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For a compact manifold with boundary, M , there are well known local boundary
conditions that make the de Rham operator A = d+δ elliptic, namely the absolute

and relative boundary conditions. We study the eta invariants of such elliptic

boundary value problems under the metric deformation

gε =
dx2

x2 + ε2
+ g,

where x ∈ C∞(M) is, near the boundary, the geodesic distance to the boundary,

and g is a Riemannian metric on M which is of product type near the boundary.

Under certain acyclicity condition we show that when M is odd dimensional

η(Aa) = η(Ar) = ηb(A0),

where the subscript a (r) indicates the absolute (relative) boundary condition, and

ηb(A0) is the b-eta invariant of the limiting operator A0. If M is even dimensional
then

η(Aa) = −η(Ar) =
1

2
η(A∂M ).

Most of the analysis extends to analytic torsion, yielding

log Tε(M, ρ) = log bT (M̄, ρ) + r1(ε) + r2(ε) log ε

when dim M is odd, and

log Tε(M, ρ) = ±
1

2
log T (∂M, ρ) + r1(ε) + r2(ε) log ε

when dim M is even. Here the sign ± depends on the choice of the boundary

condition and r1, r2 vanishes at ε = 0.
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1. Introduction

The eta invariant for a closed manifold is introduced by Atiyah-Patodi-
Singer [1] as the boundary correction term in the index formula for manifold
with boundary. It has found many significant applications in diverse fields
of mathematics and physics. There are now various works generalizing it to
manifolds with boundary. Using his cone method, Cheeger [5] introduced
an eta invariant in the context of manifolds with conical singularity. In [9]
Gilkey and Smith considered eta invariants for local boundary conditions.
On the other hand, Douglas and Wojciechowski defined and studied eta
invariants for generalized APS boundary conditions [8] (see also Bunke [4],
Lesch-Wojciechowski [12], Müller [19]). Also, in the context of manifolds
with asymptotically cylindrical end Melrose introduced a regularized eta
invariant, the b-eta invariant [18]. Meanwhile Müller [19] introduced an
L2-eta invariant for manifolds with cylindrical end, which turns out to
be the same as the b-eta invariant. We also note that in his work on
Casson invariant [23], Taubes used the local boundary condition, while in
the subsequent work by others it is the APS boundary condition that is
used, see, for example, Yoshida [25]. Thus it is a natural and interesting
question to clarify the relationships among the various generalizations.

In the very interesting work [19] Müller considered the relationship be-
tween the eta invariants for generalized APS boundary conditions and the
L2-eta (or the b-eta) invariants. Using scattering theory he showed that
they are essentially the same. Earlier Douglas and Wojciechowski [8] have
considered the situation where the boundary operator is invertible.

In this work we consider the relationship between the eta invariants
for local boundary conditions and the b-eta (or L2-eta) invariants for the
(twisted) de Rham operator A = d + δ. Under certain acyclicity condition
we show that they are the same. Thus, at least for de Rham operators,
the three generalizations of eta invariant to manifolds with boundary, us-
ing local boundary condition, generalized APS boundary condition, or L2

condition, all coincide.

Theorem 1.1. Let M be a compact manifold with boundary and ξ a flat
unitary bundle over M such that H∗(∂M, ξ) = 0 and Im(H∗(M,∂M ; ξ) →
H∗(M ; ξ)) = 0. Then if dim M is odd we have

η(Aa) = η(Ar) = ηb(A0),

where subscript ‘a’ (‘r’) denotes the absolute (relative) boundary condition,
and A0 is the de Rham operator on the complete manifold obtained from



January 25, 2006 13:32 Proceedings Trim Size: 9in x 6in Dai

Eta invariants for manifolds with boundary 155

M by attaching an infinite half cylinder. On the other hand, if dim M is
even, then

η(Aa) = −η(Ar) =
1
2
η(A∂M ).

