′|
1
2 , x, x′ ∈ Rn,

lifts to M2
h to a smooth half-density away from tf which extends to be of the form

(3.8) Φ = β∗
hΦ′′ ∈ ρ

−n
2 + 1

2

tf ρ∞tbC
∞(M2

h ; Ω
1
2 ).

The notation here means that, for every k ∈ N, ρ
n
2 − 1

2

tf ρ−k
tb Φ ∈ C∞(M2

h ; Ω
1
2 ). In

particular Φ vanishes to infinite order at tb . We shall hide the singular factor of ρtf

in (3.8), since it is of geometric origin, by defining a new bundle, the kernel density
bundle KD, by the prescription

(3.9) C∞(M2
h ; KD) = ρ

−n
2 − 3

2

tf C∞(M2
h ; Ω

1
2 ).

The weighting here is chosen so that the identity is (for the moment formally) of
order 0. Then we can write (3.8) in the form Φ ∈ ρ2

tfρ
∞
tbC

∞(M2
h ; KD). It is important

to note that (3.9) does indeed define a new vector bundle. Since we shall use such
constructions significantly below we give a general result of this type in §4. In
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particular Proposition 4.1 applied with the trivial filtration of Ω
1
2 , shows that (3.9)

defines the vector bundle KD . In this same sense we can write

(3.10) KD = ρ
n
2 +1

tb β∗
h

[
t−

n
2 −1Ω

1
2 (Z)

]
.

The singularity of KD at tb is not very important, since all the kernels vanish to
infinite order there.

This discussion is all for the case M = Rn. However the definition (3.9) extends
to the general case and we simply set

(3.11) Ψ−k
h (M ; Ω

1
2 ) = ρk

tfρ
∞
tbC

∞(M2
h ; KD) for k ∈ N.

These are to be the elements of the ‘heat calculus’ of negative integral order. To
define the elements of order zero observe that we can define a leading part of any
element A ∈ ρk

tfρ
∞
tbC

∞(M2
h ; KD) by setting

(3.12) Ntf(A) = t−k/2A↾tf ∈ Ċ
∞(tf; KD)

where the dot indicates that the resulting section of KD vanishes to infinite order at
the boundary of the compact manifold with boundary tf(M2

h). From the definition,
(3.5), the front face fibres over B ∼= M. The fibres are half-spheres (or balls) of
dimension n = dimM :

(3.13) Sn
+

// tf(M2
h)

πtf

��
B ∼= M.

In fact the interiors of the fibres of (3.13) have natural linear structures, coming
from the definition of +SN{Z;B,S}. Namely tf is a compactification of the normal
bundle to the diagonal, Diag ⊂M2, which in turn is naturally isomorphic to TM so
TM →֒ tf(M2

h) is the interior. Using t, as in (3.10), to remove the singular powers
from the kernel density bundle and noting that the lift of the density bundle on
B is naturally isomorphic to the density bundle on TM this allows us to identify
Ċ∞(tf(M2

h); KD) ←→ S(TM ; Ωfibre). Thus for each k the normal map (3.12) can
be regarded as a map

(3.14) Nh,−k : Ψ−k
h (M ; Ω

1
2 ) ։ S(TM ; Ωfibre), k ∈ N.

The map also extends to the space defined by the right side of (3.11) for k = 0.
However, using the fact that the fibre integral is well-defined on the right image of
(3.14), we actually set

(3.15)

Ψ0
h(M ; Ω

1
2 ) = C∞(M) Id⊕Ψ

0

h(M ; Ω
1
2 ),

Ψ
0

h(M ; Ω
1
2 ) =



A ∈ ρ

∞
tbC

∞(M2
h ; KD);

∫

fibre

Nh,0(A) = 0



 .

This of course is just the analogue of the usual ‘mean value zero’ condition for
singular integrals.
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To see how the operators Ψk
h(M ; Ω

1
2 ) act, let Mh = [0,∞)×M and consider the

bilinear map

(3.16) Ċ∞c (Mh; Ω
1
2 )× Ċ∞(Mh; Ω

1
2 ) ∋ (φ, ψ) 7−→

φ∗̂tψ =

∞∫

0

φ(t + t′, x)ψ(t′, x′)dt′ ∈ C∞c (Z; Ω
1
2 ).

Lifting to M2
h we can define

(3.17) 〈Aψ, φ〉 =

∫

M2
h

A · β∗
h(φ∗̂tψ), A ∈ Ψ−k

h (M ; Ω
1
2 ), k ∈ N

since the integrand is in the product
(3.18)

ρk
tfρ

∞
tbC

∞(M2
h ; KD) · β∗

hC
∞
c (Z; Ω

1
2 ) ⊂ ρk−1

tf C
∞
c (M2

h ; Ω) ⊂ L1(M2
h ; Ω) if k ≥ 1.

For operators of order 0 the limiting form of the same definition applies to the
second term in (3.15) since

(3.19) A ∈ Ψ
0

h(M ; Ω
1
2 ) =⇒ 〈Aψ, φ〉 = lim

ǫ↓0

∫

{p∈M2
h
;ρtf≥ǫ}

A · β∗
h(φ∗̂tψ)

exists, independent of the choice of ρtf (which can be replaced by t
1
2 ). Of course

Id ∈ Ψ0
h(M ; Ω

1
2 ) acts as the identity. Thus we find that

(3.20)
A ∈ Ψ0

h(M ; Ω
1
2 ) defines an operator

A : Ċ∞([0,∞)×M ; Ω
1
2 ) −→ C−∞([0,∞)×M ; Ω

1
2 ).

The image space here is just the dual space to Ċ∞([0,∞) ×M ; Ω
1
2 ) and contains

it as a dense subspace in the weak topology. In fact the range of A in (3.20) is

always contained in Ċ∞([0,∞)×M ; Ω
1
2 ), as is shown in Lemma 3.1 below, so these

operators can be composed. Before stating these results we note how to extend the
discussion to general vector bundle coefficients.

Suppose that U and W are vector bundles over M. The (diagonal) homomor-
phism bundle from U to V over M is denoted hom(U, V ), the (full) homomorphism
bundle over M2 is denoted Hom(U, V ) :

(3.21) hom(U,W ) ∼=
⊔

x∈M

Wx ⊗ U
′
x, Hom(U,W ) ∼=

⊔

x,x′∈M

Wx ⊗ U
′
x′ .

To ‘reduce’ general operators to operators on half-densities consider the bundle

(3.22) HomΩ(U,W ) =
⊔

x,x′∈M

(Wx⊗Ω
− 1

2
x )⊗(U ′

x′⊗Ω
1
2

x′) ≡ Hom(U⊗Ω− 1
2 ,W⊗Ω− 1

2 )

with the half-density bundles those on M. We define the general kernels by taking
the tensor product, over C∞(M2

h) of the space of C∞ section of the lift of this bundle
and the kernels already discussed:

(3.23)
Ψ−k

h (M ;U,W ) =Ψ−k
h (M ; Ω

1
2 )⊗C∞(M2

h
) C

∞(M2
h ;β∗

h HomΩ(U,W ))

=ρ−k
tf ρ

∞
tbC

∞(M2
h ; KD(U,W ))
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with the modified kernel density bundle

(3.24) KD(U,W ) = KD⊗β∗
h HomΩ(U,W ).

If U = W, which is often the case, we denote the space as Ψ−k
h (M ;U).

The boundary hypersurface tf lies above the diagonal so the additional density
factors in (3.23) cancel there. The normal operator therefore extends to a surjective
linear map

(3.25) Nh,−k : Ψ−k
h (M ;U,W ) ։ S(TM ; Ωfibre ⊗ π

∗ hom(U,W )), k ∈ N.

We shall make a further small, but significant, refinement of this construction.
The Taylor series at tf of C∞ functions on M2

h are generated by the homogeneous
functions under (3.1) in any local coordinates. Now we can choose these local
coordinates to be t, xj−yj and xj +yj where x and y are the same local coordinates
in the two factors of M. Under the involution, J, on M2, which interchanges the
factors, xj−yj is odd and xj +yj is invariant. So consider the subspace C∞E (M2

h) ⊂
C∞(M2

h) fixed by the condition that its elements have Taylor series at tf with terms
of even homogeneity invariant under J and terms of odd homogeneity odd under

J. If ρ = (t+ |x− y|2)
1
2 then the Taylor series at tf of a general C∞ function on M2

h

is of the form

(3.26)
∞∑

k=0

ρkFk(
t

ρ2
,
x− y

ρ
, x+ y)

where the Fk are C∞ functions on R2n+1 away from 0. It is therefore clear that the
space C∞E (M2

h) is well-defined independent of the choice of coordinates. Similarly
the space C∞O (M2

h) ⊂ C∞(M2
h) is fixed by requiring the Fk to be odd or even in

the second variables for k even or odd respectively. Then C∞E (M2
h) + C∞O (M2

h) =
C∞(M2

h) and the intersection C∞E (M2
h) ∩ C∞O (M2

h) = ρ∞tf C
∞(M2

h) consists of the
functions with trivial Taylor series at tf .

Notice that C∞(Z) lifts under βh into C∞E (M2
h). This means that we can define

the spaces C∞E (M2
h ;β∗

hU) and C∞O (M2
h ;β∗

hU) for any vector bundle over M2. Since
we can certainly choose defining functions ρtf ∈ C

∞
O (M2

h), ρtb ∈ C
∞
E (M2

h) and also

t
1
2 ∈ C∞O (M2

h) this means we can define the odd and even parts of the heat calculus
using (3.10) and (3.11). We define

(3.27) Ψ−k
h,E(M ;U,W ) =

{
ρk
tfρ

∞
tbC

∞
E (M2

h ; KD(U,W )), k even

ρk
tfρ

∞
tbC

∞
O (M2

h ; KD(U,W )), k odd.

For k = 0 we define

(3.28)
Ψ0

h,E(M ;U, V ) = C∞(M) Id⊕Ψ
0

h,E(M ;U, V ) with

Ψ
0

h,E(M ;U, V ) = Ψ
0

h(M ;U, V ) ∩ C∞E (M2
h ; KD(U,W )).

Let [0,∞) 1
2

be the half line with t
1
2 as smooth variable.

Lemma 3.1. Each element A ∈ Ψ−k
h (M ;U,W ), for a compact manifold M and

any k ≥ 0, defines a continuous linear map

(3.29) A : Ċ∞([0,∞)×M ;U) −→ Ċ∞([0,∞)×M ;V )

and the same pairing, (3.17), leads to a continuous linear map

(3.30) A : C∞([0,∞)×M ;U) −→ t
k
2 C∞([0,∞) 1

2
×M ;V ).
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For an element A ∈ Ψ−k
h,E(M ;U, V ) the operator (3.30) has range in t[

k
2 ]C∞([0,∞)×

M ;V ).

Here S = [s] is the largest integer satisfying S ≤ s.

Proof. We give a rather ‘geometric’ proof of this regularity result, in the spirit of
[28]. That is we introduce the singular coordinates needed to analyze the integral
in the action of the operators by defining certain blown-up spaces. In the process of
showing (3.30) we shall in essence work with the t-variable coefficient heat calculus.

Thus consider the product

(3.31)
Z2 = [0,∞)2 ×M2 = [0,∞)t−t′ ×M × [0,∞)t′ ×M

= {(t, t′, q); q ∈M2, t, t′ ∈ R, t ≥ t′ ≥ 0},

with two ‘time’ variables. There are the three obvious projections,

(3.32)
πL(t, t′,m,m′) = (t,m), πR(t, t′,m,m′) = (t′,m′) and

πK(t, t′,m,m′) = (t− t′,m,m′).

These combine to give a diagram:

(3.33) [0,∞)×M

Z Z2

πR

99ssssssssss

πL

%%KKKKKKKKKK
πKoo

[0,∞)×M.

The space [0,∞)2×M2 is not symmetric in t, t′ and this is reflected in the fact that
the right projection is a fibration whereas the map πL is not; in fact it is not even a
b-map. To compensate for this asymmetry we need only blow up the submanifold
(the corner) t = t′ = 0; set

(3.34) M2
2 = [Z2; {t = t′ = 0}], β2 : M2

2 −→ Z2.

After this blow up none of the three lifted projections is a fibration but all three
are now b-fibrations.

Consider the lift under πK of the submanifold B, in (3.2), blown up in (3.3).
Under the blow up of t = t′ = 0 this further lifts to two submanifolds:

(3.35)
B1 = cl

{(
π−1

K (B)
)
\ {t = t′ = 0}

}
in M2

2 and

B2 = β−1
2 ({(0, 0, q); q ∈ Diag ⊂M2}.

These submanifolds are each contained in one boundary hypersurface; B1 ⊂ df and
B2 ⊂ ff where df is the lift of t = t′. Then we further blow up the space, along these
submanifolds and parabolically in the direction of the conormal to the respective
boundary hypersurfaces:

(3.36) M2
2h = [M2

2 ;B2, N
∗ ff;B1, N

∗ df].

The order of blow up here is important.
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tf

dd

rf

tf

dt
td

dt

Figure 3. Faces of M2
2h

Now the diagram of maps (3.33) lifts to a triple of b-fibrations:

(3.37) [0,∞)×M

M2
h M2

2h

π2,R

99ssssssssss

π2,L

%%KKKKKKKKKK

π2,Koo

[0,∞)×M.

Certainly the left and right lifted projections exist, since they are just composites of
the blow-down map from M2

2h with the maps in (3.33). That they are b-fibrations
follows from the fact that the lifts to M2

2 are b-fibrations and that each of the
two subsequent blow ups in (3.37) is of a submanifold to which the corresponding
map is b-transversal. Similarly the map to M2

h arising from the lift of πK is a
b-fibration because of the lifing theorem for b-fibrations in [28], i.e. because the
b-fibration from M2

2 to [0,∞)×M2 coming from the lift of πK is transversal to B
and the components of the lift of B under it, just B1 and B2, are blown up with
the appropriate, lifted, parabolic directions.

Thus (3.37) is a diagram of b-fibrations. The space M2
2h has five boundary

hypersurfaces, two of them arising from the lifts of t′ = 0 and of t = t′ and the
remaing three produced by the blow ups of t = t′ = 0, of B2 and of B1. We shall
denote them rf, dt, tf, dd and td respectively. The lifts of defining functions are
then easily computed and for appropriate choices of defining functions

(3.38)
π∗

2,Kρtf = ρddρtd, π
∗
2,Kρtb = ρdtρtf

π∗
2,Rt

′ = ρrfρtfρ
2
dd and π∗

2,Lt = ρtfρ
2
dd.

