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1 Introduction

Torsion invariants were originally introduced in the 3-dimensional setting by K. Reidemeister [23] in
1935 who used them to give a homeomorphism classification of 3-dimensional lens spaces. The Rei-
demeister torsions (R-torsions for short) are defined using linear algebra and combinational topology.
The salient feature of R-torsions is that it is not a homotopy invariant but rather a simple homo-
topy invariant; hence a homeomorphism invariant as well. From the index theoretic point of view,
R-torsion is a secondary invariant with respect to the Euler characteristic. For geometric operators
such as the Gauss-Bonnet and Dolbeault operator, the index is the Euler characteristic of certain
cohomology groups. If these groups vanish, the Index Theorem has nothing to say, and secondary
geometric and topological invariant, i.e., R-torsion, appears. The R-torsions were generalized to
arbitrary dimensions by W. Franz [13] and later studied by many authors (Cf. [19]).

Analytic torsion (or Ray-Singer torsion), which is a certain combinations of determinants of
Hodge Laplacians on k-forms, is an invariant of Riemannian manifolds defined by Ray and Singer
[22] as an analytic analog of R-torsions. Based on the evidence presented by Ray and Singer, Cheeger
[4] and Müller [20] proved the Ray-Singer conjecture, i.e., the equality of analytic and Reidemeister
torsion, on closed manifolds using different techniques. Cheeger’s proof uses surgery techniques to
reduce the problem to the case of a sphere, while Müller’s proof examines the convergence of the
spectral theory of the combinatorial Laplacians to that of the smooth Laplacians as the mesh of
the triangulation goes to zero. Vishik [25] gave a cutting and pasting proof based on ideas from
topological quantum field theory, and Bismut and Zhang [1] had a proof based on Witten’s proof of
the Morse inequalities.

Further significant work includes that of Müller [21], which extended the theorem to unimodular
representations, that of Bismut and Zhang [1], which treated general representations (in which
interesting secondary invariants come in), and that of Burghelea-Friedlander-Kappeler-McDonald
[3], which dealt with infinite dimensional representations.

It is a natural question wether the Ray-Singer conjecture/Cheeger-Müller theorem extends to
singular manifolds. For manifolds with isolated conical singularity, both the R-torsion and analytic
torsion have been defined by Dar [12], using respectively, the intersection homology of Goresky-
MacPherson [14, 15] and Cheeger’s theory of heat kernels for conical singularity [5]. There are
several possible approaches to this question, among which the most natural one is to reduce the
problem to three parts. One concerns manifolds with boundary, for which the question has been
extensively studied [4, 17, 18, 9, 2]. The second part would be a finite cone. The last part deals
with the Mayer-Vietories principle.

In this paper we concentrate on the intersection R-torsion side of the story. We will first study the
intersection R-torsion of a finite cone. Our main result expresses it as a combination of determinants
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of the combinatorial Laplacian on the cross section of the cone. We then study an analytic invariant
which is obtained by replacing the combinatorial Laplacian by the Hodge Laplacian.

More specifically, consider the finite cone X = C(Y ) with the cross section Y a closed (n −
1)-dimensional manifold. Let Iτ p̄(X) denote the intersection R-torsion of X, where p̄ is a given
perversity. Then,

Theorem 1.1 Let ∆(c) denote the combinatorial Laplacian of the cross section Y . Then

ln Iτ p̄(X) =
n−pn−1∑
p=0

(−1)p+1p ln det ∆(c)
p + (n− pn)

n−1∑
p=n−pn

(−1)p+1 ln det ∆(c)
p .

This leads us to the following analytic invariant for an even dimensional manifolds. Thus, let Y
be an even dimensional closed manifold with m = dimY . Let p be an integer such that 0 ≤ p ≤ m−1
(p corresponds to pn which is determined by a given perversity). Given an orthogonal representation
ρ : π1(Y ) −→ O(N), one has an associated flat vector bundle Eρ with compatible metric on Y . Let
∆k be the Laplacian acting on differential k forms on Y with coefficients in Eρ. Then we define

lnTp(Y, ρ) =
1
2

m−p∑
k=0

(−1)k+1k ln det(∆k) + (m− p)
m∑

k=m−p+1

(−1)k+1 ln det(∆k)

 .
For p = 0 this gives the usual analytic torsion which is trivial for dimensional reasons. Other

values of p give nontrivial and more interesting analytic invariants. To investigate what kind of
invariant lnTp(Y, ρ) defines, we now look at its variation under metric change. Let g(u) be a family
of Riemannian metrics on Y and ∆k(u) the corresponding Laplacian (when there is no ambiguity
we will often write ∆k instead of ∆k(u). Let ?̇ = d?/du and α = ?−1?̇. Denote by Ek(t) = e−t∆k(u)

the heat kernel and let Ek = Eexk +Ecek +Ehk denote the Hodge decomposition of Ek into its exact,
coexact and harmonic parts. We have the following result regarding the variation of lnTp(Y, ρ).