The theorem is proved by considering the behavior of the eta invariant
on the manifold with boundary under a metric degeneration in which the
boundary is being ‘pushed’ to infinity. This is motivated by the work [14]
of R. Mazzeo and R. Melrose who studied the behavior of eta invariant on
a closed manifold under the metric deformation

gε =
dx2

x2 + ε2
+ h, (1.1)

where x is a defining function for an embedded hypersurface. The limit-
ing metric g0 for (1.1) is an exact b-metric on the compact manifold with
boundary obtained by cutting along the hypersurface. (An exact b-metric
gives the manifold with boundary asymptotically cylindrical ends.) Under
the assumption that the induced Dirac operator on (a double cover of) the
hypersurface is invertible, Mazzeo and Melrose showed that

η(Dε) = ηb(D0) + r1(ε) + r2(ε) log ε + η̃(ε), (1.2)

where Dε is the Dirac operator associated to the metric gε, and ηb(D0) is
the b-eta invariant of the (b-)Dirac operator D0 associated to the metric
g0. Also, r1, r2 are smooth functions vanishing at ε = 0. Finally, η̃(ε) is
the signature of the small eigenvalues of Dε. This analysis is extended to
analytic torsion by Hassell in [10].

We consider the corresponding case for manifold with boundary and let
the boundary play the role of the hypersurface in [14]. We study the eta
invariants of elliptic boundary value problems under the metric deformation
(1.1). In this case a formula similar to (1.2) holds. We also show that the
eta invariant does not change under this deformation.

Another source of inspiration comes from a paper of I. M. Singer, [22],
and the subsequent work of Klimek-Wojciechowski [11]. Singer considers
the difference of two eta invariants of Dirac operators with local boundary
conditions and shows that the limit of the difference under stretching is
the log determinant. The result is viewed as an analog of the identity that
the difference of the indexes of the two elliptic boundary value problems for
Dirac operators is given by the index of the Dirac operator on the boundary.
This is given full mathematical treatment and generalized in [11].

The consideration in [22] is motivated by E. Witten’s ‘adiabatic limit’.
For this and related topics we refer to Witten [24], Bismut-Freed [3],
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Bismut-Cheeger [2], Cheeger [5], Dai [6], Mazzeo-Melrose [13] and Singer
[22].

The idea of studying the behavior of eta invariant under singular de-
generation probably goes back to [5] where the particular case of conical
degeneration is briefly discussed. Conical degeneration has been discussed
to greater extent by R. Seeley and Singer, see Seeley [20] and Seeley-Singer
[21].

Finally, let us mention that the same analysis applies to analytic torsions
as well, see §3 for the statement of the result (Theorem 3.3).

2. Elliptic boundary value problem and eta invariant

Let M be a compact manifold with boundary and V a vector bundle over
M . Let

P : C∞(M,V ) → C∞(M,V )

be a differential operator of order d and B a boundary condition. By PB we
denote the realization of the boundary value problem (P,B); namely, PB is
the operator P acting on the space of smooth sections verifying B(φ|∂M ) =
0. Let

C = {z : |Rez| ≤ |Imz|}

be the closed 45◦ cone about the imaginery axis in the complex plane.
According to [9], when (P,B) is elliptic with respect to C, PB has discrete
spectrum with finite multiplicity, all except finite of which lie inside C.
Let {λi} denote the spectrum of PB where each spectral value is repeated
according to its multiplicity. Gilkey-Smith defined

η(s, P,B) =
∑

Reλi>0

λ−s
i −

∑
Reλi<0

(−λi)−s

for Res � 0 and showed that η has a meromorphic extension to the whole
complex plane with isolated simple poles. Unlike the case when M is bound-
aryless, s = 0 may be a simple pole here. However, the residue being a local
homotopy invariant, one defines the eta invariant

η(P,B) = finite part of η(s, P,B) at 0 = (sη(s, P,B))′|s=0.