Similarly the product of the lift of smooth positive half-densities from each of the
images [0,∞)×M, in (3.37) with the lift of a smooth section of the kernel density

bundle on M2
2 and of |dt|

1
2 is easily computed. It follows that

(3.39) π∗
2,K KD ·π∗

2,L(Ω
1
2 ⊗ |dt|

1
2 ) · π∗

2,RΩ
1
2 = ρtfρddρ

−1
td Ω

Now if φ ∈ Ċ∞([0,∞) × M ; Ω
1
2 ) and ψ ∈ C∞([0,∞) × M ; Ω

1
2 ) the action of

A ∈ Ψk
h(M ; Ω

1
2 ), where for the moment we assume that k > 0, on φ can be written

(3.40) Aφ · ψ = (π2,L)∗ ((π2,K)∗A · (π2,L)∗(ψ) · (π2,R)∗φ) .
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Applying (3.39) and (3.38) it can be seen that

(3.41) Aφ · ψ ⊂ (π2,L)∗
(
ρ∞tf ρ

∞
dtρ

∞
ddρ

k−1
td Ω)

)
⊂ Ċ∞([0,∞)×M ; Ω)

which gives (3.29). The inclusion in (3.41) follows from the push-forward theorem
for conormal distributions under b-fibrations, from [29]. If instead φ ∈ C∞([0,∞)×

M ; Ω
1
2 ), still with k > 0, then a similar computation and the same theorem shows

that

(3.42) Aφ · ψ ⊂ (π2,L)∗
(
ρ∞tf ρ

k+2
dd ρk−1

td Ω)
)
⊂ t

k
2 C∞([0,∞) 1

2
×M ; Ω)

which proves (3.30).
The case k = 0 is similar except that the integral implicit in (3.41) or (3.42) is

not absolutely convergent at t = t′, i.e. dd(M2
2h). However the mean value condition

in (3.15) makes the integral conditionally convergent and the same results, (3.29)
and (3.30), follow.

The improved regularity in the case of an operator in the even part of the calculus
follows from the fact that non-integral powers of t in the Taylor series expansion in

t
1
2 would arise from the odd part of the integrand and hence vanish. �

We now turn to

Proof of Proposition 1.1. To prove this composition result we proceed very much
as above in the proof of Lemma 3.1. Thus we first construct a ‘triple’ space to
which the two kernels can be simultaneously lifted. Set

(3.43) Z3 = {(t, t′) ∈ R2; t′ ≥ 0, t ≥ t′} ×M3

and consider the three maps:

(3.44)

πo : Z3 −→ Z, o = f, c, s

πf (t, t′, x, x′, x′′) = (t′, x′, x′′)

πs(t, t
′, x, x′, x′′) = (t− t′, x, x′)

πc(t, t
′, x, x′, x′′) = (t, x, x′′).

the first two of which are projections. The diagram:

(3.45) Z

Z3

πc

OO

πs

~~~~
~~

~~
~~ πf

  A
AA

AA
AA

Z Z

is a symbolic representation of the composition of operators A,B ∈ Ψ−∞
H (M ; Ω

1
2 )

in the sense that if C = A ◦B then

(3.46) C = (πc)∗ [(πs)
∗A · (πf )∗B] .

We define blown-up versions of Z3 by defining the three partial diagonals:

(3.47) Bo = π−1
o (B), o = f, c, s

and the triple surface, which is the intersection of any pair in (3.47):

(3.48) B3 = {(0, 0, x, x, x) ∈ Z3} .
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Similarly set

(3.49) So = π∗
o(S) ⊂ N∗(Bo) =⇒ Sf = sp(dt′), Ss = sp(dt− dt′), Sc = sp(dt)

and

(3.50) S3 = sp(dt, dt′) over B3.

Consider first the manifold with corners defined by iterated parabolic blow up
(this is discussed in [19]Appendix B):

(3.51) Z3,1 = [Z3;B3, S3;Bf , Sf ;Bs, Ss]
β3,1
−→ Z3.

The order of blow up amongst the last two submanifolds is immaterial since they
lift to be disjoint in [Z3;B3, S3] . In fact, since we can also interchange the blow up
of B3 and either Bs or Bf , we have natural C∞ maps
(3.52)

Z3,1 ≡ [Z3;Bf , Sf ;B3, S3;Bs, Ss]
π2,f
−→ Zh(= M2

h)

π2,f : [Z3;Bf , Sf ;B3, S3;Bs, Ss] −→ [Z3;Bf , Sf ] ≡ Zh × [0,∞)×M −→ Zh

Z3,1 ≡ [Z3;Bs, Ss;B3, S3;Bf , Sf ]
π2,s
−→ Zh

π2,s : [Z3;Bs, Ss;B3, S3;Bf , Sf ] −→ [Z3;Bs, Ss] ≡ Zh × [0,∞)×M −→ Zh.

These maps give a commutative diagram with the bottom part of (3.45):

(3.53) Zh

βh

��

Zh

βh

��

Z3,1

π2,s

aaCCCCCCCC

π2,f

=={{{{{{{{

β3,1

��
Z3

πs

||zz
zz

zz
zz

πf
""D

DD
DD

DD
D

Z Z.

This allows us to lift the product of the kernels in (3.46) to Z3,1 by lifting the
individual kernels under π2,f and π2,s :

(3.54) β∗
3,1 [(πs)

∗A · (πf )∗B] = (π2,s)
∗A · (π2,f )∗B.

Using (3.10) we can write the kernel as

(3.55) B = bt−
n
2 −1+k/2ν, ν ∈ C∞(Z; Ω

1
2 ), b ∈ C∞(ZH), b ≡ 0 at tb .

The manifold Z3,1 has five boundary hypersurfaces, the two ‘trivial’ faces tr and tl
arising from the lifts of t′ = 0 and t = t′ respectively and the three faces created
by blow-up; namely tt arising from the blow-up of B3, sf arising from the blow-up
of B2,f and ss arising from the blow-up of B2,s. Clearly

(3.56)
C∞(Z3,1) ∋ (π2,f )∗b ≡ 0 at tr

C∞(Z3,1) ∋ (π2,s)
∗a ≡ 0 at tl

Thus the product vanishes to infinite order at two of the boundary hypersurfaces,
i.e. has non-trivial Taylor series only at sf, ss and tt . If we take into account the
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fact that π2,f t
′ and π2,s(t − t

′) vanish to second order at tt we conclude that the
product in (3.54) is of the form

(3.57)
β∗

3,1 [(πs)
∗A · (πf )∗B] = ρ−2n−4+j+k

tt ρ−n−1+k
sf ρ−n−1+j

ss c(π2,f )∗ν(π2,s)
∗ν,

c ∈ C∞tt (Z3,1), i.e. C∞(Z3,1) ∋ c ≡ 0 at tr∪ tl .

In particular the product of the kernels vanishes to infinite order at the corner,
B′, produced by the intersection of tl and tr in Z3,1. Consider the manifold, Z3,2

defined by blowing this up, parabolically with respect to both normal directions:

(3.58) Z3,2 = [Z3,1;B
′, N∗B′], F = tr∩ tl .

This adds another boundary hypersurface, td, but makes not essential difference
to the kernel so that (3.57) becomes, with the same notation used for the other
boundary hypersurfaces and their lifts,

(3.59)
β∗

3,2 [(πs)
∗A · (πf )∗B] = ρ−2n−4+j+k

tt ρ−n−1+k
sf ρ−n−1+j

ss c(π2,f )∗ν(π2,s)
∗ν,

c ∈ C∞tt (Z3,1), i.e. C∞(Z3,2) ∋ c ≡ 0 at tr∪ tl∪ td .

Having arrived at Z3,2 with a ‘simple’ kernel we need to map back to Zh. The
manifold Z3,2 can be constructed in another way, using the commutability of ap-
propriate blow ups. Thus, the final blow up in (3.58) does not meet ss or sf so can
be performed after that of B3 in (3.51). Furthermore, B3 is then a submanifold of
the corner, Y = {t = t′ = 0} being blown up, with the same parabolic directions.
The order can therefore be interchanged and so

(3.60) Z3,2 = [Z3;B
′, S3;B3, S3;Bf , Sf ;Bs, Ss]

β3,2
−→ Z3

This means that the third map in (3.44) lifts into a b-fibration from Z3,2 to ZH as
we procced to show.

Indeed, consider the blown up space

(3.61) β′ : Z ′
3 = [Z3;B

′] −→ Z3, B
′ = {t = t′ = 0}.

The composite map is then a fibration

Figure 4. π′
c = πc ◦ β

′ : Z ′
3 → Z

(3.62) π′
c = πc · β

′ : Z ′
3 −→ Z.
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Parabolically blowing up the lift, which we can denote B2,c, to Z ′
3, of the subman-

ifold B, in Z gives a further fibration

(3.63) π′′
c : Z ′

3,1 = [Z3;B
′;B2,c, S2,c] −→ Zh

where the lift of S2,c is just the intersection of the conormal bundle of (π1
c )−1(B)

with the conormal bundle to the front face of Z ′
3. Consider next the blow-up in Z ′

3,1

of the lift of B3, which is a submanifold of B2,c :

(3.64) β′
3,2 : Z ′

3,2 = [Z3;B
′;B2,c, S2,c;B3, S3] −→ Z ′

3,1.

Now we can also blow up the other two partial diagonals, lifted to Z ′
3,2, and again

use commutation for non-itersecting submanifolds to write
(3.65)
Z ′′

3,2 = [Z ′
3,2;B2,s, S2,s;B2,f , S2,f ] ≡ [Z3;B

′;B3, S3;B2,s, S2,s;B2,f , S2,f ;B2,c, S2,c] .

This means that there is a blow-down map (for the lift of B2,c)

(3.66) Z ′′
3,2 −→ Z3,2, Z

′′
3,2 ≡ [Z3,2;B2,c, S2,c].

Since the density in (3.59) vanishes to infinite order at the submanifold, B2,c ⊂ B
′,

blown up in (3.66) we also conclude that

(3.67)
[(πs)

∗A · (πf )∗B] lifts to ρ−2n−4+j+k
tt ρ−n−1+k

sf ρ−n−1+j
ss c(π2,f )∗ν(π2,s)

∗ν,

C∞(Z ′′
3,2) ∋ c ≡ 0 at tr∪ tl∪ td∪ sc,

where sc is the hypersurface produced by the blow up of B2,c.
The last step is to consider the push-forward of this density under the map from

Z ′′
3,2 to Zh given by (3.63). We wish to consider the image, a half-density on Zh, as

a multiple of the lift of a smooth half-density on Z, as in (3.10), so simply multiply
by the lift to Z3 of ν under π2,c. Lifting to Z ′

3,1 this gives

(3.68) γ(π2,c)
∗ν = (π′

c)
∗(t−n−2+ j+k

2 )c′′µ

where µ is the lift to Z ′
3,1 of the product of ν from Z under the maps πo. Thus it

is a non-vanishing density on Z3 and lifted to Z ′
3,1 it is an element of

(3.69) ρn+1
tt C

∞(Z ′
3,1; Ω).

Inserting this into (3.68), using the rapid vanishing at all faces except tt shows that

(3.70) γ(π2,c)
∗ν ∈ (π′

c)
∗
(
t−(n+3)/2+(k+j)/2

)
Ċ∞tt (Z ′

3,1; Ω).

The map π′
c in (3.63) is not a fibration but it is a b-fibration and from the push-

forward results in [29] it follows that

(3.71) (π′
c)∗ : Ċ∞tt (Z ′

3,1; Ω) −→ Ċ∞tf (Zh; Ω).

This proves the composition formula, since it shows that composite kernel is an

element of Ψk+j
h (M ; Ω

1
2 ).

To see the last statement note that the composition formula shows that the
Neumann series can be summed modulo a rapidly vanishing term. This reduces
the consideration to Id +Ψ−∞

h (M ;U), for which Duhamel’ principle finishes the
proof. �
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Proof of Proposition 1.2. It suffices to prove (1.11) for vector fields. Namely, we
need to show that if V is a vector field acting through the connection on U then
Ψ−j

h (M ;U) ∋ A→ V ◦A ∈ Ψ−j+1
h (M ;U), and N−j+1(V ◦A) = σ1(V )N−j(A).

We first assume that U is the trivial bundle C. The projective coordinates

(3.72) t, X =
x− x′

t
1
2

, x,

give a valid coordinate system near the front face, except at the corner, where
X =∞. Any A ∈ Ψ−j

h (M ;U) can be written as

(3.73) A = t
j
2−

n+2
2 + n

4 Ã(t,X, x)|dtdXdx|
1
2 ,

where Ã is smooth and vanishes rapidly as X →∞.

Now if φ = φ0|dtdx|
1
2 ∈ Ċ∞c (Mh; Ω

1
2 ) and ψ = ψ0|dtdx|

1
2 ∈ Ċ∞(Mh; Ω

1
2 ), we

have

(3.74) 〈Aψ, φ〉 =

∫

M2
h

t
j
2−1Ãβ∗

h(φ0∗̂tψ0)|dtdXdx|,

and N−j(A) = Ã(0, X, x)|dXdx|
1
2 .

Also, if we let V = a(x)∂x be a smooth vector field and V ′ denote its transpose:

(3.75) 〈V ψ, φ〉 = −〈ψ, V ′φ〉,

then V ′ = ∂xa(x), and β∗
h(t

1
2V ′) = t

1
2 ∂xa(x) + a(x)∂X .

Now

(3.76)

〈(V ◦A)ψ, φ〉 =− 〈Aψ, V ′φ〉

=−

∫

M2
h

t
j
2−1Ãβ∗

h((V ′φ0)∗̂tψ0)|dtdXdx|

=−

∫

M2
h

t
j
2−1Ãβ∗

h(V ′)[β∗
h(φ0∗̂tψ0)]|dtdXdx|

=− lim
ǫ↓0

∫

t≥ǫ

t
j−1
2 −1Ãβ∗

h(t
1
2 V ′)[β∗

h(φ0∗̂tψ0)]|dtdXdx|,

since j ≥ 1. Integration by part gives

(3.77) 〈(V ◦A)ψ, φ〉 = lim
ǫ↓0

∫

t≥ǫ

(β∗
h(t

1
2 V ′))′[t

j−1
2 −1Ã]β∗

h(φ0∗̂tψ0)|dtdXdx|,

where there is no boundary contribution because there is no integration by parts

in the t direction. Since (β∗
h(t

1
2 V ′))′ = t

1
2 a(x)∂x + a(x)∂X , it follows this integral

reduces to

(3.78)

lim
ǫ↓0

∫

t≥ǫ

(t
j
2−1a(x)∂xÃ+ t

j−1
2 −1a(x)∂X Ã)β∗

h(φ0∗̂tψ0)|dtdXdx|

=

∫

M2
h

(t
j
2−1a(x)∂xÃ+ t

j−1
2 −1a(x)∂X Ã)β∗

h(φ0∗̂tψ0)|dtdXdx|,
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where the integral converges since

(3.79)

∫
a(x)∂X Ãβ

∗
h(φ0∗̂tψ0)|t=0|dX | = 0.

Therefore

(3.80) V ◦A = t
j−1
2 −n+2

2 + n
4 (a(x)∂X Ã+ t

1
2 a(x)∂xÃ)|dtdXdx|

1
2

is an elememt of Ψ−j+1
h (M ; Ω

1
2 ). Moreover

(3.81) N−j+1(V ◦A) = a(x)∂X Ã(0, X, x)|dXdx|
1
2 = σ1(V )N−j(A).

A similar computation works for Dt, except that

(3.82) β∗
h(tDt) = tDt +

i

2
X∂X .

Therefore the integration by part will produce a boundary term, and

(3.83) (β∗
h(tDt))

′ = Dtt+
i

2
∂XX = Dtt+

i

2
(n+X∂X).

In fact, by carrying out the above computation for Dt, one find, for k ≥ 2,

(3.84)

〈(Dt ◦A)ψ, φ〉 = lim
ǫ↓0

∫

t≥ǫ

(β∗
h(tDt))

′[t
j−2
2 −1Ã]β∗

h(φ0∗̂tψ0)|dtdXdx|

− lim
ǫ↓0

∫

t=ǫ

it[t
j−2
2 −1Ã]β∗

h(φ0∗̂tψ0)|dXdx|.

The second term vanishes if j > 2, and becomes

(3.85) −i〈(

∫
N−2(Ã)|dX |)ψ, φ〉,

if j = 2. This proves (1.12).
Now if U is not trivial, by linearity, we can assume that φ, ψ and A are supported

in a small neighborhood where U is trivialized by an orthonormal basis {si}. Write

(3.86) φ = φisi, ψ = ψisi, A = Aijs
∗
i ⊗ sj .

Then

(3.87)
〈(V ◦A)ψ, φ〉 =− 〈Aψ,∇V φ〉

=− 〈Aijψi, V φj + Γkj(V )φk〉,

where Γkj(V ) = 〈∇V si, sj〉. This reduces to the scalar case and one sees that the
connection produces only a lower order term. �

4. Bundle filtrations

Systematic use is made here of the ‘geometrization’ of a bundle filtration. Recall
that for a vector bundle, E, over a compact manifold (possibly with corners) a
filtration is a finite non-decreasing sequence of subbundles:

(4.1) E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ EN = E

where the length of the filtration is N, so N = 0 corresponds to the trivial filtration.
In particular we allow the same subbundle to be repeated. Another filtration F 0 ⊂
F 1 ⊂ FN ′

= E of E is said to be a refinement of (4.1) if there is a strictly increasing
map I : {0, 1, . . . , N} −→ {0, 1, . . . , N ′} such that for each j Ej = F I(j). Near any
point p ∈ M we can always find a basis, e1, . . . , en, n = dimfibreE, of E which is
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compatible with the filtration in the sense that for each k = 0, . . .N there is a subset
I(k) ⊂ {1, . . . , n} such that the ei for i ∈ I(k) span Ek. Of course we can even
arrange that I(k) = {1, . . . ,dimfibreE

k} but it is more convenient not to demand
this. Any collection of filtrations of a given bundle is said to be compatible if there
is one filtration which is a refinement of each of them (it need not be one of the
given filtrations).

We are typically interested in a vector bundle E, over a manifold with corners
M, which is such that for a particular boundary hypersurface, H ⊂M, the bundle
EH = E↾H has a filtration Ek. We then wish to define a ‘rescaled’ version of E, i.e.

a new vector bundle Ẽ with the properties:

(4.2)

Ẽ ∼= E over X \H

Ẽ↾H
∼=

N⊕

k=0

[Ek/Ek−1]⊗ [N∗H ]k, E−1 = {0}.

The second condition means that Ẽ is (naturally) isomorphic to the graded bundle
associated to the filtration of E.

In fact the filtration alone does not fix the bundle Ẽ in a differential sense, except

in the (important) case of filtrations of length one. To construct Ẽ the filtration
should be extended to a jet-filtration. By a k-jet of subbundle of E at H we mean
an equivalence class of subbundles in neighborhoods of H where the equivalence
relation is F ∼ G if there is some neighborhood, P, of H in X such that

(4.3) I(E,F )
def
→= C∞(P ;F ) + ρk

HC
∞(P ;E) = C∞(P ;G) + ρk

HC
∞(P ;E).

Here ρH ∈ C
∞(X) is a defining function for H. If F is a k-jet of subbundle then

the space I(E,F ) determines F. If F and G are respectively a k-jet and a p-jet of
subbundle of E at H then we write F ⊂ G to mean that k ≥ p and F and G have
representatives subbundles, F ′ and G′, in some neighborhood of H with F ′ ⊂ G′.
This relation can also be written I(E,F ) ⊂ I(E,G). By a jet-filtration of E at H
we mean a sequence Ej of N − j-jets of subbundle satisfying (4.1) in this sense of
inclusion.

Suppose that Ej is such a jet-filtration of the bundle E at H. Consider the space
of sections of E :

(4.4) D =

N∑

p=0

ρp
HI(E;Ep) ⊂ C∞(X ;E).

Away from H this consists, locally, of all sections of E. Thus if Ip ⊂ C
∞(X) is the

ideal of functions vanishing at p ∈ X then the vector spaces

(4.5) Ẽp = D/Ip · D

are canonically isomorphic to the fibres of E for p /∈ H. Since D ⊂ C∞(X ;E) for
any p there is a natural map

(4.6) Ẽp −→ Ep.

Proposition 4.1. If E is a C∞ vector bundle over a manifold with corners, X,
with a jet-filtration at a boundary hypersurface H then

(4.7) Ẽ =
⊔

p∈X

Ẽp,
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defined using (4.5), has a unique structure as a C∞ vector bundle over X such that

the map ι Ẽ −→ E defined by (4.6) is a C∞ bundle map,

(4.8) ι∗D = C∞(X ; Ẽ)

and (4.2) holds.

Proof. Suppose F ⊂ G are respectively a k-jet and a k− 1-jet of subbundle of E at
H. Then given any representative of F as a subbundle of E near H we can find a
representative of G which contains it. Thus, starting at the bottom of the filtration
we can find for each j a representative F j of the N − j-jet of subbundle Ej such
that F j ⊂ F j−1 as subbundles near H. The definition of D in (4.8) then becomes

(4.9) D =



u ∈ C

∞(X ;E); near H, u =

N∑

j=0

ρj
Huj, uj ∈ C