Theorem 1.2 The variation of lnTp(Y, ρ) is given by

d

du
lnTp(Y, ρ) =

1
2

m−p−1∑
k=0

(−1)k+1Tr(PHkα) +
1
2

m−p−1∑
k=0

(−1)k+1LIMt→0Tr(e−t∆kα)

+ (−1)m−p+1 1
2

LIMt→0Tr(Eexm−p(t)α),

where PHk denote the projection onto the cohomology Hk and LIMt→0Tr(Eexm−p(t)α) denotes the
constant term in the asymptotic expansion of Tr(Eexm−p(t)α).

Finally, we examine the R-torsion of the Mayer-Vietoris sequence.

Theorem 1.3 Assume that the Witt condition H
m
2 (Y ) = 0 holds. Then the R-torsion of the Mayer-

Vietoris sequence in intersection cohomology

· · · −→ IHq
(2)(Y ) −→ IHq+1

(2) (X) −→ IHq+1
(2) (M)⊕ IHq+1

(2) (C(Y )) −→ IHq+1
(2) (Y ) −→ · · ·

is equal to the R-torsion of the truncated exact sequence of the pair (M,Y )

0 −→ H
m
2 +1(M,Y ) −→ H

m
2 +1(M) −→ H

m
2 +1(Y ) −→ H

m
2 +2(M,Y ) −→ · · ·
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2 The definition of Intersection R-torsion

We briefly recall the definition and characteristic properties of R-torsion for short. Roughly speaking,
the R-torsion measures to what extent the boundary map of a chain complex can be made to preserve
a preferred volume element. Let C be a real vector space of dimension n and let b = (b1, · · · , bn), c =
(c1, · · · , cn) be two different bases for C, Then ci = aijbj and (aij) ∈ GL(n,R). We denote det(aij)
by [c/b].

Let (C, ∂) : 0→ Cn
∂n→ Cn−1

∂n−1→ · · ·C1
∂1→ C0 → 0 be a chain complex of real vector spaces. Let

ci be a preferred basis for C and h a preferred basis for the homology group H∗(C). Denote Bi the
image of the boundary map ∂i+1 : Ci+1 → Ci and Zi its kernel. We choose a basis bi for Bi, which
lifts to linearly independent set b̃i ∈ Ci+1, i.e. ∂b̃i = bi. Using the inclusions 0 ⊂ Bi ⊂ Zi ⊂ Ci
where Zi/Bi ≡ Hi, Ci/Zi ≡ Bi−1 we see that bi, hi, b̃i−1 combine to give a new basis for Ci. The
R-torsion of the chain complex is the real number τ(c, h) defined by

ln τ(c, h) =
n∑
i=0

(−1)i ln |[bihib̃i−1/ci]|. (2.1)

The R-torsion τ(c, h) does not depend on the choice of bi, b̃i−1, but it depends on the preferred
bases ci, hi. In fact, it depends only on the volume elements determined by these preferred bases.

When the preferred basis of the homology is chosen according to the preferred basis of the chain
complex, there is an elegant representation of the R-torsion in terms of the combinatorial Laplacian.
The choice of a preferred basis for each Ci represents ∂i : Ci → Ci−1 as a real matrix. Let
∂∗i : Ci−1 → Ci be the transpose matrix. The combinatorial Laplacian is ∆(c)

i = ∂i+1∂
∗
i+1 + ∂∗i ∂i :

Ci → Ci. By the finite dimensional Hodge theory, ker ∆(c)
i
∼= Hi(C, ∂). If we choose the preferred

basis h on Hi(C, ∂) to correspond to an orthonormal basis of ker ∆(c)
i , then,

ln τ(c, h) =
1
2

n∑
i=0

(−1)i+1i log det ∆(c)
i . (2.2)

Now if K be a finite CW complex, consider K̃ the universal covering complex of K. The
fundamental group π of K acts on K̃ as the group of covering transformations. This action makes
C(K̃), the cellular chain complex associated with K̃, a free Rπ-module generated by the cells ei
of the complex K. We pick a preferred basis for Ci(K̃) coming from the i-cells of K, denoted
(e1
i , e

2
i , · · · , e

ki
i ).