When PB has no eigenvalues lying inside C, η(s, P,B) can be expressed
in terms of heat kernel as is the case when ∂M = ∅:

η(s, P,B) =
1

Γ( s+1
2 )

∫ ∞

0

t
s−1
2 Tr(PBe−tP 2

B )dt. (2.3)
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(When PB does have eigenvalues lying inside C, one just have to treat them
separately.) Here PBe−tP 2

B is defined via functional calculus

PBe−tP 2
B =

−1
2πi

∫
Γ

(PB − λ)−1λe−tλ2
dλ

with Γ an appropriate contour.
Thus defined, this invariant behaves much like the usual eta for manifold

without boundary. For example, one has the following variation formula
[9]:

Theorem 2.1. Let (Pu, B) be a smooth one-parameter family which is
elliptic with respect to C. Then

d

du
{Ress=0η(s, Pu, B)} = 0.

Further, if no eigenvalues lie inside C, then the variation of eta itself is
given by a local formula

d

du
η(Pu, B) =

∫
M

a(y, P ′
u, Pu)dvol(y) +

∫
∂M

a(x, P ′
u, Pu, B)dvol(x),

where the a(y, P ′
u, Pu) and a(x, P ′

u, Pu, B) are the coefficients of t−1/2 in
the asymptotic expansion for tr(P ′

ue−tP 2
u,B ).

We now specialize to the de Rham operator. Let M be an odd dimen-
sional compact manifold with boundary and g be a Riemannian metric on
M which is of product type near the boundary

g = dx2 + g∂M ,

where x is the geodesic distance to the boundary. Let ξ → M be the flat
bundle associated to a representation ρ : π1(M) → O(k). By de Rham
operator we mean

A = d + δ : C∞(M ; Λ(M)⊗ ξ) → C∞(M ; Λ(M)⊗ ξ). (2.4)

At the boundary we have the splitting

Λ(M)⊗ ξ|∂M = Λ(∂M)⊗ ξ ⊕ Λ(∂M)⊗ ξ (2.5)

corresponding to the decomposition for a form θ ∈ C∞(M ; Λ(M)⊗ ξ):

θ = θ1 + dx ∧ θ2, θ1, θ2 ∈ C∞(M ; Λ(∂M)⊗ ξ)

near the boundary. Define a linear map σ:

σ(θ) = θ1 − dx ∧ θ2.
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Then σ is self adjoint and σ2 = 1. Moreover the splitting (2.5) corresponds
to the decomposition into the ±1-eigenspace of σ.

From the splitting we define two projections

Pa, Pr : C∞(∂M ; Λ(M)⊗ ξ|∂M ) → C∞(∂M ; Λ(∂M)⊗ ξ),

Pa(θ) = θ2|∂M ; Pr(θ) = θ1|∂M .

I.e., Pa is the orthogonal projection onto the −1-eigenspace of σ and Pr the
orthogonal projection onto the +1-eigenspace. Let Aa (resp. Ar) be the
de Rham operator equipped with the boundary condition Pa (resp. Pr).
Then Aa, Ar are elliptic boundary value problems; in fact they are also self
adjoint. Hence η(Aa) and η(Ar) can be defined and moreover, because of
the self-adjointness, the eta functions are actually regular at 0.

3. Deforming eta invariant

Now, for ε a positive parameter, consider the family of metrics

gε =
dx2

x2 + ε2
+ g. (3.6)

The limiting metric g0 is an exact b-metric on M , in the terminology of
Melrose [18]. Let Aε,a (Aε,r) be the associated elliptic boundary value
problems. We note in the passing that the metric deformation (3.6) leaves
invariant the projections Pa (Pr), hence the boundary conditions. Let us
also denote by A0 the b-de Rham operator associated with g0 (see [18]).

Theorem 3.1. Assume that H∗(∂M, ξ) = 0 and Im(H∗(M,∂M ; ξ) →
H∗(M ; ξ)) = 0. Then if dim M is odd

η(Aε,a) = ηb(A0) + r1(ε) + r2(ε) log ε, (3.7)

η(Aε,r) = ηb(A0) + r1(ε) + r2(ε) log ε. (3.8)

And if dim M is even,

η(Aε,a) =
1
2
η(A∂M ) + r1(ε) + r2(ε) log ε, (3.9)

η(Aε,r) = −1
2
η(A∂M ) + r1(ε) + r2(ε) log ε. (3.10)

As before, r1, r2 are smooth functions of ε vanishing at 0.