∞(P ;F j)





where P is some neighborhood of H. Locally near any p ∈ H we can choose a basis
e1, . . . , eN of E such that e1, . . . , eR(j) is a basis of F j , where R(j) is the rank of F j .

Then, from (4.9), ρj
Hep, where j is the smallest index such that p ≤ R(j), is a basis

for Ẽ. This gives Ẽ its structure as a C∞ vector bundle; it is clearly independent
of choices and (4.8) holds by construction. �

In the main application above we need to carry out two such rescalings at two
intersecting boundary hypersurfaces. Let H1 and H2 be the two boundary hyper-
surfaces of X equipped with the jet-filtrations Ej

1 , and Ep
2 . Naturally some compat-

ibility conditions are required between the two. The rescaling at H1 will be carried
out first, so the compatibility conditions is just that the rescaling must induce a
jet-filtration at H2 of the rescaled bundle.

To see what this amounts to suppose first that E itself has a filtration, Gj over

X. If this filtration is to induce a filtration on the rescaled bundle Ẽ with respect to
some jet-filtration at a boundary hypersurface, H1, F

p, it is necessary and sufficient
that

(4.10) Gj ∩ F p, p = 1 . . . , N be a jet-filtration of Gj at H1.

In case the Gj only constitute a jet-filtration of E at a boundary hypersurface, H2,
we demand that (4.10) hold in the sense that the Gj have representative subbundles
of E near H2 which filter E and on which the F p induce jet-filtrations at H1 near

H2. If these conditions hold then we can define the doubly-rescaled bundle
˜̃
E by first

defining Ẽ with respect to the rescaling at H1 and then rescaling Ẽ with respect
to the jet-filtration on it at H2 induced by the rescaling of the jet-filtration of E.

In practice the jet-filtrations are defined from local filtrations of the bundle
obtained by normal translation of a filtration from the boundary hypersurface H.
Thus suppose that E has a connection and that V is a real vector field which is
transversal to H. Then any filtration Ej of E on H can be extended to a filtration
near H by taking F j to be the subbundle of E which is spanned (over C∞(X)) by
the sections satisfying

(4.11) ∇V e = 0 near H, e↾H ∈ C
∞(H,Ej).

The connection will be a natural one, but the choice of normal vector field is less
natural. It is also of interest to know the extent to which the rescaled bundle
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inherits a connection. The obvious condition is that the connection should preserve
the filtration:

(4.12) ∇W ej ∈ C
∞(H ;Ej), ∀ W ∈ C∞(H ;TH), ej ∈ C

∞(H ;Ej).

Proposition 4.2. Suppose E is a vector bundle with connection over the C∞ man-
ifold with corners X and that on a boundary hypersurface H the connection pre-
serves a filtration Ej in the sense of (4.12), then if the covariant derivatives of the
curvature of the connection satisfy
(4.13)

(∇U1 · · · ∇Uk
R)(W1,W2) : C

∞(H ;Ej) −→ C∞(H ;Ej+k−p+2) ∀ k ≤ N − j − 2 + p,

where p = 0, 1 and if p = 1, W2 is tangent to H

the jet-filtration defined by (4.12) is independent of the choice of normal vector field
and the rescaled bundle has a b-connection, i.e.

(4.14) ∇W C
∞(X ; Ẽ) −→ C∞(X ; Ẽ) provided W is tangent to H.

Proof. If the jet-filtration is defined by (4.12) then D ⊂ C∞(X ;E) is characterized
by the Taylor series of the action of the chosen normal vector field:

(4.15) (∇V )ju↾H ∈ C
∞(H ;Ej) for j = 0, . . . , N − 1.

Suppose W ∈ C∞(X,TX) is tangent to H. Then the Taylor series of ∇Wu, for
u ∈ D, in the sense of (4.15) can be written

(4.16) ∇j
V (∇Wu) = ∇W (∇j

V u) +
∑

p<j

Rp(V,W
p
2 )∇p

V u

where Rp is a covariant derivative of order s ≤ j − p− 1 of the curvature operator
and if s = j − p − 1 then W p

2 = W is tangent to H. Thus from (4.15) and (4.13)
it follows that ∇Wu also satisfies (4.15), i.e. (4.14) holds. Changing V by a non-
vanishing multiple clearly does not change the jet filtration. If any vector field
tangent to H is added to V it follows, using (4.13), that the content of (4.15) is
unchanged. Thus the rescaling is independent of the normal vector field used to
define it. �

5. Analytic torsion

Let M be a compact Riemann manifold, of odd dimension, with metric tensor
g. If ρ π1(M) −→ U(k) is a unitary representation of the fundamental group let

(5.1) Lρ = M̃ ⊗ρ Ck,

where M̃ is the universal cover of M, be the associated locally flat Hermitian bundle
over M. Exterior differentiation extends to differential forms twisted by ρ

(5.2) d : C∞(M ;Λ∗M ⊗ Lρ) −→ C
∞(M ;Λ∗M ⊗ Lρ).

Using the Hermitian inner product on L, metric inner product on Λ∗M and volume
form on M the adjoint, δ, and hence the twisted Laplacian can be defined

(5.3) ∆ = dδ + δd, ∆ : C∞(M ;Λ∗ ⊗ Lρ) −→ C
∞(M ;Λ∗M ⊗ Lρ).

Let Q ∈ C∞(M ; hom(Λ∗M ⊗Lρ)) be the parity involution defined by Q = (−1)p

on ΛpM ⊗ Lρ and let strA = tr QA, for A ∈ C∞(M ; hom(Λ∗M ⊗ Lρ)) be the
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associated supertrace tensor. For a smoothing operator, defined by its Schwartz
kernel

(5.4)
B ∈ Ψ−∞(M ;Λ∗M ⊗ Lρ)

⇐⇒ B ∈ C∞(M2; Hom(Λ∗M ⊗ Lρ)⊗ π
∗
RΩM)

the ‘big’ supertrace is defined by

(5.5) STr(B) =

∫

M

str(B↾Diag).

By Lidsky’s theorem the supertrace of a smoothing operator is given in terms of
the operator trace by Tr(QB).

Consider the number operator N = p on ΛpM ⊗ Lρ. The supersymmetric zeta
function is defined by

(5.6) ζT (s) =
1

Γ(s)

∞∫

0

ts STr(Ne−t∆)
dt

t
, Re s >> 0

where ∆ is the Laplacian restricted to the orthocomplement of its null space. That
is, if ΠN is orthogonal projection off the null space of ∆ then

(5.7) ζT (s) =
1

Γ(s)

∞∫

0

ts STr(Ne−t∆ΠN )
dt

t
.

This zeta function extends to a meromorphic function on the entire complex plane
with s = 0 a regular value as indeed follows from (1.20). We define the analytic
torsion of Ray and Singer by

(5.8) logTρ(M) = ζ′T (0).

As defined here Tρ(M) is the square of the torsion defined in [37]. Formally it
is a ratio of powers of determinants for the Laplacians ∆j , restricted to ΛjM ⊗Lρ

and with null space removed:

(5.9) Tρ(M) ∼

n∏

j=1

[
det∆j

](−1)jj
, n = dimM.

To analyze ζT (s) near s = 0 the right side of (5.6) needs to be continued ana-
lytically. The integral decays exponentially as t→∞ so only the behaviour near 0
needs to be considered. In fact there is only one obstruction to convergence for s
near 0 :

Theorem 5.1. If M is an odd-dimensional Riemann manifold, as above, the point-
wise supertrace of the weighted heat kernel has a uniform asymptotic expansion as
t ↓ 0

(5.10) str(Net∆) ∼ a− 1
2
t−

1
2 +

∑

j≥1, odd

t
j
2 a j

2

with coefficients ak ∈ C
∞(M ; ΩM) and leading term

(5.11) a− 1
2

= c(n)

n∑

k=1

(−1)k Pf(Rk) ∧ ωk, c(n) = 2i(−1)
1
2 (n+1)(16π)−

1
2n.
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Here ωk is an orthonormal frame for T ∗M, Rk is obtained by deleting the kth row
and column from the curvature matrix R in this frame and Pf(Rk) is its Pfaffian.

Corollary 5.2. For any δ > 0

(5.12)

logTρ(M) =

δ∫

0

[
STr(Ne−t∆)− a− 1

2
(M, g)t−

1
2

] dt
t

+

∞∫

δ

STr(Ne−t∆)
dt

t
− 2δ−

1
2 a− 1

2
(M, g)− (c+ log δ)χ2(M,ρ)

where a− 1
2
(M, g) =

∫
M

a− 1
2

is given by (5.11), χ2 is the twisted, weighted Euler

characteristic

(5.13) χ2(M,ρ) =
N∑

k=0

(−1)kkbk, bk = dimHk(M ; ρ)

and c is Euler’s constant.

Proof of Corollary. Writing (5.6) in the form

(5.14)

ζT (s) =
1

Γ(s)

∞∫

δ

ts STr
[
Ne−t∆

] dt
t

+
1

Γ(s)

δ∫

0

ts
[
STr(Ne−t∆)− a− 1

2
t−

1
2

] dt
t

+
1

Γ(s)

δs− 1
2

(s− 1
2 )
a− 1

2
(M, g)−

1

Γ(s+ 1)
δsχ2(M ; ρ)

gives an explicitly regular formula near s = 0 from which (5.12) follows by differ-
entiation and evaluation at s = 0. �

To prove Theorem 5.1 we shall adapt Getzler’s scaling argument to the odd-dim-
ensional case, leading to the cancellation inherit in (5.10). We do so by making a
global rescaling of the homomorphism bundle of Λ∗M ⊗ Lρ near the front face of
the heat space defined above. Since this is localized near the diagonal, Lρ does not
appear in the discussion. To get (5.10) we then show that the heat kernel lifts to
the rescaled bundle.

Getzler’s rescaling is defined by a decomposition of the homomorphism bundle in
terms of Clifford multiplication. Let V be any Euclidean vector space. Let Cℓ(V )
be the associated Clifford algebra, the tensor algebra of V with the one relation

(5.15) e · f + f · e = −2〈e, f〉 Id ∀ e, f ∈ V.

This algebra acts by Clifford multiplication on the exterior algebra, Λ∗V :

(5.16) cl(e) Λ
∗V −→ Λ∗V, cl(e) = ext(e)− int(e), e ∈ V,

where ext(e) is exterior (wedge) product with e and int(e) is contraction with the
dual vector v ∈ V ∗ to e ∈ V. This is left Clifford multiplication, we also consider
right Clifford multiplication

(5.17) cr(e) = (ext(e) + int(e)) ·Q
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where Q is the parity operator for the natural grading of Λ∗V ; the left and right
actions commute.

In case W is an even-dimensional Euclidean vector space the complexified Clif-
ford algebra Cℓ(W ) = Cℓ(W ) ⊗R C is isomorphic to Gl(2k; C), dimW = 2k. If V
is odd-dimensional we shall exploit this by extending the left Clifford action on
CΛ∗V = Λ∗V ⊗R C to an action of Cℓ(V ⊕ R). Let e1, . . . , en be an orthonormal
basis for V and, setting e0 = 1 ∈ R, consider the operator on CΛ∗(V ⊕ R)

(5.18) τ̃ = i
n+1
2 cr(e0) · cr(e1) . . . cr(en).

Lemma 5.3. If V is an odd-dimensional Euclidean vector space and τ̃ is defined
by (5.18) the map

(5.19) E CΛ∗V ∋ ω 7−→
1

2
(ω + τ̃ω) ∈ CΛ∗(V ⊕ R),

where Λ∗V →֒ Λ∗(V ⊕ R) is the natural embedding, embeds CΛ∗V as a subspace
invariant under the left Clifford action of Cℓ(V ⊕ R) such that

(5.20) E · cl(e) = cl(e) · E, ∀ e ∈ V, and E ·Q = Q ·E.

Proof. Clearly τ̃ is an involution. Moreover E is injective and has range precisely
the 1-eigenspace of τ̃ . The range of E is invariant under left Clifford multiplication
by Cℓ(V ⊕ R) and E intertwines the action of Cℓ(V ) on CΛ∗V and as a subspace
of Cℓ(V ⊕ R). Since τ̃ω is a form of the same parity as ω, E also intertwines the
super symmetries, Q, on Λ∗V and Λ∗(V ⊕ R). �

The Clifford action gives a decomposition of the endomorphism space:

Lemma 5.4. For any odd-dimensional Euclidean vector space

(5.21) hom(CΛ∗V ) = Cℓ(V ⊕ R)⊗ hom′(CΛ∗V )

where the second factor is the subspace commuting with the action of Cℓ(V ⊕R), it
is generated by the right Clifford action of Cℓ(V ).

Proof. For the even-dimensional case

(5.22) hom(CΛ∗W ) = Cℓ(W )⊗ Cℓ(W )

with the two factors acting by left and right Clifford multiplication. For W = V ⊕R

we deduce (5.21) with the right factor being the subspace which preserves the 1-
eigenspace of τ̃ . This is generated by the elements cl(e0) · cl(ej) i, j = 1, . . . , n, and
this is the right Clifford action by Cℓ(V ).

Notice that the involution (5.18) depends only on the choice of orientation of
V. Switching orientation replaces (5.19) by the embedding of CΛ∗V as the −1-
eigenspace of τ̃ . However cr(e0) interchanges the ±1-eigenspaces of τ̃ and inter-
twines the left Clifford actions on them, so the decomposition (5.21) is completely
natural. �

Using (5.21) the filtration of the Clifford algebra, by minimal degree in the
generators, induces a filtration of the endomorphism space

(5.23) hom[k](CΛ∗V ) = Cℓ[k](V ⊕ R)⊗ hom′(CΛ∗V ), k = 0, . . . , n+ 1.

To find the decomposition of operators on CΛ∗V in this sense we only need find their
action, on the image of E in (5.19), in terms of left and right Clifford multiplication
on Λ∗(V ⊕ R).
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For any orthonormal basis ei, i = 1, . . . , n,

(5.24) E · ext(ei) = [ext(ei) int(e0) ext(e0)− int(ei) ext(e0) int(e0)] ·E.

On Λ∗(V ⊕ R) we have

(5.25)
ext(ei) =

1

2
[cl(ei) + cr(ei)Q]

int(ei) =
1

2
[−cl(ei) + cr(ei)Q]

Inserting these in (5.24) gives the decompositions

(5.26)

E · ext(ei) =

[
1

2
cl(ei)⊗ Id−

1

2
cl(e0)⊗ (cr(ei)cr(e0))

]
· E

E · int(ei) =

[
−

1

2
cl(ei)⊗ Id−

1

2
cl(e0)⊗ (cr(ei)cr(e0))

]
· E.

Thus both exterior and interior multiplication are operators of order 1,

(5.27) ext(v), int(v) ∈ hom[1](CΛ∗V ), ∀ v ∈ V.

Similarly we decompose the number operator by writing it on the image of E,

(5.28) N =
n∑

k=1

[ext(ei) int(ei) int(e0) ext(e0) + int(ei) ext(ei) ext(e0) int(e0)].

Again using (5.25) this becomes

(5.29) N =
1

2

n∑

k=1

(Id−cl(ek)cl(e0)cr(ek)cr(e0)).

Thus N ∈ hom[2](CΛ∗V ).
The parity involution, Q, can be written

(5.30) Q = cl(e0)cl(e1) . . . cl(en)cr(e0)cr(e1) . . . cr(en).

That this involution has maximal order is, together with the following fundamental
observation of Patodi, the main reason for introducing the filtration.

Lemma 5.5. The supertrace functional annihilates hom[n](CΛ∗V ) in (5.23) and

(5.31) str(Q) = 2n.

Proof. Of course (5.31) is immediate. Taking an orthonormal basis for V and con-
sidering the basis elements of Cℓ(V ⊕ R), the odd elements anticommute with
Q and hence have zero trace after composition with Q. For an element µ =∏

1≤r≤k cl(ejr
) ⊗ A, 0 ≤ j1 < j2 < · · · < jk, with k ≤ n there exists eq, q 6= jℓ

for 1 ≤ ℓ ≤ k. Then µ commutes with Q and eq, which interchanges the +1 and
−1-eigenspaces of Q, so tr(Qµ) = 0. �

If M is an odd-dimensional Riemann manifold the naturality of (5.23) means
that it extends to give a filtration of the endomorphism bundle

(5.32) hom[k](Λ∗M ⊗ Lρ) = Cℓ[k](T ∗M ⊕ R)⊗ hom′(Λ∗M ⊗ Lρ)

where hom′ is the subbundle of elements commuting with the Clifford action. The
‘full’ homomorphism bundle over M2

(5.33) Hom(Λ∗M ⊗ Lρ) =
⊔

(x,x′)∈M2

hom ((Λ∗M ⊗ Lρ)x′ , (Λ∗M ⊗ Lρ)x)
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has the property that its restriction to the diagonal is canonically isomorphic to
hom(Λ∗M ⊗ Lρ) over M.