Let ε : π −→ O(n) be an orthogonal representation of the fundamental group. Then one can
construct a chain complex of real vector spaces by setting Ci(K, ε) = Ci(K̃) ⊗Rπ R

n. We have a
preferred choice of basis for each vector space Ci(K, ε) given by eji ⊗ xk where xk is an orthonormal
basis for Rn. With a choice of preferred basis h in homology, the torsion of the complex of real
vector spaces Ci(K, ε) is a real number and will be denoted τ(K, ε, h).

The R-torsion is a combinatorial invariant i.e. invariant under subdivision ofK. It is a topological
invariant when the chain complex is acyclic.

The R-torsion of a closed manifold M is the R-torsion of the cell complex determined by a
cell structure of M . In this case, the preferred base for the homology is obtained via Hodge theory
through an orthonormal basis of the harmonic forms. With this choice of preferred basis in homology
it was shown in celebrated work of Cheeger [4] and Müller [20] that τ(M, ε) equals the so called
analytic torsion (Ray-Singer conjecture).

The intersection R-torsion is defined for pseudomanifolds by Dar [12] using the intersection
homology theory of Goresky-MacPherson. We recall the basic facts of Intersection Homology Theory.

A pseudomanifold X of dimension n is a compact PL space for which there exists a closed
subspace Z with dimension Z ≤ n− 2 such that X −Z is an n-dimensional oriented manifold which
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is dense in X. A stratification of a pseudomanifold is a filtration by closed subspaces

X = Xn = Xn−1 = Z ⊃ Xn−2 ⊃ · · · ⊃ X1 ⊃ X0

such that for each point p ∈ Xi −Xi−1 there is a filtered space V = Vn ⊃ Vn−1 ⊃ · · ·Vi =a point
and a mapping V ×Bi → X which takes Vj ×Bi (PL) homeomorphically to a neighborhood of p in
Xj . Xi−Xi−1 is an i-dimensional manifold called the i-dimensional stratum. Every pseudomanifold
admits a stratification.

The space of geometric chains C∗(X) is the collection of all simplicial chains with respect to
some triangulation where one identifies the two chains if their images coincide under some common
subdivision. The intersection homology theory is obtained by restricting to only allowable chains,
described by the so called perversity.

A perversity is a sequence of integers p̄ = (p2, p3, · · · , pn) such that p2 = 0 and pk+l = pk or pk+1.
If i is an integer and p̄ is a perversity, a subspace Y ⊂ X is (p̄, i) allowable if dim(Y ) ≤ i and
dim(Y ∩ Xn−k) ≤ i − k + pk for k ≥ 2. In other words, pk describes how much X is allowed to
deviate from intersecting the stratum Xn−k transversally. The intersection chains IC p̄i (X) is the
subspace of Ci(X) consisting of those chains ξ such that |ξ| is (p̄, i) allowable and |∂ξ| is (p̄, i − 1)
allowable. The i-th Intersection Homology Group of perversity p̄, IH p̄

i (X) is the i-th homology
group of the chain complex IC p̄∗ (X).

The intersection chain complex as we defined is not finitely generated. In order to define the
Intersection R-torsion we need to work with finitely generated chain groups. To do this one uses the
basic sets Rp̄i .

Let X be a pseudomanifold with a fixed stratification. Let T be a triangulation of X subordinate
to the stratification i.e. such that each Xk is a subcomplex of T . Define Rp̄i be the subcomplex of
T ′, the first barycentric subdivision of T , consisting of all simplices which are (p̄, i) allowable.

Let Rp̄(X) be the chain complex whose i-th chain group consists of simplicial chains ei such that
|ei| ∈ Rp̄i and |∂ei| ∈ Rp̄i−1. It is a free abelian group generated by finitely many chains {eji}. The
homology group Hi(Rp̄(X)) is canonically isomorphic to IH p̄

i (X).
Let X̃ be the universal covering complex of X. Then the chain complex Rp̄(X̃) is a free Rπ-

module generated by the lifts of the chains {eji}. If ε : π → O(n) be an orthogonal representation
one obtain a chain complex of real vector spaces Rp̄(X, ε) = Rp̄(X̃) ⊗Rπ Rn with a preferred basis
given by {eji ⊗ xk} where xk is an orthonormal basis for Rn.

The intersection R-torsion of X is then defined to be the torsion of the chain complex Rp̄(X, ε),
provided a preferred basis in homology is chosen. Dar [12] proved that the intersection R-torsion is
a combinatorial invariant and independent of the stratification.

3 Intersection R-torsion of finite cone

In this section we restrict ourself to the finite cone. Let X = C(Y ) be a finite cone with dimX = n,
where the cross section Y is a closed manifold. We will also write X = w ∗ Y with w the cone tip.