Remark. 1. Without the assumption that H∗(∂M, ξ) = 0 and
Im(H∗(M,∂M ; ξ) → H∗(M ; ξ)) = 0, the analysis of the small eigenval-
ues is much more complicated. In [19] this is dealt with via the scattering
theory. Similar idea should apply here, which will be treated elsewhere.
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Remark. 2. Intuitively the formula can be seen as follows. As ε → 0
the boundary is pushed to the infinity and in the heat kernel the interior
contribution and boundary contribution separate. So in the end one is left
with a manifold with cylindrical end and an infinite half-cylinder. The
b-eta invariant comes from the former, and, depending on the parity of
dimension, the contribution from the half-cylinder is either zero or the eta
invariant of the boundary. In our proof this intuitive picture is realized
geometrically by method of boundary-fibration structure of Melrose [17],
[16].

When (M, g) is of product type near the boundary the eta invariant can
actually be shown to be invariant under this deformation. Thus we have

Theorem 3.2. Assume additionally that (M, g) is a product near the
boundary. Then η(Aε,a) ≡ η(Aa) is a constant independent of ε. The
same is true for η(Aε,r).

Proof. Since (M, g) is a product near the boundary we can assume that
near the boundary

gε =
dx2

x2 + ε2
+ g∂M ,

where g∂M is a metric on the boundary independent of both x and ε. Put
y =

∫ x

0
dx√

x2+ε2
. Then

gε = dy2 + g∂M ,

with y ∈ [0, R(ε)], R(ε) =
∫ 1

0
dx√

x2+ε2
→ ∞ as ε → 0. Now choose a

diffeomorphism ϕε : [0, 1] → [0, R(ε)] such that ϕε(t) = t, t ∈ [0, 1/4] and
ϕε(t) = t + R(ε) − 1, t ∈ [3/4, 1], and ϕ′ε(t) symmetric with respect to
t = 1/2. Then

gε = (ϕ′ε(t))
2dt2 + g∂M .

By Theorem 2.1 the variation of η(Aε,a) is the same as that of η(Aε), where
Aε is the corresponding operator on ∂M ×S1 with the metric (ϕ′ε(t))

2dt2 +
g∂M . By the symmetry of ϕ′ε(t), we have η(Aε) ≡ 0. Therefore

d

dε
η(Aε,a) ≡ 0.

Theorem 1.1 follows from Theorem 3.1 and Theorem 3.2.
The same analysis (except the invariance under the deformation) also

applies to the analytic torsion. Thus let T a
ε (M,ρ) (T r

ε (M,ρ) resp.) denote
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the analytic torsion associated to the representation ρ : π1(M) → O(k)
and the absolute (relative resp.) boundary condition on M with the metric
(1.1).

Theorem 3.3. Assume that H∗(∂M, ξ) = 0 and Im(H∗(M,∂M ; ξ) →
H∗(M ; ξ)) = 0. Then if dim M is odd

log Tε(M,ρ) = log bT (M̄, ρ) + r1(ε) + r2(ε) log ε, (3.11)

where bT (M̄, ρ) is the analytic torsion for manifold with cylindrical end (the
b-torsion [18]). Here the analytic torsion on M is with respect to either of
the boundary conditions. If dim M is even

log T a
ε (M,ρ) =

1
2

log T (∂M, ρ) + r1(ε) + r2(ε) log ε, (3.12)

and

log T r
ε (M,ρ) = −1

2
log T (∂M, ρ) + r1(ε) + r2(ε) log ε. (3.13)

The proof of Theorem 3.1 will be deferred to the last section, after the
study of the uniform structure of the heat kernels involved. The rest of
the paper is organized as follows. After the model case of the half infinite
cylinder is discussed, we first show that for ε sufficiently small, the spectrum
of Aε,a falls uniformly outside a small neighborhood of the origin. This gives
us sufficient control over the large time behavior of the heat kernel. Then for
the finite time behavior the uniform structure of the heat kernel is examined
by constructing the heat surgery 0-calculus, which is then exploited via
Laplace transform to also extract information about the resolvent. The
large time behavior of the heat kernel follows. Finally combining all these
analyses we prove Theorem 3.1.