Thus over the diagonal Hom(Λ∗M ⊗Lρ) has the filtration (5.32). The extension
of the filtration off the diagonal is discussed in (4). In order to apply Proposition 4.2
we need to show that the curvature functional has the appropriate order with
respect to the filtration. That is, if R is the curvature operator on Hom(Λ∗M⊗Lρ)
and V,W,U1, . . . , Up are C∞ vector fields on M2 near the diagonal we need to show
that

(5.34) ∇U1 . . .∇Up
R(V,W )|Diag has order p+ 2− ℓ

where ℓ ≤ p+ 2 is the number of vector fields which are tangent to the diagonal.
Since the action of the curvature operator, and its covariant derivatives, is always

given by a sum of products of interior and exterior multiplication it follows from
(5.26) that its order can never be greater than 2. Thus (5.34) certainly holds when
p+2− ℓ ≥ 2, i.e. p ≥ ℓ. It therefore suffices to consider the case when either all the
vector fields are tangent to the diagonal, or all but one are so tangent. In the first
case the curvature operator and its covariant derivatives are of order zero, since the
Levi-Civita connection on M preserves the filtration (5.32). In the second case the
fact that the diagonal is geodesically flat means that the operator (5.34) vanishes.

Thus Proposition 4.2 applies and the rescaled bundle, GHom (Λ∗M ⊗ Lρ), and
rescaled heat calculus, Ψ∗

h,G(M ;Λ∗M⊗Lρ), are therefore defined. We wish to show
that the heat kernel

(5.35) exp(−t∆) ∈ Ψ−2
h,G(M ;Λ∗M ⊗ Lρ),

for the twisted Laplacian.
Following the discussion in §4 it suffices to show that ∆ acts on the rescaled

bundle and to compute the normal operator in the rescaled calculus. This follows
from the Lichnerowicz/Weitzenböck formula.

Proposition 5.6. For the twisted Laplacian

(5.36) Ψ−k
h,G(M ;Λ∗M ⊗ Lρ) ∋ A 7−→ ∆ ·A ∈ Ψ−k+2

h,G (M ;Λ∗M ⊗ Lρ)

and

(5.37) Nh,G,−k+2(∆A) =

[
H−

1

8
C(R)

]
·Nh,G,−k(A)

where

(5.38) C(R) =
∑

i,j,s,t

Rijstcl(ei)cl(ej)cr(es)cr(et)

with respect to any orthonormal frame of T ∗M, and H is the generalized harmonic
oscillator:

(5.39) H = −
∑

i

(σ1(ei) +
1

8
R(ei, Vr))

2.

Here Vr denotes the radial vector field on TM.

Proof. The Weitzenböck formula for the action of the Laplacian on Λ∗M is

(5.40) ∆ = ∆c −
∑

i,j,k,ℓ

Rijkℓ ext(ei) int(ej) ext(ek) int(eℓ).
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Here ∆c is the connection Laplacian; with respect to any local orthonormal frame
of TM it is

(5.41) ∆c = −
∑

i

∇2
vi
.

Inserting (5.26) into the tensorial term in (5.40) and using the symmetries of the
Riemann curvature tensor we find

(5.42)

∑

i,j,k,ℓ

Rijkℓ ext(ei) int(ej) ext(ek) int(eℓ)

=
1

16

∑

i,j,kℓ

Rijkℓ[cl(ei)cl(ej) + cr(ei)cr(ej)][cl(ek)cl(eℓ) + cr(ek)cr(eℓ)]

is equal to 1
8C(R)− 1

4S where the first term is given by (5.38) and S is the scalar
curvature. As a scalar S is of order 0 with respect to the filtration so does not
contribute to the normal operator.

As for the connection Laplacian term, we first show that

(5.43) Ψ−k
h,G(M ;Λ∗M ⊗ Lρ) ∋ A 7−→ ∇V ·A ∈ Ψ−k+1

h,G (M ;Λ∗M ⊗ Lρ)

and

(5.44) Nh,G,−k+1(∇V ·A) = (σ1(V ) +
1

8
R(V, Vr))N−k(A).

The proof is similar to the proof of Proposition 1.2 in (3). In fact, from the com-
putation there we obtain the following formula for the action of A. If we write

(5.45) A = t
k
2−

n+2
2 + n

4 Ã|dtdXdx|
1
2 , Ψ = Ψ0|dtdx|

1
2 and AΨ = (AΨ)0|dtdx|

1
2

then

(5.46) (AΨ)0(t, x) =

∫
(t′)

k
2−1Ã(t′, X, x)Ψ0(t− t

′, x− (t′)
1
2X)|dt′dx|.

Since the rescaling does not involve Lρ, the same argument as in the proof of
Proposition 1.2 shows that it produces only a lower order term. So we need only
deal with Λ∗M.

For this we trivialize Λ∗M near the diagonal by parallel translating from each x
(= (x, x) ∈ ∆(M) ⊂M⊗M) along the radial direction. This gives an identification

(5.47) Hom(Λ∗M) ≡ hom(Λ∗M)

near the front face. Now if {ei} is an orthonormal frame at x, parallel translated
to a neighborhood around x, and

(5.48) α = (α1, · · · , αn)

is a multi-index, then we can write

(5.49) Ã = Ãαβt
|α|
2 cl(eα)cr(eβ),

where Ãαβ(t,X, x) is a smooth function vanishing rapidly as X →∞.
Similarly if we use {si} to denote the corresponding orthonormal basis for Λ∗M,

we can write Ψ0 = Ψisi. With this notation, we have
(5.50)

(AΨ)0(t, x) =

∫
(t′)

k
2−1+ |α|

2 Ãαβ(t′, X, x)Ψi(t− t
′, x− (t′)

1
2X)cl(eα)cr(eβ)sidt

′dX.
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Therefore

(5.51)

((∇V · A)Ψ)0(t, x) =

∫
(t′)

k
2−1+

|α|
2 (V ÃαβΨi + ÃαβVΨi)cl(eα)cr(eβ)si

+

∫
(t′)

k
2−1+ |α|

2 ÃαβΨi∇V (cl(eα)cr(eβ)si)dt
′dX.

The first term can be handled exactly as in the proof of Proposition 1.2, which
produces, in the normal operator, the term σ1(V )N−k(A).

We now look at the second term. We have
(5.52)
∇V (cl(eα)cr(eβ)si) = cl(∇V eα)cr(eβ)si + cl(eα)cr(∇V eβ)si + cl(eα)cr(eβ)∇V si.

Clearly the first two terms will only produce lower order terms so we can happily
ignore them. Now

(5.53)

∇V si =− 〈∇V ek, el〉 ext(ek) int(el)si

=
1

4
Γkl(V )[cl(ek)cl(el) + cr(ek)cr(el)]si.

Once again, only the first term matters so we need to consider

(5.54)

∫
(t′)

k
2 −1+

|α|
2 Ãαβ(t′, X, x)Ψi(t− t

′, x− (t′)
1
2X)

1

4
Γkl(V )(x− (t′)

1
2X)

× cl(eα)cr(eβ)cl(ek)cl(el)sidt
′dX.

This appears to be an operator of order −k + 2 but is really of order −k + 1 since

(5.55) Γkl(V )(x− (t′)
1
2X) =

1

2
R(V, Vr)(t

′)
1
2X +O(|(t′)

1
2X |2).

Moreover its contribution to the normal operator is 1
8R(V, Vr)N−k(A). �

Recall that the normal operator in the rescaled heat calculus is a section of the
rescaled homomorphism bundle over the front face of the heat space. This is just
the associated graded bundle to the filtration (5.31), i.e.

(5.56) GHom(tf;Λ∗M ⊗ Lρ) = CΛ∗(M ⊕ R)⊗ hom′(Λ∗M ⊗ Lρ)

lifted from M to tf(M2
h) ∼= TM, over its interior. Thus the left Clifford multiplica-

tion in (5.38) acts as exterior multiplication and C(R) is therefore nilpotent.
Moreover ∂t acts in the same way as before. From the discussion in §4 we

conclude not only that (5.35) holds but that its normal operator is given by

(5.57) Nh,G,−2 = exp(−H) · exp(
1

8
C(R))

since the two terms commute.
Now we can finally turn to the

Proof of Theorem 5.1. Recalling the formula, (5.29), for the number operator we
see that tNe−t∆ ∈ Ψ−2

h,G(M ;Λ∗M ⊗ Lρ) has normal operator

(5.58) −
1

2

n∑

k=1

cl(ek)cl(e0)cr(ek)cr(e0) exp(
1

8
C(R)) × exp(−H).
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As noted in Lemma 5.5 only the maximal order term contributes to the supertrace.
Thus we conclude directly that

(5.59) str(tNe−t∆) ∼ t
n+1
2 −n

2 (a− 1
2

+
∑

j≥1 odd

t
j
2+ 1

2 a j
2
)

where the factor of t
n+1

2 comes from the rescaling of the bundle and t−
n
2 from the

normalization in the heat calculus. We also use Proposition 1.3 to deduce that
there are only odd powers of t

1
2 in the expansion. Dividing by t gives (5.10).

Furthermore the leading part in (5.58), in terms of the filtration, is a multiple
of Q. Using (5.31) we find

(5.60) a− 1
2

= c(n)

n∑

k=1

(−1)k Pf(Rk)e1 ∧ · · · ∧ en.

This is a well-defined density, the Pfaffian being (by definition) the term of degree
n− 1 in exp(Rk), Rk =

∑
p,q 6=k

Rijpqe
p ∧ eq as an operator on span {ej, j 6= k}. This

completes the proof of Theorem 5.1. �

6. Adiabatic scaling

As in the introduction, consider a fibration of compact manifolds

(6.1) F M

φ

��
Y.

On M consider the 1-parameter family of Riemannian metrics gx = φ∗h+ x2g and
the conformal metric

(6.2) ag = g +
1

x2
φ∗h

where g is a metric on M (or at least a non-negative smooth 2-cotensor inducing a
metric on each fibre of φ) and h is a metric on Y.

As in [27] we first rescale the vector bundle to make ag a fibre metric. Thus
on the manifold Ma = M × [0, 1]x consider first the lift of the tangent bundle
from M, the sections of which are simply vector fields on M depending on x as
a parameter; we shall denote this bundle MTMa. At the boundary hypersurface
ab = {x = 0} ⊂Ma, which we identify with M, consider the filtration given by the
subspace of fibre vector fields

(6.3) φTM =
⊔

p∈M

Tpφ
−1(φ(p)) ⊂ TM ≡ MTabMa

and let πa : aTMa −→Ma be the vector bundle overMa defined by Proposition 4.1
from MTMa and this filtration. Thus in local coordinates in Ma, (x, y, z) where
(y, z), are coordinates in M with the yi coordinates in Y, ∂zk

, x∂yi
is a local basis

for aTMa. We shall denote the space of C∞ sections of aTMa by

(6.4) Va(Ma) = C∞(Ma; aT ) =
{
u ∈ C∞(Ma; MTMa);u↾ab ∈ C

∞(M ; φTM)
}
.

An a-differential operator on a vector bundle F over Ma is one which can be
written in a (any) local basis of F as a matrix of operators each entry of which is a
sum of up to k-fold products of elements of Va(Ma). The order is then k; the space
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of these is denoted Diffk
a(Ma;F ) and more generally Diffk

a(Ma;E,F ) is the space of
such operators from sections of E to sections of F. The principal symbol of such an
operator is a homogeneous polynomial of degree k on aT ∗Ma, the dual of aTMa,
with values in the lift of the homomorphism bundle of F

(6.5) σa
k : Diffk

a(Ma;F ) ։ P k(aT ∗Ma;π∗
a hom(F )).

An a-differential operator is elliptic if σa
k(P ) is invertible on aT ∗Mar0. The basic

example of an a-differential operator is the Laplacian, discussed in [27]. Let aΛkMa,
k = 1, . . . ,dimM be the exterior powers of aT ∗Ma. These bundles can also be
identified with bundles constructed using Proposition 4.1. In x > 0 the Laplacian
of the metric (6.2) acts on these bundles and in fact

Lemma 6.1. ([27]) The Laplacian a∆ of the metric (6.2) is an elliptic element of

the ring of a-differential operators, Diff2
a(Ma; aΛkMa).

Proof. One can write exterior differentiation on the x-fibres of Ma as

(6.6) df =

dim Y∑

i=1

x∂yi
f
dyi

x
+

dim F∑

j=1

∂zj
fdzj.

This shows that d ∈ Diff1
a(Ma; aΛ0Ma,

aΛ1Ma) and by Leibniz’ formula d extends

to an element of Diff1
a(Ma; aΛkMa,

aΛk+1Ma) for each k. Directly from the defi-
nition of Va(Ma) it follows that on taking adjoints with respect to ag, for any
Hermitian bundles E and F, A 7−→ A∗ is an isomorphism of Diffm

a (Ma;E,F ) onto

Diffm
a (Ma;F,E). Thus, for any k, δ ∈ Diff1

a(Ma; aΛk+1Ma,
aΛkMa). Since composi-

tion gives

(6.7) Diffm
a (Ma;E,F ) ·Diffm′

a (Ma;G,E) ⊂ Diffm+m′

a (Ma;G,F )

we conclude that ∆ = dδ + δd ∈ Diff2
a(Ma; aΛkMa). Ellipticity is a consequence of

the usual computation of symbols, that of d being iξ∧, ξ ∈ aT ∗Ma, so the symbol
of δ is −i int(ξ) and hence aσ2(∆) = |ξ|2 on aT ∗Ma. �

Another way to prove Lemma 6.1 is to observe that the Levi-Civita connection
on the x-fibres of Ma, for x > 0, extends by continuity to a connection on aT ∗

abMa.
That it extends to an a-connection, i.e. defines covariant differentiation by elements
of Va over ab is immediate; the fact that covariant differentiation is a differential
operator

(6.8) ∇ : C∞(ab; aT ∗Ma) −→ C
∞(ab; aT ∗Ma ⊗ T

∗ ab)

in the usual sense follows from the product nature of the metric (6.2). Since the
Hodge ∗ operator is well-defined on the a-form bundles the fact that both d and δ
are a-differential operators follows, even from the weaker result that the Levi-Civita
connection is an a-connection.

Next we recall, and slightly refine, the results of [27] which follow from this
description of a∆ and the use of a-pseudodifferential calculus introduced there. We
can suppress the factor Lρ since it makes no difference, except notational, to the
discussion. The fibre cotangent bundle over M, with fibre over p ∈ M equal to
T ∗Fy, y = φ(p), is a natural subbundle of aT ∗

abMa, the restriction of aT ∗Ma to
ab(Ma) = {x = 0} ≡ M. Since ag defines a non-degenerate metric on aT ∗Ma
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the orthocomplement of the fibre cotangent bundle is a bundle which is naturally
identified with 1

xφ
∗T ∗Y. This gives the decomposition of the a-form bundle as

(6.9) aΛ∗
abMa = FΛ∗ ⊗ φ∗(

1

x
Λ∗Y ).

This decomposition is preserved by the Levi-Civita connection (6.8). For any
smooth section u ∈ C∞(Ma; aΛ∗)

(6.10) ( a∆u)↾ab = F∆(u↾ab)

is given by the the fibre Laplacian, acting as F∆⊗ 1 in terms of (6.9). Thus
(6.11)
E1 = {v ∈ C∞(ab(Ma); aΛ∗); ∃ u ∈ C∞(Ma; aΛ∗), u↾ab = v, a∆u ∈ xC∞(Ma; aΛ∗)}

is the space of fibre-harmonic forms. It is important that E1 can be realized as a
C∞ vector bundle over Y :

(6.12) E1 = H∗
Ho(F )⊗ C∞(Y ;Λ∗)

where the fibre of H∗
Ho(F ) at y ∈ Y is H∗

Ho(Fy), the Hodge cohomology of Fy with
respect to the metric gy.

Using formal Hodge theory it can be seen that the space (6.11) can also be
obtained as the case k = 1 of

(6.13) Ek =
{
v ∈ C∞(ab(Ma); aΛ∗); ∃ u ∈ C∞(Ma; aΛ∗),

u↾ab = v, a∆u ∈ x2kC∞(Ma; aΛ∗)
}
,

i.e. the error term in (6.11) can always be improved to O(x2). These spaces give a
Hodge-theoretic form of the Leray spectral sequence for the cohomology of M :

Proposition 6.2. ([27]) For k sufficiently large Ek is isomorphic to H∗(M), the
deRham cohomology of the total space M of the fibration.

In fact (see [27]) for each k ≥ 0 one obtains the same space in (6.13) by weakening
the condition to a∆u ∈ x2k−1C∞(Ma; aΛ∗). For each k, let Πk be the orthogonal
projection with respect to ag from E0 = L2(ab; aΛ∗) to the closure of the subspace
Ek in L2. The Hodge-theoretic arguments in [27] show that Πk C

∞(ab; aΛ∗) −→ Ek

for each k. Moreover if v ∈ Ek then choosing u as in (6.13) it follows that du, δu ∈
xkC∞(Ma; aΛ∗) and the operators

(6.14) dkv = Πk(x−kdu↾ab), δkv = Πk(x−kδu↾ab)

are well-defined, independent of the choice of u, are adjoints of each other with
respect to the L2 inner product on Ek and are such that

(6.15)
d2

k = 0, δ2k = 0, and

Ek+1 = {v ∈ Ek; dkv = δkv = 0} = {v ∈ Ek;∆kv = 0, ∆k = dkδk + δkdk} .