If σ = [a0, · · · , ap] is an oriented simplex of Y , then [w, σ] = [w, a0, · · · , ap] = w ∗σ is an oriented
simplex of w ∗ Y . Similarly, if η =

∑
niσi is a p-chain of Y , then [w, η] =

∑
ni[w, σi], and

∂[w, η] =

{
η − ω dim η = 0
η − [ω, ∂η] dim η > 0

We have the following results:

Lemma 3.1 If Zp is a p-cycle of X for p ≥ 1, then Zp = ∂[w,Cp] for some p-chain Cp of Y .
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Proof: Write Zp = Cp + [w,Dp−1], where Cp and Dp−1 are both carried by Y . Then by the above
observation and using that Zp is closed, we have Zp = ∂[w,Cp].

Of course, this is compatible with the well known fact that

Hp(X) =

{
0 p ≥ 1
Z p = 0

Now let p̄ be a perversity. Since X has only strata of dimension n and 0, the intersection chains
and homology will only depend on pn. In fact, we have

Lemma 3.2 The intersection chains of X are given by

IC p̄i (X) =

 Ci(Y ), i < n− pn,
{ ξ ∈ Ci(X) | ∂ξ ∈ Ci−1(Y ) }, i = n− pn,
Ci(X), i > n− pn.

From now on we will suppress the superscript p̄ here.

Theorem 3.3 Let ∆(c) denote the combinatorial Laplacian of the cross section Y . Then

ln Iτ p̄(X) =
n−pn−1∑
p=0

(−1)p+1p ln det ∆(c)
p + (n− pn)

n−1∑
p=n−pn

(−1)p+1 ln det ∆(c)
p .

Proof: The intersection R-torsion is defined in terms of the chain complex

· · · −→ ICp+1(X) −→ ICp(X) −→ ICp−1(X) −→ · · · . (3.3)

We examine the terms of this complex according to their degrees.

Case 0. p = n

In this case, ICn(X) = Cn(X), so we only need to consider the normal chains of X.

Let cn−1(Y ) = {σn−1
1 (Y ), · · · , σn−1

in−1
(Y )} be the preferred basis of (n− 1)-chains of Y . Then

{[w, cn−1(Y )]} is the preferred basis of Cn(X). Choose a basis bp(Y ) = {bp1(Y ), · · · , bpkp
(Y )} for

Bp(Y ), and their lifts b̃p(Y ) = {b̃p1(Y ), · · · , b̃pkp
(Y )}, and hp(Y ) = {hp1(Y ), · · · , hpjp(Y )} the basis for

Hp(Y ). Then by the fact that Bn(X) = Zn(X) = 0 and Cn(X) = ∂[w,Cn−1(X)], we can choose
basis for b̃n−1(X) as follows:

b̃n−1(X) = {[w, bn−1(Y )], [w, hn−1(Y )], [w, b̃n−2(Y )]}

So the transition matrix Dn is:

Dn =
[ [w, bn−1(Y )], [w, hn−1(Y )], [w, b̃n−2(Y )]

[ω,Cn−1(Y )]

]
which is Dn = An−1 where An−1 denotes the corresponding transition matrix for Y .

Case 1. n− pn < p < n

In this case, ICp(X) = Cp(X), so we only need to consider the normal chains of X.
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Let cp(Y ) = {σp1(Y ), · · · , σpip(Y )} be the preferred basis of p-chains of Y . Then {cp(Y ), [w, cp(Y )]}
is the preferred basis of Cp(X). Choose a basis bp(Y ) = {bp1(Y ), · · · , bpkp

(Y )} for Bp(Y ), and their

lifts b̃p(Y ) = {b̃p1(Y ), · · · , b̃pkp
(Y )}, and hp(Y ) = {hp1(Y ), · · · , hpjp(Y )} the basis for Hp(Y ). Then by

the fact that Bp(X) = Zp(X) = ∂[w,Cp(X)], we can choose a basis for Bp(X) as follows:

bp(X) = {∂[w, bp(Y )], ∂[w, b̃p−1(Y )], ∂[w, hp(Y )]}
= {bp(Y ), hp(Y ), b̃p−1(Y )− [w, bp−1(Y )]}

and a basis for b̃p−1(X):

b̃p−1(X) = {[w, bp−1(Y )], [w, hp−1(Y )], [w, b̃p−2(Y )]}

So the transition matrix Dp is:

Dp =
[bp(Y ), hp(Y ), b̃p−1(Y ), [ω, bp−1(Y )], [ω, hp−1(Y )], [ω, b̃p−2(Y )]

Cp(Y ), [ω,Cp−1(Y )]

]
which is

Dp =
[
Ap 0
0 Ap−1

]
(3.4)

Case 2. p = n− pn.