4. Computation on the half-cylinder

Our heat operator is defined via functional calculus:

e−tA2
a =

i

2π

∫
Γ

(Aa − λ)−1e−tλ2
dλ.

Clearly, it satisfies the heat equation

(∂t + A2
a)e−tA2

a = 0

with the correct initial condition:

e−tA2
a |t=0 = Id.
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From its definition, and the fact that

Aae−tA2
a =

i

2π

∫
Γ

(Aa − λ)−1λe−tλ2
dλ,

it also satisfies the following boundary conditions:{
Pae−tA2

a |x=0 = 0
PaAe−tA2

a |x=0 = 0.
(4.14)

For our purpose it is easier to deal with heat kernels satisfying such bound-
ary conditions. As we are going to show later that the heat kernels satisfy-
ing such boundary conditions are unique, they are the same as defined via
functional calculus.

For later purpose, and also to get a flavor of the boundary condition,
we now consider the situation on the infinite half-cylinder:

H = ∂M × [0,∞). (4.15)

In this case we have the global decomposition

Λ∗(H) = Λ∗(∂M)⊕ Λ∗(∂M). (4.16)

With respect to this decomposition θ1 + du ∧ θ2 corresponds to (θ1, θ2)
(where we now use u to denote the variable in [0,∞). Therefore

d =
(

d∂M 0
∂u −d∂M

)
.

Hence

A = γ∂u + σA∂M , (4.17)

where

γ =
(

0 −1
1 0

)
, σ =

(
1 0
0 −1

)
.

We consider only A2
a, the other being similar. Its heat kernel E satisfies

(4.14). Write E in terms of the decomposition (4.16):

E =
(

E11 E12

E21 E22

)
.

Then the equation (4.14) becomes four parabolic boundary value problems:
(∂t − ∂2

u + A2
∂M )E11 = 0,

E11|t=0 = Id,

(∂uE11 −A∂ME21)|u=0 = 0.
(4.18)
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
(∂t − ∂2

u + A2
∂M )E12 = 0,

E12|t=0 = 0,

(∂uE12 −A∂ME22)|u=0 = 0.
(4.19)


(∂t − ∂2

u + A2
∂M )E21 = 0,

E21|t=0 = 0,
E21|u=0 = 0.

(4.20)


(∂t − ∂2

u + A2
∂M )E22 = 0,

E22|t=0 = Id,

E22|u=0 = 0.
(4.21)

The same discussion applies to the heat kernel on our manifold with
boundary, restricted to the cylindrical part, since everything is local. From
here we have the uniqueness of the heat kernel.

Proposition 4.1. Let M be a compact Riemannian manifold with bound-
ary, with product metric near the boundary. Let Aa be the de Rham opera-
tor equipped with the absolute boundary condition defined above. The heat
kernel E satisfying 

(∂t + A2
a)E = 0

E|t=0 = Id
PaE|u=0 = 0, PaAE|u=0 = 0

is unique.

Proof. If E and E′ are two heat kernels satisfying the above equations,
then Ẽ = E − E′ satisfies the same set of equations except the initial con-
dition, which should be replaced by Ẽ|t=0 = 0. We first look at Ẽ near the
boundary where it decomposes into Ẽ11, · · · , Ẽ22 satisfying, respectively,
(4.18) – (4.21), but once again with initial conditions replaced by zero ones.
Now (4.20), (4.21) are heat equations with Dirichlet boundary condition,
therefore by the energy estimate, we have Ẽ21 ≡ 0, Ẽ22 ≡ 0 (on the cylin-
drical part). From this, we find that (4.18), (4.19) reduce to heat equations
with Neumann boundary condition. Hence again by the energy estimate
we have Ẽ11 ≡ 0, Ẽ12 ≡ 0 on the cylindrical part. Now this implies that Ẽ

satisfies a heat equation on the whole manifold with completely decoupled
Dirichlet and Neumann boundary conditions. Therefore again we invoke
the energy estimate to deduce that Ẽ ≡ 0 on M .
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We now return to the half-cylinder. The last equation is a Dirichlet
problem and can be solved explicitly in terms of the heat kernel on ∂M :

E22 = fD(t, u, v)e−tA2
∂M , (4.22)

where

fD(t, u, v) =
1√
4πt

(e−(u−v)2/4t − e−(u+v)2/4t).