For k = 1 the operator d1 is just the differential on Y, in the sense of (5.2), for
the representation of π1(Y ) on the fibre cohomology. The differential complexes
(Ek, dk) are precisely the Leray spectral sequence for the cohomology of the fibra-

tion. For k ≥ 2 the spaces Ek are finite dimensional. If Ej
k = Ek ∩ C

∞(ab; aΛj) is
the part of Ek in degree j then the torsion for the complex

(6.16) E0
k

dk−→ E1
k . . .

dk−→ Edim M
k
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is by definition

(6.17) τ(Ek, dk) =

dim M∏

j=0

(det∆′
k)

−1jj

where ∆′
k is the restriction of ∆k to Ek ⊖ Ek+1.

From [14] it follows that the Ek have another representation in terms of the
Laplacian ∆x. Namely, for ǫ > 0 small enough and each k ≥ 2,
(6.18)

(Ẽk)x = sp{u ∈ C∞(M ;Λ∗);∆xu = λxu, λx ∈ R, 0 ≤ λx < ǫ−2xk}, 0 < x < ǫ

is a vector space of dimension independent of x. Thought of as subspaces of C∞(Ma; aΛ∗)
over (0, ǫ) ×M these form subbundles which are smooth down to x = 0, with the
limiting space exactly Ek. That is each element of Ek can be extended to a smooth
a-form over [0, ǫ)×M which is a sum of eigenvectors of ∆x with eigenvalues O(x2k)
as x ↓ 0. All other eigenvalues of ∆x are bounded away from 0. Moreover

(6.19) lim
x↓0

x−2k a∆
↾ eEk

= ∆k, k ≥ 2.

This alternative representation of Ek as the span of the boundary values at x = 0 of
the eigenforms of ∆x corresponding to x2k-small eigenvalues arises in the long-time
asymptotics of the heat kernel in §11.

7. Heat kernel for the adiabatic metric

We wish to consider the heat kernel of x−2P where P is a self-adjoint elliptic
a-differential operator, acting on some bundle F, with diagonal principal part with
symbol dual to (6.2), i.e. given by the fibre metric on aT ∗Ma. Thus we seek a
distribution

(7.1)
E ∈ C−∞(Rt ×M

2 × [0, 1]x; Hom(F )⊗ π∗
RΩ) satisfying

(∂t +
1

x2
P )E = δ(t)⊗ IdF , E = 0 in t < 0.

As is usual in such analysis we treat the case of the half-density bundle first, to get
the bundles right, and then comment on the changes needed for the general case. In
§10 the further modifications corresponding to Getzler’s rescaling are considered.

To construct, and analyze, E we first guess the space on which it should be
reasonably simple. Set Z = [0,∞)×M2 × [0, 1] and consider the submanifolds

(7.2)
Bh = {(0,m,m, x) ∈ Z;m ∈M}

Ba = {(0,m,m′, 0);m,m′ ∈M, φ(m) = φ(m′)} .

In both cases consider S = sp(dt) as a subbundle of the conormal bundle. Then,
in terms of parabolic blow-up as described in §2 and [19], we put

(7.3) M2
A = [Z;Ba, S;Bh, S] , βA : M2

A −→ Z.
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Thus M2
A is a manifold with corners, having five boundary hypersurfaces:

(7.4)

eb(M2
A) = β−1

A {x = 1} the ‘extension’ or trivial boundary

tb(M2
A) = clβ−1

A ({t = 0} \Bh) the temporal boundary

ab(M2
A) = clβ−1

A ({x = 0} \ (Ba ∩Bh)) the adiabatic boundary

tf(M2
A) = β∗

A(Bh) the temporal front face

af(M2
A) = β∗

A(Ba) the adiabatic front face

at each of which there will be a model operator. Of course eb can be freely ignored.
Moreover all the kernels we shall consider vanish to infinite order at tb(M2

A) so we
shall build this into the calculus. As usual we let ρF denote a defining function for
the boundary hypersurface F for F = tb, ab, tf or af .

On M2
A consider the kernel density bundle

(7.5) KDA = ρ
−n

2 −1

af ρ
−N

2 − 3
2

tf Ω
1
2 , n = dim Y, N = dimM

and the spaces of kernels

(7.6) Ψ−j,−k,−p
A (M ; Ω

1
2 ) = ρj

tfρ
k
afρ

p
abρ

∞
tbC

∞(M2
A; KDA), j, k, p ∈ N.

As in the ordinary heat calculus there are invariantly defined subspaces of the space
of C∞ functions onM2

A corresponding to involutions around the submanifolds which
are blown up to define it. If y, z are coordinates in M, near p with the yj coordinates
in Y and y′, z′ are coordinates near p′, with φ(p) = φ(p′) and y = y′ as coordinates
in Y, consider the coordinates t, x, y, z, y′, z′ in Z near (0, 0, p, p′) ∈ Ba. Then, with

ρaf = (t+ x2 + |y− y′|2)
1
2 , we can consider the space of C∞ functions on [Z;Ba, S]

with Taylor series at af, the front face defined in the blow-up of the form

(7.7)
∑

k

ρk
afFk(

t

ρ2
af

,
x

ρaf
,
y − y′

ρaf
, y + y′, z, z′)

with Fk even or odd in the second two sets of variables as k is even or odd. The lift
of any C∞ function on Z satisfies this condition. The further blow-up of Bh is just a
parametrized form of the definition of the ordinary heat space, and so even functions
at tf can be defined as before. Again the C∞ functions on [Z;Ba, S] all lift to be
even. Moreover the evenness conditions at the two front faces are independent so
four subspaces C∞E,E(M2

A), C∞E,O(M2
A), C∞O,E(M2

A) and C∞O,O(M2
A) ⊂ C∞(M2

A) are all
well-defined, where the first subscript refers to tf and the second to af . Choosing,
as we can

(7.8) ρaf ∈ C
∞
E,O(M2

A) and ρtf ∈ C
∞
O,E(M2

A)

gives

(7.9)
C∞O,E(M2

A) = ρtfC
∞
E,E(M2

A), C∞E,O(M2
A) = ρafC

∞
E,E(M2

A),

C∞O,O(M2
A) = ρtfρafC

∞
E,E(M2

A).

As already noted, C∞(Z) lifts into C∞E,E(M2
A) so we can define the corresponding

space of sections C∞E,E(M2
A;β∗

AU) for any C∞ vector bundle over Z. Then we refine

(7.6) to

(7.10) Ψ−j,−k,−p
A,E (M ; Ω

1
2 ) = ρj

tfρ
k
afρ

p
abρ

∞
tbC

∞
E,E(M2

A; KDA), j, k, p ∈ N
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subject to (7.8), and similarly for action on general vector bundles over M. In §9

it is shown that these kernels define operators (by convolution in t) on Ċ∞(X ; Ω
1
2 ),

with X = [0,∞)×M × [0, 1]. Composition results for these, and related, operators
are presented (although to get a general composition formula we allow logarithmic
terms at ab). This allows the solution to (7.1) to be constructed in the same spirit
as in §1.

To describe the results of this construction, which is actually carried out in §9,

consider the normal operators associated to an element of Ψ−j,−k,−p
A (M ; Ω

1
2 ) at the

boundary hypersurfaces tf , af and ab; by fiat the normal operator at tb is trivial.
These give maps into simpler calculi.

The normal operator at tf is just a parametrized version of the normal operator
in the heat calculus discussed in §1 and §3. To see this, first consider the structure
of tf . This is the boundary face produced, in (7.3), by the blow up of the lift
of Bh, which we denote for the moment by B′

h. The submanifold B′
h lies in the

lift, to [Z;Ba, S], of t = 0 and the parabolic direction for the blow up is just
the conormal bundle to this boundary hypersurface. Thus tf can be canonically
identified as a fibre-by-fibre compactification of the normal bundle to B′

h in the
boundary hypersurface. Within t = 0, Bh is the diagonal and the blow up of Ba is
the blow up of the fibre diagonal over x = 0, just as in the definition of M2

A. From
this it follows that the normal bundle to B′

h is canonically identified with aTMa

so tf is the fibre-by-fibre compactification of the vector bundle aTMa, using as

‘trivial’ time variable T = x−2t. Note that T
1
2 is a defining function for tf(M2

A) in a
neighborhood of tf except at tb; apart from a square-root singularity at tb, it blows
up as ρ−1

ab at ab(M2
A), but this hypersurface is disjoint from tf(M2

A). The boundary
hypersurface tf(M2

A) has boundary hypersurfaces which we can denote eb, af and tb

from their intersections with the boundary faces of M2
A. If A ∈ Ψ−j,−k,−p

A (M ; Ω
1
2 ),

multiplication of the kernel by T
1
2 (N−j)+1, followed by evaluation at tf gives

(7.11) Nh,−j : Ψ−j,−k,−p
A (M ; Ω

1
2 ) ։ ρk

afρ
∞
tbC

∞(aTMa; Ωfibre);

obviously the null space of this map is Ψ−j−1,−k,−p
A (M ; Ω

1
2 ).

At af the normal operator maps into the fibre heat calculus, which is described
in §8. The boundary hypersurface af is just the lift from [Z;Ba, S] of the boundary
hypersurface, af ′, produced by this first blow up. Consider the φ-fibred product of
M with itself, this is the manifold M2

φ which is fibred over Y with fibres Fy × Fy.

Clearly Ba ≡M
2
φ. The interior of af′ is canonically isomorphic to YT (M2

φ)×(0,∞)T

where the first factor is the lift of TY under the projection and in the second factor
the global variable is T = t/x2. The boundary hypersurface af′ of [Z;Ba, S] is a
fibre-by-fibre compactification of YT (M2

φ)× [0,∞) over M2
φ. The fibre TyY × (0,∞)

is compactified to a non-round quarter sphere which can be identified smoothly
with

(7.12)
HM(TyY ) = ([0,∞)× [0,∞)× TyY \ {0}) / ∼,

(T, x, v) ∼ (T ′, x′, v′) =⇒ (T ′, x′, v′) = (s2T, sx, sv) for some s > 0
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As discussed in §8 this quarter-sphere is closely assoicated to the Euclidean heat
space. Thus af′ is quarter-sphere bundle over M2

φ :

(7.13) F × F // af′

φ×φ

��
HMq // HM(TY )

πY

��
Y.

Now, the effect on af ′ of the additional blow up of Bh, to define M2
A, reduces to

the parabolic blow up of the surface B′
h which is the intersection of af′ and the lift

of Bh. Explicitly, in terms of the projective coordinates T, Y = (y − y′)/x, y, Z =
z − z′, z, x, this is the part of {Y = 0, Z = 0} lying above the diagonal part of the
fibration of M2

φ over Y. This then describes the boundary hypersurface af of M2
A :

(7.14) af = [af ′;B′
h, S].

It has three boundary hypersurfaces, coming from intersections with the other
boundary hypersurface of M2

A and denoted accordingly tf, tb and ab .

Thus if we consider the heat calculus, Ψ∗
h,fibre(

YTM ; Ω
1
2 ) on the fibres of [0,∞)×

YTM as a bundle over Y, with the action being invariant under translations we get
a map

(7.15) NA,−k Ψ−j,−k,−p
A (M ; Ω

1
2 ) ։ Ψ−j,−p+k

H,fibre (YTM ; Ω
1
2 ).

Here, for simplicity, we have denoted YTM = YT (M2
φ).

At the end of §8 the heat calculus on the base of a fibration, with values in the
smoothing operators on the fibres, is discussed. The normal operator at ab takes
values in this calculus.

Proposition 7.1. If a∆ is the Laplacian of an adiabatic metric, (6.2), as in
Lemma 6.1 then the heat kernel, the unique solution to (7.1) in x > 0, is an element

(7.16) exp(−x−2t a∆) ∈ Ψ−2,−2,0
A,E (M ; aΛk)

with normal operators

Nh,−2 = (4π)−
n
2 exp(−

1

4
|v|2a)(7.17)

NA,−2 = exp(−T∆A), T = x−2t,(7.18)

Na,0 = exp(−t∆Y )(7.19)

where ∆A is the fibrewise Laplacian on the bundle YTM and ∆Y is the reduced
Laplacian on Y.

The proof of this main regularity result for the adiabatic heat kernel is given §9,
after some preparation in the next section.

Consider what this result shows about the restriction of the heat kernel to the
spatial diagonal. The spatial diagonal is embedded by
(7.20)

[0,∞)×M × [0, 1] = D̃iag →֒ Z = [0,∞)×M2 × [0, 1], (t,m, x) 7−→ (t,m,m, x).
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Let tb, ab and eb be the three boundary hypersurfaces of D̃iag, equal to the intersec-

tions of D̃iag in the image of (7.20) with the corresponding boundary hypersurfaces

of Z. The first blow-up in (7.3), of Ba, results in the blow-up of D̃iag by

(7.21) D̃iag ∩Ba = {0} ×M × {0}

parabolically in the t-direction. The second blow-up is the parabolic blow-up of the
boundary surface, t = 0, so if we set

(7.22) D̃iagA = [D̃iag; {0} ×M × {0}, S; tb, S]; β̃A : D̃iagA −→ D̃iag

and ZA = [Z,Ba;S] the first blow up in producing M2
A, then embedding (7.20) lifts

to give a commutative diagram:

(7.23) D̃iagA

ιA //

eβA

��

ZA

βA

��
D̃iag ι

// Z.

This results in D̃iagA having four bounding hypersurfaces, tf, af, ab and eb where af
results from the first blow up and tf is only different from tb in that the manifold
has the square root C∞ structure there. Again the bounding hypersurfaces are

equal to the intersections of the image of D̃iagA under ιA with the corresponding
boundary hypersurfaces of ZA.

x

t

x

ab

af

tf

t

Figure 5. β̃A : D̃iagA → D̃iag

Directly from Proposition 7.1 we conclude that the restriction to the spatial
diagonal is such that, for each k,

(7.24) β̃∗
A

[
exp(−x−2tP )

↾D̃iag
⊗ |dt|

1
2

]
∈ ρ−N

tf ρ−n
af C

∞(D̃iagA; aΛk ⊗ Ω).

To see this note that the half-density bundle on ZA at D̃iagA decomposes into

the normal half-density bundle to D̃iagA tensored with the half-density bundle on

D̃iagA itself. This gives the natural identification

(7.25) Ω
1
2 (ZA)

↾D̃iagA
⊗ |dt|

1
2 ≡ ρ

−N
2 − 1

2

tf ρ
−n

2 −1

af Ω(D̃iagA)
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which leads to (7.24). This is certainly a uniform expansion for the restriction to
the diagonal and is optimal for the Laplacian in general.

Notice that D̃iagA = Q2×M where Q2 is defined at the end of the introduction.
Integration of (7.24) will therefore give

(7.26) Tr(exp(−
t

x2
P )) ∈ t−

N
2 ρ−n

af C
∞(Q2).

This has to be considerably improved to get (0.24).

8. Euclidean and fibre heat calculus

In §1 the Euclidean heat calculus is briefly described. A slightly different de-
scription of the global regularity of these kernels is useful below.

Consider again the function Φ′ in (1.1). The regularity of this kernel can be
described in terms of a blown up version of the space introduced in (7.12). Let the
two boundary hypersurfaces of HM(Rn) be denoted tb and ti, where the first arises
from t = 0 and the second from ‘t = ∞.’ Set Y = (0, 0, Sn−1) ⊂ HM(Rn) be the
corner of this manifold with corners and let SY be the conormal to the temporal
boundary hypersurface, tb, which contains it. The compact manifold with corners

(8.1) HHM Rn = [HM(Rn);Y, SY ]

is the natural carrier of the Euclidean heat kernel, as a convolution operator. Thus,
denoting by tf the new boundary hypersurface produced by the blow up in (8.1),
the heat kernel lifts under blow up to an element

(8.2) Φ′ ∈ ρ
−n

2 +1

tf ρ∞tbρ
−n

2 +1

ti C∞(HHM(Rn)).

More generally the convolution kernels in Ψp
th(R

n) can be identified as the subspaces