In this case, we still have IHp(X) = Hp(X) = 0. By Lemma ??, ICp(X) = { η ∈ Ci(X) | ∂η ∈
Ci−1(Y ) }.

For η ∈ ICp(X), write η = Cp(Y )+[w,Dp−1(Y )]. Then ∂η = ∂Cp(Y )+Dp−1(Y )−[w, ∂Dp−1(Y )].
Thus we must have ∂Dp−1(Y ) = 0 for ∂η ∈ Ci−1(Y ), which implies that Dp−1(Y ) ∈ Bp−1(Y ) ⊕
Hp−1(Y ).

Thus,

∂(ICm+1
2 +1)(X) = ∂(Cp(Y ))⊕ ∂[w,Bp−1(Y )⊕Hp−1(Y )]

= ∂(Cp(Y ))⊕Bp−1(Y )⊕Hp−1(Y )
= Bp−1(Y )⊕Hp−1(Y )

Hence we can take {[w, bp−1(Y )], [w, hp−1(Y )]} as basis of B̃p−1(X).

The fact that IHp(X) = Hp(X) = 0 implies

ICp(X) = Bp(X)⊕ B̃p−1(X).

Then the transition matrix Dp is

Dp =
[bp(Y ), hp(Y ), b̃p−1(Y ), [ω, bp−1(Y )], [ω, hp−1(Y )]

Cp(Y ), [ω, bp−1(Y )], [ω, hp−1(Y )]

]
which is

Dp =
[
Ap 0
0 I

]
(3.5)
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Case 3: p = n− pn − 1

In this case

ICp(X) = Cp(Y )

IHp(X) = Im
(
Hp(Y )→ Hp(X)

)
= 0

Consider the following sequence:

∂· · · −→ ICp+1(X) ∂−→ ICp(X) ∂−→ ICp−1(X) ∂−→ · · · .

Then as before,
∂(ICp+1(X)) = Bp(Y )⊕Hp(Y ),

and
∂[ICp(X)] = ∂[Cp(Y )] = Bp−1.

Thus the transition matrix is:

Dp =
[bp(Y ), Hp(Y ), b̃p−1(Y )

Cp(Y )

]
= Ap (3.6)

Case 4: p < n− pn

In this case, it is easy to see that Dp = Ap

Combining the above results, we have:

τ(IC) =
n∏
p=0

(Dp)(−1)p

=
n−pn∏
p=0

(Ap)(−1)p

·
n−1∏

p=n−pn+1

(Ap ·Ap−1)(−1)p

· (An−1)(−1)n

=
n−pn−1∏
p=0

(Ap)(−1)p

(3.7)

Thus,

ln Iτ p̄(X) = ln τ(IC) =
n−pn−1∑
p=0

(−1)p lnAp

=
n−pn−1∑
p=0

(−1)p+1p ln det ∆(c)
p + (n− pn)

n−1∑
p=n−pn

(−1)p+1 ln det ∆(c)
p . (3.8)

Here we have used the equation lnAp = − 1
2

∑n−1
k=p(−1)k−p ln det ∆(c)

k [22].
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4 An analytic analogue

Following Ray-Singer’s idea of defining analytic torsion as a formal analog of the R-torsion on closed
manifolds, we now study the formal analytic analog of the intersection R-torsion (1.2), which is
intrinsic to the even dimensional cross section. That is, by replacing the combinational Laplacian
by the Hodge Laplacian, we define an analytic invariant for an even dimensional closed manifold.

More precisely, let Y be an even dimensional closed manifold with m = dimY . Let p be an
integer such that 0 ≤ p ≤ m − 1 (p corresponds to pn which is determined by a given perversity).
Given an orthogonal representation ρ : π1(Y ) −→ O(N), one has an associated flat vector bundle
Eρ with compatible metric on Y . Let ∆k be the Laplacian acting on differential k forms on Y with
coefficients in Eρ. Then we define

lnTp(Y, ρ) =
1
2

m−p∑
k=0

(−1)k+1k ln det(∆k) + (m− p)
m∑

k=m−p+1

(−1)k+1 ln det(∆k)

 . (4.9)

For p = 0, which corresponds to the minimum perversity,

lnT0(Y, ρ) =
1
2

m∑
k=0

(−1)k+1k ln det(∆k) = 0

is the usual analytic torsion which is trivial for even dimensional manifolds. On the other hand, for
p = m− 1 corresponding to the maximum perversity,

lnTm−1(Y, ρ) =
1
2

m∑
k=1

(−1)k+1 ln det(∆k).

The more interesting cases are given by p = m
2 − 1 and p = m

2 corresponding to the lower and upper
middle perversity, respectively. In these cases, we have

lnTm
2 −1(Y, ρ) =

1
2

m
2 +1∑
k=0

(−1)k+1k ln det(∆k) + (
m

2
+ 1)

m∑
k= m

2 +2

(−1)k+1 ln det(∆k)


=

1
2

 m
2∑

k=0

(−1)k+1k ln det(∆k) + (
m

2
+ 1)

m∑
k= m

2 +1

(−1)k+1 ln det(∆k)


and

lnTm
2

(Y, ρ) =
1
2

 m
2∑

k=0

(−1)k+1k ln det(∆k) +
m

2

m∑
k= m

2 +1

(−1)k+1 ln det(∆k)

 .
When Y is oriented, we can actually use Poincare duality to write it in terms of the Laplacians on
half of the degrees. For example, for p = m

2 − 1 corresponding to the lower middle perversity, we
have

lnTm
2 −1(Y, ρ) =

1
2

m
2 −1∑
k=0

(−1)k+1(k +
m

2
+ 1) ln det(∆k) + (−1)

m
2 +1m

2
ln det(∆ m

2
)

 . (4.10)

To investigate what kind of invariant lnTp(Y, ρ) defines, we now look at its variation under
metric change. Let g(u) be a family of Riemannian metrics on Y and ∆k(u) the corresponding
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Laplacian (when there is no ambiguity we will often write ∆k instead of ∆k(u). Let ?̇ = d ? /du
and α = ?−1?̇. Denote by Ek(t) = e−t∆k(u) the heat kernel and let Ek = Eexk + Ecek + Ehk denote
the Hodge decomposition of Ek into its exact, coexact and harmonic parts. We have the following
result regarding the variation of lnTp(Y, ρ).

Theorem 4.1 The variation of lnTp(Y, ρ) is given by

d

du
lnTp(Y, ρ) =

1
2

m−p−1∑
k=0

(−1)k+1Tr(PHkα) +
1
2

m−p−1∑
k=0

(−1)k+1LIMt→0Tr(e−t∆kα)

+ (−1)m−p+1 1
2

LIMt→0Tr(Eexm−p(t)α),

where PHk denote the projection onto the cohomology Hk and LIMt→0Tr(Eexm−p(t)α) denotes the
constant term in the asymptotic expansion of Tr(Eexm−p(t)α).

Before we give the proof of our theorem, we need the following result from [4] (compare also with
[22]) concerning the variation of heat kernel.

Theorem 4.2 (Cheeger) The variation of the trace of the heat kernel Ek is given by

d

du
tr(Ek(t)) = −t[tr

(
∆k+1E

ex
k+1α

)
− tr (∆kE

ce
k α) + tr (∆kE

ex
k α)− tr

(
∆k−1E

ce
k−1α

)
]

= t
d

dt
[tr
(
Eexk+1α

)
− tr (Ecek α) + tr (Eexk α)− tr

(
Ecek−1α

)
].

The following lemma is an immediate consequence of Cheeger’s result.

Lemma 4.3 For any integer q, 0 ≤ q ≤ m, we have

∂

∂u

q∑
k=0

(−1)kk tr(Ek(t)) = t
∂

∂t
[
q∑

k=0

(−1)ktr(Ek(t)α)+(−1)qqtr(Eexq+1(t)α)+(−1)q+1(q+1)tr(Eceq (t)α)].

(4.11)
Similarly, for any integer r, 0 ≤ r ≤ m,

∂

∂u

m∑
k=r

(−1)ktr(Ek(t)) = t
∂

∂t
[(−1)rtr(Eexr (t)α) + (−1)r−1tr(Ecer−1(t)α)]. (4.12)

With these results at our disposal, we are now ready to prove the variational formula for our
analytic invariant.

Proof of Theorem 4.1: Define for < s sufficiently large

f(u, s) =
1
2
[m−p∑
k=0

(−1)kk
∫ ∞

0

ts−1Tr(e−t[∆k+P
Hk ]) dt+(m−p)

m∑
k=m−p+1

(−1)k
∫ ∞

0

ts−1Tr(e−t[∆k+P
Hk ]) dt

]
.

Then f(u, s) has a meromorphic extension to the whole complex s-plane with a simple pole at s = 0.
Indeed, since

Tr(e−t[∆k+P
Hk ]) = Tr(e−t∆k) + e−t dimHk,

we have

Ress=0f(u, s) =
1
2
[m−p∑
k=0

(−1)kkAm/2,k + (m− p)
m∑

k=m−p+1

(−1)kAm/2,k
]
,

9



where Am/2,k denotes the constant term in the asymptotic expansion of Tr(e−t∆k). Now let

f̃(u, s) = f(u, s)− Γ(s)Ress=0f(u, s).