(8.3) Ψp
th(R

n) ⊂ ρ
−n

2 +1+p

tf ρ∞tbρ
−n

2 +1
ti C∞(HHM(Rn)), p < 0,

consisting of the elements which are homogeneous of degree −n
2 +1 under the global

R+ action.
Notice that this construction is independent of the basis of Rn so is defined for

any vector space. Indeed if V is a C∞ Euclidean vector bundle of rank n over
some compact manifold Y then the construction can be carried out fibre-by-fibre
to give a compact manifold HHM(V ) which fibres over Y with fibre diffeomorphic
to HHM(Rn). This manifold is the natural carrier for the collective heat kernels
of the flat Laplacians on the fibres, in the sense that, with the same notation for
boundary faces

(8.4) exp(−t∆fibre) ∈ ρ
−n
tf ρ

∞
tbρ

n
abC

∞(HHM(V )).

This function can also be considered as the kernel for the heat semigroup acting
on half-densities, with the fibre-metric half-density used to trivialize the bundle of
half densities.

For the product Rn × F of Euclidean space and a compact manifold without
boundary the natural heat space is obtained by combining this construction with
that of (3). Thus consider the product HM(Rn)× F 2. The appropriate heat space
is

(8.5) HHM(Rn × F ) = [HM(Rn)× F 2;Bh, Sh]

where Bh = tb(HM(Rn)) × Diag and Sp is the conormal to the boundary hyper-
surface of HM(Rn). For the product metric, coming from the Euclidean metric on
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Rn and the metric on F, the heat kernel is the product exp(−t∆) = exp(−t∆F ) ·
exp(−t∆E).

Lemma 8.1. The heat kernel on Rn × F, as a convolution kernel in the first vari-
ables, lifts to an element

(8.6) exp(−t∆) ∈ ρ
−N

2 +1

tf ρ∞tbρ
−1
ti C

∞(HHM(Rn × F ); Ω
1
2 ), N = n+ dimF.

Proof. Since the heat kernel is the product of the heat kernels, the regularity of
the lifted kernel away from t = 0 is immediate from the separate discussions in the
Euclidean and compact cases. �

To describe the normal operator at the ab face of the adiabatic heat calculus, we
discuss here the heat calculus on the base with values in the smoothing operators
on the fibers. Thus let M be the total space of a fibration, with the base Y and
the fibers F , and set Z = [0,∞)×M2. Now consider its t-parabolic blow-up along
the submanifold Ba (defined in (7.2)) instead of the usual diagonal:

(8.7) M2
h,φ = [Z;Ba, S] .

Note that Ba is the fibered diagonal of the fibration, M2
φ.

As usual we denote by tf and tb its temporal front face and temporal boundary
face respectively. Recall that n is the dimension of the base manifold. The kernel
density bundle KD is now defined by the prescription

(8.8) C∞(M2
h,φ; KD) = ρ

−n
2 − 3

2

tf C∞(M2
h,φ; Ω

1
2 ).

Finally the heat calculus on the base with values in the smoothing operators on the
fibers is now defined by

(8.9) Ψ−k
h (M,φ; Ω

1
2 ) = ρk

tfρ
∞
tbC

∞(M2
h,φ; KD) for k ∈ N.

By definition the normal operator at ab of the adiabatic heat calculus, which is

the multiplication of the kernel by X−p (X = x/t
1
2 ) followed by the evaluation at

ab, takes values in this calculus:

(8.10) Na,p : Ψ−j,−k,−p
A (M ; Ω

1
2 ) ։ Ψ−k

h (M,φ; Ω
1
2 ).

Lemma 8.2. The heat kernel of the reduced Laplacian lifts to an element

(8.11) exp(−t∆Y ) ∈ Ψ−2
h (M,φ; Ω

1
2 ).

Proof. The heat kernel of the reduced Laplacian is an element of the heat calculus
of the base manifold Y . By using a partition of unity we can decompose it into the
sum of two parts; the first is supported away from the front face and the second
near the front face. Both can be lifted, fiberwise constantly, to an element of the
base heat calculus, as described above. The first part is an effectively a smoothing
operator on Y , that is, its Schwartz kernel is a smooth function on Y × Y . Clearly
this lifts to a smooth function on M × M . Similarly, since the second piece is
supported near the front face we can effectively think of it as a smooth function
on af×[0, 1] (say) multiplied by a singular density factor. Thus, once again it lifts
to a function of the same type near the front face of the base heat space (Cf. the
analysis of the adiabatic front face of the adiabatic heat calculus). �
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9. Adiabatic heat calculus

In this section we generalize the results of §3 for heat calculus to the adiabatic
heat calculus. As discussed in §4, the adiabatic heat calculus is defined so that the
statement, in Proposition 7.1, that the heat kernel for the adiabatic Laplacian lies
in the calculus gives a rather precise description of the degeneracy at x = 0.

Formulæ (3.17) and (3.19) still define the action of Ψ−j,−k,−p
A (M,Ω

1
2 ) on Ċ∞(X,Ω

1
2 ),

where X ≡ [0,∞)×M× [0, 1]. We first note the result of composing these operators
with differential operators. For simplicity of notation here we write the action of a
vector field V through Lie derivation of half-densities simply as V.

Proposition 9.1. Let A ∈ Ψ−j,−k,−p
A (M,Ω

1
2 ). If V is any smooth vector field, then

(9.1) (t
1
2V ) ◦A ∈ Ψ−j,−k,−p

A (M,Ω
1
2 )

and with σ1(xV ) the symbol of xV as an adiabatic vector field,

(9.2)

Nh,−j(t
1
2V ◦A) = σ1(xV )Nh,−j(A),

NA,−k(t
1
2V ◦A) = σ1(xV )NA,−k(A),

Na,−p(t
1
2V ◦A) = (t

1
2V )Na,−p(A).

If W is a vertical vector field and T = t/x2, then

(9.3) (T
1
2W ) ◦A ∈ Ψ−j,−k,−p

A (M,Ω
1
2 )

(9.4)

Nh,−j[(T
1
2W ) ◦A] = σ1(W )Nh,−j(A),

NA,−k[(T
1
2W ) ◦A] = (W )NA,−k(A),

Na,−p[(T
1
2W ) ◦A] = (T

1
2W )Na,−p(A).

Finally, (t∂t ◦A) ∈ Ψ−j,−k,−p
A (M,Ω

1
2 ) and

(9.5)

Nh,−j(t∂t ◦A) = [
j

2
− 1−

1

2
(N +RM )]Nh,−j(A),

NA,−k(t∂t ◦A) = T∂TNA,−k(A),

Na,−p(t∂t ◦A) = t∂tNa,−p(A).

Proof. As a vector field on the left factor of M, t
1
2V lifts from Z to M2

H to a vector

field of the form ρtbṼ where Ṽ ∈ Vb(M
2
H). From this (9.1) follows. Similarly if W

is a vertical vector field, i.e. is tangent to the fibres, then the same lift is of the
form ρtbρafW̃ with W̃ ∈ Vb(M2

H), from which (9.3) follows. Similarly t∂t lifts into
Vb(M

2
H).

To compute the normal operator at tf, we can use the projective coordinates

(9.6) s = t
1
2 /x = T

1
2 , y, Ȳ =

y − y′

t
1
2

, z, Z̄ =
z − z′

t
1
2 /x

, x

Then A = T
j
2−

N+4
4 xk− n

2 −1a(T, y, Ȳ , z, Z̄, x)|dTdydȲ dzdZ̄dx|
1
2 , where a is a

smooth function of (T
1
2 , y, Ȳ , z, Z̄, x) and vanishes rapidly as Ȳ →∞ or Z̄ →∞.
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Since β∗
A(t

1
2 V ) = t

1
2 V +σ1(xV ), a computation completely similar to that of the

proof of Proposition 1.2 shows that

(9.7)
(t

1
2 V ) ◦A ∈ Ψ−j,−k,−p

A (M,Ω
1
2 ) and

Nh,−j(t
1
2V ◦A) = σ1(xV )Nh,−j(A).

Similarly we have for a vertical vector field W

(9.8)
(T

1
2W ) ◦A ∈ Ψ−j,−k,−p

A (M,Ω
1
2 ) and

Nh,−j(T
1
2W ◦A) = σ1(W )Nh,−j(A).

and

(9.9)
t∂t ◦A ∈ Ψ−j,−k,−p

A (M,Ω
1
2 )

Nh,−j(t∂t ◦A) = [
j

2
− 1−

1

2
(N +RM )]Nh,−j(A),

where RM denote the radial vector field on TM.
To compute the normal operator at af, we use the coordinates

(9.10) T = t/x2, y, Y =
y − y′

x
, z, z′, x.

The same computation shows that

(9.11)

NA,−k(t
1
2V ◦A) = σ1(xV )NA,−k(A),

NA,−k[(T
1
2W ) ◦A] = (W )NA,−k(A),

NA,−k(t∂t ◦A) = T∂TNA,−k(A).

�

To prove composition results for adiabatic heat operators we shall use an ‘adia-
batic triple space’. In

(9.12) W = R2 ×M3 × [0, 1]

consider the three adiabatic fibre diagonals with the associated parabolic directions:

(9.13)

BF = {(t, 0,m,m′,m′′, 0);φ(m′) = φ(m′′)} , SF = sp(dt′)

BS = {(t, t,m,m′,m′′, 0);φ(m) = φ(m′)} , SS = sp(dt− dt′)

BC = {(0, t′,m,m′,m′′, 0);φ(m) = φ(m′′)} , SC = sp(dt)

and the triple fibre diagonal

(9.14) BT = {(0, 0,m,m′,m′′, 0);φ(m) = φ(m′) = φ(m′′)} , ST = sp(dt, dt′).

Then set

(9.15) WA = [W ;BT , ST ;BF , SF ;BS , SS ;BC , SC ] , β3
A : WA −→W.

For this triple product we have the ‘usual’ results (recall that Z = [0,∞)×M2×[0, 1]
and ZA = [Z,Ba;S]):

Proposition 9.2. The three projections

(9.16)

π2
F (t, t′,m,m′,m′′, x) = (t′,m′,m′′, x)

π2
S(t, t′,m,m′,m′′, x) = (t− t′,m,m′, x)

π2
C(t, t′,m,m′,m′′, x) = (t,m,m′′, x)
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lift to b-fibrations

(9.17) π2
O,A : WA −→ ZA, O = F, S,C

giving a commutative diagram

(9.18) Z

ZA

β2
A

<<yyyyyyyy

W

π2
C

OO

π2
F

��1
11

11
11

11
11

11
11

π2
S

����
��

��
��

��
��

��
�

WA

π2
C,A

OO

π2
F,A

��3
33

33
33

33
33

33
33

π2
S,A

����
��
��
��
��
��
��
�

β3
A

<<yyyyyyyy

Z Z

ZA

β2
A

<<zzzzzzzz
ZA.

β2
A

==||||||||

Proof. We need first to show that the ‘stretched projections’ π2
O,A, for O = F, S,C

exist and are C∞. Then we need to check that they are b-fibrations according to
the definition given in [28]. There is sufficient symmetry (using t ←→ t′ and sign
reversal) that it is enough to consider one case, say O = C. The existence of the
stretched projection follows from results on the commutation of blow-up. In this
case [19, Appendix C] can be used to rewrite the definition, (9.15), in the form:

(9.19) WA = [W ;BC , SC ;BT , ST ;BF , SF ;BS , SS ] .

The intermediate space

(9.20) [W ;BC , SC ] ≡ ZA × (R×M)

so the iterated blow-up (9.19) gives π2
C,A as the product of a blow-down map and

the projection from (9.20)

(9.21) [W ;BC , SC ;BT , ST ;BF , SF ;BS , SS ] −→ [W ;BC , SC ] −→ ZA.

Since both the blow-down map and the projection are b-maps so is π2
C,A; clearly it

is surjective. Thus it remains only to show that π2
C,A is a b-fibration.

Let f : X −→ Y be a b-map between manifolds with corners, i.e. a C∞ map
such that if ρ′i ∈ C

∞(Y ), i = 1, . . . , N ′ are defining functions for the boundary
hypersurfaces of Y and ρj ∈ C

∞(X), j = 1, . . . , N are defining functions for the
boundary hypersurfaces of X then

(9.22) f∗ρ′i = ai

∏

j=1

ρ
k(i,j)
j , 0 < ai ∈ C

∞(X).

The non-negative integers k(i, j) are the boundary exponents of f. The condition
that f be a b-fibration can be expressed as two conditions on the map, that it
be a ‘tangential submersion’ and ‘b-normal’. For any point p ∈ X in a manifold
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with boundary let BHX(p) be the smallest boundary face containing p. The first
condition is the requirement that

(9.23) f∗ (Tp BHX(p)) = Tf(p) BHY (f(p)) ∀ p ∈ X.

The condition of b-normality is the requirement on the boundary indices:

(9.24) For each j, k(i, j) 6= 0 for at most one i.

To check (9.23) for π2
C,A we note that under the iterated blow-down map in (9.21)

the image of Tp BH(p) is always the tangent space at the image point to the small-
est submanifold formed by the intersection of the boundary faces of the image and
the submanifolds blown up. It follows easily that π2

C,A is a tangential submersion.
To check that it is b-normal we simply compute the boundary indices. In table 1
the boundary exponents of all three of the stretched projections are recorded. This
completes the proof of the proposition.

at asF asC asS ab

π2
F,A af 1 1 0 0 0

ab 0 0 1 1 1

π2
S,A af 1 0 0 1 0

ab 0 1 1 0 1

π2
C,A af 1 0 1 0 0

ab 0 1 0 1 1

ν 0 0 n+2 0 0
Table 1 : Boundary exponents

�

Also in Table 1 there is a ‘density row’, labelled ‘ν’ which is important in the
description of the composition results. These exponents are fixed by the natural
identification of density bundles:
(9.25)

(π2
F,A)∗ KD⊗(π2

S,A)∗ KD⊗(π2
C,A)∗(KD′)⊗|dt|

1
2 ∼=

∏

F=at,asF,asC,asS,ab

ρνF

F ·Ω on WA.

Here KD′ is the half-density bundle with the opposite weighting to KD so that
KD′⊗KD ∼= Ω. A straightforward computation gives the results as stated, i.e.

(9.26) νat = νasF = νasS = νab = 0, νasC = n+ 2.

The table can be used to give an ‘upper bound’ for the singularities of the
composite of two operators using a general push-forward theorem from [28] (see
also [19]) which applies because of Proposition 9.2. Thus if E = (Eaf , Eab) is an
index family for M2

A, assumed trivial at tf and tb then let

(9.27) Ψ−∞,E
A (M,Ω

1
2 ) = A

(∞,∞,Eaf ,Eab)
phg (M2

A; KD)

be the space of polyhomogeneous conormal distributions on M2
A which vanish

rapidly at tf and tb and have expansions at af and ab with exponents from Eaf and
Eab respectively.



50 XIANZHE DAI AND RICHARD B. MELROSE

Proposition 9.3. Composition, being convolution in t, gives, for any index families
E and F

(9.28) Ψ−∞,E
A (M,Ω

1
2 ) ◦Ψ−∞,F

A (M,Ω
1
2 ) ⊂ Ψ−∞,G

A (M,Ω
1
2 )

where

(9.29)
Gaf = [Eaf + Faf ]∪ [Eab + Fab + n+ 2]

Gab = [Eaf + Fab]∪ [Eab + Faf ]∪ [Eab + Fab]

Proof. Let A ∈ Ψ−∞,E
A (M ; Ω

1
2 ), B ∈ Ψ−∞,F

A (M,Ω
1
2 ). The composition C = A ◦B

can be written in terms of their Schwartz kernels via the b-fibrations π2
O,A:

(9.30)

κCKD
′ = (π2

C,A)∗[(π
2
S,A)∗κA · (π

2
F,A)∗κB · (π

2
C,A)∗(KD′) · (π̃2

C,A)∗(|dt′|
1
2 |dx|−1/2)],

where π̃2
C,A = π2

C ◦ β
3
A : WA → Z.

By the push-forward theorem [28] (see also [19])

(9.31) C ∈ Ψ−∞,G
A (M,Ω

1
2 )

for some index set G. The index set G = (Gaf , Gab) can be computed by the Mellin
transform

(9.32) 〈κC ·KD
′, ρz1

afρ
z2

ab〉 = 〈(π
2
F,A)∗(κ̃A · (π

2
S,A)∗(κ̃B)

×
∏

F=at,asF,asC,asS,ab

ρνF

F ·Ω(WA), (π2
C,A)∗(ρz1

afρ
z2

ab)〉,

where κA = κ̃A ·KD, κB = κ̃B ·KD. From Table 1 and (9.26) we obtain (9.29). �

Proof of Theorem 1. Clearly (7.17), (7.18), (7.19) are compatible therefore there is

G1 ∈ Ψ−2,−2,0
A (M,a Λk) whose normal operators are given by (7.17)-(7.19). Now by

the composition formulas,

(9.33) (t∂t +
t

x2
∆x)G1 = t Id−tR1,

where tR1 ∈ Ψ−3,−3,−1
A (M,a Λk) or R1 ∈ Ψ−1,−1,−1

A (M,a Λk). Thus G1 is already
a parametrix. We now modify G1. Using the heat calculus we can find a G0 ∈
Ψ−2,−2,−∞

A (M,a Λk) such that

(9.34) (t∂t +
t

x2
∆x)G0 = t Id−tR0,

where R0 ∈ Ψ−∞,0,−∞
A (M,a Λk).

It follows that there is a correction term G′
0 ∈ Ψ−3,−1,−1

A (M,a Λk) such that
the modification of the parametrix G2 = G1 − G

′
0 still has the normal operator