Then f̃ is holomorphic at s = 0 and we have

f̃(u, 0) = lnTp(Y, ρ).

Now, for < s sufficiently large

∂

∂u

∫ ∞
0

ts−1Tr(e−t[∆k+P
Hk ]) dt =

∫ ∞
0

ts−1 ∂

∂u
Tr(e−t[∆k+P

Hk ]) dt

=
∫ ∞

0

ts−1 ∂

∂u
Tr(e−t∆k) dt

Hence, using (4.11), (4.12), we derive

∂

∂u
f(u, s) =

1
2
[m−p∑
k=0

(−1)k
∫ ∞

0

ts
∂

∂t
Tr(Ek(t)α) dt+ (−1)m−p+1

∫ ∞
0

ts
∂

∂t
Tr(Ecem−p(t)α) dt

]
= s

1
2
[m−p∑
k=0

(−1)k+1

∫ ∞
0

ts−1Tr(Ek(t)α) dt+ (−1)m−p
∫ ∞

0

ts−1Tr(Ecem−p(t)α) dt
]

= s
1
2
[m−p−1∑

k=0

(−1)k+1

∫ ∞
0

ts−1Tr(Ek(t)α) dt+ (−1)m−p+1

∫ ∞
0

ts−1Tr(Eexm−p(t)α) dt
]

It follows then that

∂

∂u
lnTp(Y, ρ) =

1
2

m−p∑
k=0

(−1)kTr(PHkα) +
1
2

m−p−1∑
k=0

(−1)k+1LIMt→0Tr(e−t∆kα)

+ (−1)m−p+1 1
2

LIMt→0Tr(Eexm−p(t)α).

5 R-torsion of the Mayer-Vietoris sequences

Consider an (m + 1)-dimensional Riemannian manifold X with isolated conical singularity. Thus,
X = C(Y ) ∪M , where M is a compact manifold with boundary and ∂M = Y . It is understood in
this section that the collar neighborhoods of the boundaries of M and C(Y ) are extended so that
they form an open cover of X. We assume that m+ 1 is odd.

As we mentioned, the general Mayer-Vietoris Principle reduces the torsion of X to that of C(Y ),
M as well as the torsion of the Mayer-Vietoris sequence in the intersection cohomology. We now
examine the torsion of the Mayer-Vietoris sequence.

We use the L2-cohomology interpretation of the intersection cohomology in this setting [5]. The
Mayer-Vietoris sequence goes

· · · −→ Hq
(2)(Y ) d∗−→ Hq+1

(2) (X) −→ Hq+1
(2) (M)⊕Hq+1

(2) (C(Y )) −→ Hq+1
(2) (Y ) −→ · · · . (5.13)

First, we have the following

10



Lemma 5.1 For the Mayer-Vietoris long exact sequence in cohomology (5.13),
a). its part for q ≤ m/2 splits into the following short exact sequences:

0 −→ Hq
(2)(X) −→ Hq

(2)(M)⊕Hq
(2)(C(Y )) −→ Hq

(2)(Y ) −→ 0 (5.14)

b). further,

0 −→ Hq
(2)(X) −→ Hq

(2)(M)⊕Hq
(2)(C(Y )) −→ H(2)(Y ) −→ 0 (5.15)

is a split short exact sequence.
c). the part of the Mayer-Vietoris sequence for q > m/2 is naturally isomorphic to the truncated
exact sequence for the pair (M,Y ):

Hm/2(Y ) −→ Hm/2+1(M,Y ) −→ Hm/2+1(M) −→ Hm/2+1(Y ) −→ · · · −→ Hm(Y ).
(5.16)

Proof: For a). we only need to show that, when q ≤ m/2, Im(d∗) = 0. Let ρ1, ρ2 be a partition
of unity subordinate to the open cover of X by M,C(Y ). That is, ρ1, ρ2 ∈ C∞(X), 0 ≤ ρ1, ρ2 ≤ 1,
ρ1 + ρ2 = 1 and supp ρ1 ⊂M, supp ρ2 ⊂ C(Y ). Then, for a closed q-form on Y ,

d∗[w] =

{
[−d(ρ2w)] on M,

[d(ρ1w)] on C(Y ).