(7.17)-(7.19) and is a parametrix in the strong sense that

(9.35) (t∂t +
t

x2
∆x)G2 = t Id−tR2,

where R2 ∈ Ψ−∞,−1,−1
A (M,a Λk).

By Proposition 9.3,

(9.36) (R2)
k ∈ Ψ

−∞,−k,−α(k)
A (M,a Λk),
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where α(k) = {(−k, k− 1)}. Thus the Neumann series
∑∞

k=0(R2)
k can be summed

modulo a term vanishing rapidly at both af and ab, i.e. there exists S′ ∈ Ψ−∞,−1,A
A

with A = ∪α(k) such that

(9.37) (Id−S′)(Id−R2) = Id−R3, R3 ∈ Ψ−∞,−∞,−∞
A .

In other words, R3 is a Volterra operator vanishing rapidly at all the boundaries.
Thus Id−R3 can be inverted with an operator of the same type. It follows that

Id−R2 has a two-side inverse Id−S, S ∈ Ψ−∞,−1,A
A (M,a Λk). This in turn means

we have

(9.38) exp(−
t

x2
∆x) = G1(Id−S) = G1 −G1 ◦ S

and by Proposition B.2, G1 ◦ S ∈ Ψ−∞,−1,A
A (M,a Λk). That is, C∞ except for

logarithmic terms at ab.
To show that exp(− t

x2 ∆x) ∈ Ψ−2,−2,0
A (M,a Λk) we show that the logarithmic

terms are actually zero. To this end we consider the behavior of the leading log
term at the boundary of ab. Near ab, we can use the coordinates

(9.39) t, y, Y =
y − y′

t
1
2

, z, z′, X =
x

t
1
2

.

The boundary of ab is {t = 0, X = 0}. Let t
1
2 (k−n

2 −1)Xp(logX)lu(y, Y, z, z′) be the
leading log term of exp(− t

x2 ∆x). By its explicit construction we have 1 ≤ p and

k ≥ p + 2. Since exp(− t
x2 ∆x) satisfies the heat equation, we find that the Taylor

coefficients of u at t = 0 (we still denote by u) satisfies

(9.40) (∆Y −
1

2
Y ∂Y +

1

2
(k − 1)−

n

4
−
p

2
)u = 0,

where u = u(y, Y, z, z′) is smooth in all variables and vanishes rapidly as Y →∞.
Multiplying the equation by u and integrate by part

(9.41)

∫

R

|∇u|2 −
1

2

∫
(Y ∂Y u)u+ d

∫
u2 = 0.

But
∫

(Y ∂Y u)u =
∫
u∂Y (Y u) = −

∫
Y u · ∂Y u− n

∫
u2. Therefore

(9.42)

∫

R

|∇u|2 + c

∫
u2 = 0

with c = 1
2 (k − 1)− p

2 ≥
1
2 . Hence u ≡ 0.

This shows that the leading log term vanishes rapidly at the boundary of ab and
therefore can be blown down to a smooth solution of the heat equation for the base
manifold with zero initial data. It must be zero identically. �

10. The rescaled adiabatic calculus and supertrace

With the hard work done for constructing the adiabatic heat calculus, we are
now ready to show how to modify it to incorporate the Getzler’s rescaling. We will
first indicate the modification necessary in constructing the rescaled adiabatic heat
calculus. Then a proof is given for Theorem 0.2. Finally we turn to the two lemmas
in preparation of the application to the analytic torsion.

To construct the rescaled adiabatic heat calculus, the only thing different from
the discussions in the previous sections is that we rescale the homomorphism bundle
at both af and tf . Following the discussion in §4 we do so by giving filtrations for the
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homomorphism bundle over both the submanifolds, Ba and Bh, which are blown
up in the construction of M2

A. These filtrations need to satisfy the appropriate
compatibility condition at Ba ∩Bh.

As noted in §6 over ab(Ma) = {x = 0} the exterior algebra decomposes into

(10.1) aΛ∗
pM = xΛ∗

yY ⊗ Λ
∗
pFy, p ∈ ab(Ma), y = φ(p).

Here xΛ∗
yY = Λ∗(xT ∗

y Y ) so xΛk
yY = x−kΛk

yY. Since Ba lies above the fibre diagonal
(10.1) leads to a decomposition of the homomorphism bundle

(10.2) Homq(
aΛ∗M) = hom(xΛ∗

yY )⊗Homq(Λ
∗Fy) at q ∈ Fy × Fy ⊂ Ba.

We now separate into tow cases as the parity of the base dimension makes a
difference here. If Y is odd-dimensional, the discussion in §2, leading to (5.32),
applies to Clifford multiplication by xT ∗Y and gives the filtration

(10.3) hom[k](xΛ∗
yY ) = Cℓ[k](xT ∗

y Y ⊕ R)⊗ hom′(xΛ∗
yY ), y ∈ Y.

This lifts to give the desired filtration over Ba :

(10.4) Hom
[k]
Ba

(aΛ∗M) = Cℓ[k](xT ∗Y ⊕ R)⊗Hom′(aΛ∗M).

which has length dimY + 1.
Since Bh, defined in (7.2), lies over the diagonal we can use the natural extension

of the filtration (5.32). Namely left Clifford multiplication by the rescaled bundle
aT ∗M extends to give

(10.5) hom(aΛ∗M) = Cℓ[k](aT ∗M ⊕ R)⊗ hom′(aΛ∗M) over Bh

where this filtration has length dimM + 1. This second filtration is consistent with
the first over the intersection Ba ∩ Bh in the sense that (10.5) induces a filtration
on each of the subspaces (10.4).

For the discussion in §4 to apply we need to show that the extension of the
connection in (6.8) preserves the filtrations and that the curvature operator has
the order property (4.13). These conditions follow as in §5, from the fact that
exterior and interior multiplication have order one. Thus, the rescaled adiabatic
heat calculus Ψ∗

A,G(M ; aΛ∗) is defined in this case.
If Y is even dimensional, we use a different filtration of the homomorphism

bundle overBa. Suppose first thatW is an even-dimensional Euclidean vector space.
The complexified homomorphism bundle has the decomposition (5.22) in terms of
left and right Clifford multiplication, defined by (5.16) and (5.17). Consider a
different ‘right’ Clifford multiplication defined by

(10.6) c̃r(e) = (ext(e) + int(e)) · τ, τ = τl = in(2n−1)cl(e1) · · · cl(e2n)

in terms of an orthonormal basis e1, . . . , e2n of W. The involution τl is, up to a
power of i, the Hodge ∗ operator and so is independent of the choice of basis; we
shall use it as the parity operator defining a (new) superbundle structure on the
exterior algebra. Since c̃r(e) again commutes with the left Clifford multiplication
this action actually gives the same decomposition (5.22) but we write it

(10.7) hom(CΛ∗W ) = Cℓ(W )⊗ C̃ℓ(W )

to emphasize that the action is through (10.6). We consider the filtration corre-
sponding to this action:

(10.8) hom[k](CΛ∗W ) = Cℓ[k](W )⊗ C̃ℓ(W ).
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The true parity operator on forms can be written

(10.9)
Q = cl(e1) · · · cl(e2n)cr(e1) · · · cr(e2n) = τlτ̃r

τ̃r = in(2n−1)c̃r(e1) · · · c̃r(e2n)

which shows it to be a homomorphism of maximal order.
The filtration (10.8) is independent of the choice of orientation, so extends to

the homomorphism bundle of any even-dimensional Riemann manifold. For the
fibration with even-dimensional base we consider in place of (10.3)

(10.10) hom[k](xΛ∗
yY ) = Cℓ[k](xT ∗Y )⊗ hom′(xΛ∗

yY ), y ∈ Y.

and then, in place of (10.4)

(10.11) Hom
[k]
Ba

(aΛ∗M) = Cℓ[k](xT ∗Y )⊗Hom′(aΛ∗M).

Hence, the rescaled adiabatic heat calculus Ψ∗
A,G(M ; aΛ∗) is also defined in this

case.
To prove Theorem 0.2, it remains to analyze the behaviour of the Laplacian and

and to compute its normal operators. From the Weitzenböck formula (5.40) it again
follows that the Laplacian acts on the rescaled bundle and hence

(10.12) exp(−
t

x2
a∆) ∈ Ψ−2,−2,0

A,G (M ; aΛ∗).

The rescaled normal operator at tf is still given by (5.57). Moreover the rescaled
normal operator of the Laplacian at af is just given by (5.57), with n = dimY and
an additional term coming from the fibre as
(10.13)

NA,G,−k((t∂t−
t

x2
a∆)A) =

[
A2

T +HY +
1

2
(Vr + n+ k − 2)−

1

8
C(RY )

]
·NA,G,−k(A).

Here HY is the generalized harmonic oscillator on the fibres of xTY, and AT is the
rescaled Bismut superconnection:
(10.14)

A2
T = −T [∇ei

+
1

2
T− 1

2 〈∇ei
ej , fα〉cl(ei)cl(fα)+

1

4
〈∇ei

fα, fβ〉cl(fα)cl(fβ)]2+
1

4
TKF ,

where ei is an orthonormal basis of the fibers and fα that of the base, and KF

denotes the scalar curvature of the fibers. We remark in passing that in the above
formula the Clifford action of the base variables is acting really by exterior multi-
plication since at the front face they act on the graded space of the filtration. From
this it follows that at the adiabatic front face the rescaled normal operator is just

(10.15) exp(−HY ) exp(
1

8
C(RY )) exp(−A2

T ).

We have now finished the proof of Theorem 0.2. In what follows we shall show,
by use of the rescaling adiabatic heat calculus, that not only does the analogue of
(5.10) hold uniformly in x but there is additional cancellation at the adiabatic front
face when (7.24) is used to compute the supertrace. The parity of the dimension
of fibre and base makes a considerable difference to the argument so we treat the
two cases separately.

Lemma 10.1. If the fibres of (6.1) are even-dimensional then

(10.16) h = str

[
N exp(−

t

x2
a∆)

]
∈ ρ−1

tf ρ
−1
af C

∞
E,E(D̃iagA; ΩM)
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and if a− 1
2
∈ C∞(M × [0, 1]; ΩM) is given by (5.11) then

(10.17) h− a− 1
2
t−

1
2 ∈ ρtfρafC

∞
E,E(D̃iagA; ΩM).

Proof. Observe that the number operator and involution decompose over af as

(10.18) N = NY ⊗ 1 + 1⊗NF , Q = QY ⊗QF .

It follows as before that N has order 2 in terms of the rescaling at af and hence
that (10.16) follows. Moreover the leading term at af is

(10.19) t−
1
2 tr(QY Pf(Rk)) tr(QF exp(−TF∆)).

Since the fibres are even-dimensional

(10.20)

∫

Fy

tr(QF exp(−TF∆)) = χ(F )

is independent of both T and y. Thus (10.19) is independent of T and it must

therefore be just t−
1
2 a− 1

2
. This proves (10.17) and the lemma. �

Turning to the case where the base is even-dimensional we have a similar result
except that the supertrace is less singular at af :

Lemma 10.2. If the fibres of (6.1) are odd-dimensional then

(10.21) h = str

[
N exp(−

t

x2
a∆)

]
∈ ρ−1

tf C
∞
E,E(D̃iagA; ΩM)

and

(10.22) h↾af = Pf(RY ) trs(NF exp(−T∆F )).

Proof. We proceed as for Lemma 10.1. As in the odd dimensional case, we still
have exp(−x−2t a∆) ∈ Ψ−2,−2,0

A,G (M ; aΛ∗) with the rescaled normal operator

(10.23) exp(−HY ) exp(
1

8
C(RY )) exp(−A2

T ),

since the rescaled normal operator of the Laplacian is

(10.24) Nh,G,−k(x
−2t a∆) = A2

T +HY −
1

8
C(RY ).

On the other hand, and this is the difference between even and odd dimensional
cases, the number operator in this case has order 1 since

(10.25)

NY =
∑

i

ext(ei) int(ei)

=
1

4

∑

i

(cl(ei) + cr(ei)Q)(−cl(ei) + cr(ei)Q)

=
1

2

∑

i

(1 + cl(ei)cr(ei)Q)

=
1

2

∑

i

(1 + cl(ei)c̃r(ei)τ̃r).

It follows that

(10.26) str

[
NY exp(−

t

x2
a∆)

]
∈ ρ−1

tf ρ
−1
af C

∞
E,E(D̃iagA; ΩM)
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with the leading term at af equal to

(10.27) ρ−1
af tr(

∑

i

cl(ei)c̃r(ei)τ̃r exp(
1

8
C(RY )) exp(−T∆F ) ≡ 0

since the whole expression involves an odd number of factor of cl(ei). This proves
(10.21). Moreover, trs(

∑
i

cl(ei)c̃r(ei)τ̃r exp(−x−2t a∆)) contributes no constant term

at af as it follows from (10.26), leaving us with the simpler

(10.28) trs[(
n

2
Id+1⊗NF ) exp(−x−2t a∆)]

to evaluate. The leading term for this is
(10.29)

trs[(
n

2
Id+1⊗NF ) exp(

1

8
C(RY )) exp(−T∆F )]

=
n

2
Pf(RY )χ(F ) + Pf(RY ) trs(NF exp(−T∆F )) = Pf(RY ) trs(NF exp(−T∆F )),

giving (10.22). �

11. Adiabatic limit of analytic torsion

We show the existence of the expansions (0.14) separately in the two cases,
starting with the assumption that dim Y is odd.

Consider the application of (5.12) to ∆x as x ↓ 0. Of the four terms let us start
with the second. Since t ≥ δ on the integrand the supertrace is smooth down to
x = 0, locally uniformly in t. We are therefore mainly concerned with the long-
time behaviour. Let Π1 be orthogonal projection onto the null space of F∆, Π2 the
orthogonal projection onto the null space of ∆Y and in general for k ≥ 3 let Πk be
the orthogonal projection onto Ek, i.e. the null space of ∆k−1. Thus for small x

(11.1) a∆Π1 = x2∆Y +
∏

k≥2

x2k∆k

and hence

(11.2)

∞∫

δ

STr(Ne−t a∆)
dt

t

=

∞∫

δ

STr(Ne−t∆Y )
dt

t
+

∑

k≥2

∞∫

δ

STr(Ne−tx2(k−1)∆k)
dt

t
+O(x).

The terms in the sum each have an expansion

(11.3)

∞∫

x2(k−1)δ

STr(Ne−T∆k)
dT

T
=

− log(δx2(k−1))[χ2(Ek, dk)− χ2(Ek+1, dk+1)] + log τ(Ek , dk) +O(x).
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Next consider the first term in (5.12). Dividing it at some arbitrary point
(11.4)

δ∫

0

[
STr(Ne−t∆x)− a− 1

2
(M, gx)t−

1
2

] dt
t

=

λx2∫

0

[
STr(Ne−t∆x)− a− 1

2
(M, gx)t−

1
2

] dt
t

+

δ∫

λx2

[
STr(Ne−t∆x)− a− 1

2
(M, gx)t−

1
2

] dt
t

allows either the coordinates t/x2, x or t
1
2 , xt−

1
2 to be used in the two pieces. It

then follows directly from Lemma 10.1 that the first term on the right is of the
form

(11.5)

λx2∫

0

[
g(
t

1
2

x
, x)

]
dt

t
=

λ∫

0

[
g(T

1
2 , x)

] dT
T

where g is C∞ and vanishes if either the first or the second argument vanishes. The
integral is therefore C∞ in x and vanishes at x = 0. Similarly the second is term in
(11.4) can be written

(11.6)

δ∫

λx2

t
1
2 g′(t,

x

t
1
2

)
dt

t

where g′ is C∞ and vanishes where the first argument vanishes. This is again C∞

in x and converges to

(11.7)

δ∫

0

dim F∑

j=1

[
STrY (NY e

−t∆Y,j )− a− 1
2
(Y )t−

1
2

] dt
t

where a− 1
2
(Y ) is necessarily the coefficient which makes the integral converge. Here

∆Y,j is the Laplacian acting on the ρ-twisted fibre cohomology in dimension j. There
is an extra term involving NF which however vanishes by Poincaré duality.

Since the terms involving δ−
1
2 and log δ in (5.12) are just those needed to ensure

the independence of δ, the first term on the right in (11.2) combines with (11.7) and
the remaining two terms to give, in the limit as x ↓ 0 the logarithm of the first factor
in (0.11). In brief we have proved (0.10) and (0.11) in case Y is odd-dimensional.

The case of an even-dimensional base is quite similar. The analysis of the second
term in (5.12) is exactly the same, so consider the first term. The kernel certainly
behaves differently. Taking the decomposition (11.4) we get in place of (11.5) an
integral

(11.8)

λx2∫

0

g(
t

1
2

x
, x)

dt

t
=

λ∫

0

g(T
1
2 , x)

dT

T

where now g is C∞ but vanishes only when the first argument vanishes.
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