Here w is extended trivially along radial directions hence defines a q-form in a collared neighborhood
of Y in X. In fact, d∗[w] is supported in this collared neighborhood and, interpreted properly, either
[−d(ρ2w)] or [d(ρ1w)] defines d∗[w]. Now, d∗[w] = [−d(ρ2w)]. By the result of [5], for q ≤ m/2, w
defines an L2 form on C(Y ). This shows that d∗[w] is exact in L2 cohomology. Hence d∗[w] = 0.

The statement b). is clear since these are short exact sequences of vector spaces. They can also
be seen directly as follows. We show that the composition p i∗ in the follwoing diagram

Hq
(2)(X) i∗−→ Hq(M)⊕Hq

(2)(C(Y )) −→ Hq(Y )

↓ p
Hq(M)

is an isomorphism. Here p is the projection onto the first factor. Indeed, for any w ∈ Hq
(2)(X),

p i∗w = p (i∗Mw, i
∗
C(Y )w) = i∗Mw. If i∗Mw is an exact form, i∗Mw = dη2 then i∗Y i

∗
Mw = i∗Y (dη2) =

d(i∗Y η2) is exact on Y . By [5], for q ≤ m/2, i∗Y η2 defines an L2 form on C(Y ). Since the cohomology
class of a closed form on C(Y ) is uniquely determined by its restriction on Y [5], we see that
i∗C(Y )(w) is exact. It follows then that i∗(w) = (i∗Mw, i

∗
C∗0,1(N)w) is exact. Namely [i∗w] = 0 on

H∗2 (M)⊕H∗2 (C∗0,1(N)). So [w] = 0 on Hq
(2)(X) by the injectivity of the short exact sequence. This

shows that p i∗ is injective.
For the surjectivity, take η ∈ Hq

(2)(M). Let ξ = i∗Y (η) ∈ Hq
(2)(Y ). Then ξ extends to an L2 form

on C(Y ) which is cohomologous with the restriction of η in a collared neighborhood of Y . It follows
that (η, ξ) is the image of some element of Hq

(2)(X), say w. then p i∗(w) = η

Part c). follows from the natural isomorphisms Hq
(2)(X) ∼= Hq(M,Y ), H(2)(C(Y )) ∼= 0 for

q > m/2 [5].

Lemma 5.2 For a split short exact sequence

0 −→ V1
i−→ V2

p−→ V3 −→ 0
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with preferred bases c1, c2, c3, its R-torsion is determined by i(c1), j(c3) and c2, where j is an homo-
morphism from V3 to V2 such that pj = id. In fact, the R-torsion is given by

|[i(c1)j(c3)/c2]|

Proof: We choose b1 = 0, b2 = i(c1), and b3 = c3 and set b̃1 = c1, b̃2 = j(c3) and b̃3 = 0. The
lemma follows.

A split short exact sequence can be written as

0 −→ V1
i−→ V1 ⊕ V3

p−→ V3 −→ 0,

where i is not necessarily the natural inclusion, nor p the natural projection.

Lemma 5.3 For a split short exact sequence

0 −→ V1
i−→ V1 ⊕ V3

p−→ V3 −→ 0

with preferred bases c1, c1 ⊕ c3, c3, consider the natural projection p1 : V1 ⊕ V3 −→ V1 onto the first
factor and the natural inclusion i2 : V3 −→ V1 ⊕ V3 of the second factor. If p1i : V1 −→ V1 is an
isometry with respect to the inner product induced by the preferred basis c1 and pi2 = id : V3 −→ V3,
then the R-torsion of the short exact sequence is trivial.

Proof: Using the lemma above we just need to compare the basis i(c1) ⊕ c3 with c1 ⊕ c3. Since
pi1 is an isometry, we might as well replace c1 ⊕ c3 with pi2(c1) ⊕ c3. Then clearly, the transition
matrix from i(c1) ⊕ c3 to pi2(c1) ⊕ c3 is an upper triangular matrix with all diagonal entries one.
The lemma follows.

Combining the above results, we obtain the main result of this section on the R-torsion of the
Mayer-Vietoris sequence.

Theorem 5.4 Assume that the Witt condition H
m
2 (Y ) = 0 holds. Then the R-torsion of the Mayer-

Vietoris sequence in intersection cohomology

· · · −→ IHq
(2)(Y ) −→ IHq+1

(2) (X) −→ IHq+1
(2) (M)⊕ IHq+1

(2) (C(Y )) −→ IHq+1
(2) (Y ) −→ · · ·

is equal to the R-torsion of the truncated exact sequence of the pair (M,Y )

0 −→ H
m
2 +1(M,Y ) −→ H

m
2 +1(M) −→ H

m
2 +1(Y ) −→ H

m
2 +2(M,Y ) −→ · · ·
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