The third equation has the trivial solution E21 = 0. Hence the first equation
(4.18) becomes a Neumann problem while the second also gives the trivial
solution:

E11 = fN (t, u, v)e−tA2
∂M , (4.23)

where

fN (t, u, v) =
1√
4πt

(e−(u−v)2/4t + e−(u+v)2/4t).

It follows that

e−tA2
a = e−tA2

∂M

(
fN 0
0 fD

)
. (4.24)

Similarly

e−tA2
r = e−tA2

∂M

(
fD 0
0 fN

)
. (4.25)

We now compute the pointwise trace tr(Aae−tA2
a). Using (4.17) and

(4.24) we find

tr(Aae−tA2
a) =

1√
πt

e−u2/ttr(A∂Me−tA2
∂M ). (4.26)

Integrating (4.26) gives

Tr(Aae−tA2
a) =

1
2
Tr(A∂Me−tA2

∂M ). (4.27)

Consequently we deduce

Proposition 4.2. For the infinite half cylinder,

η(Aa) = −η(Ar) =
1
2
η(A∂M ). (4.28)
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5. Surgery 0-calculus

The proof of Theorem 3.1 depends essentially on the analysis of the uniform
structure of the heat kernels for the elliptic boundary value problems. As
in [14] this will be examined from the point of view of boundary-fibration
structure (see [17]). That is, a calculus of pseudo-differential operators will
be constructed, quite geometrically in the sense that the Schwartz kernels of
these operators are to live on a space obtained from the usual space by blow-
ing up certain submanifolds. The blowup resolves, analytically and geomet-
rically, the singularities of the Schwartz kernels of these pseodo-differential
operators. The construction in our case, loosely speaking, incorporates the
V0-calculus (see Mazzeo-Melrose [15], [17] and the references therein) into
the calculus of [14].

In this section the elliptic part of the calculus will be discussed, leading
to the construction of the uniform resolvent and the uniform structure of
the spectrum.

5.1. Single surgery space

The single surgery space is a natural compactification of the geometric
degeneration, and the structure algebra defined on it captures the degen-
eration of the geometric operator, the de Rham operator in our case here.
The space is defined as (Cf. [14] for the blowup notation):

Xs0 = [M × [0, 1]; ∂M × {0}].

Here [0, 1] is the parameter space for ε.
This is a manifold with corner, with the ”trivial” extension boundary

at ε = 1. The more interesting boundary hypersurfaces are: Bss resulting
from the blow up; Bbb from the lift of {ε = 0}; and B0b from the lift of
∂M × [0, 1].

The boundary face Bbb is diffeomorphic to M while the interior of Bss

is diffeomorphic to the normal bundle of ∂M in M . The two intersect at
the corner ∂M . On the other hand, the boundary face B0b is diffeomorphic
to ∂M × [0, 1].

Let

βs0 : Xs0 → X = M × [0, 1]

be the blow-down map. Composed with the projection

πε : X → [0, 1]
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we get a b-fibration map

π̃ε = πε ◦ βs0 : Xs0 → [0, 1].

Note that for ε > 0, the fibers of π̃ε are diffeomorphic to M while at ε =
0, π̃−1

ε (0) = Bss ∪ Bbb. This b-fibration captures the metric degeneration.
In this picture, the geometric degeneration appears as the creasing of M

into M together with the normal bundle of ∂M .
The structure algebra Vs0(Xs0) is defined as

Vs0(Xs0) = {V ∈ Vb(Xs0); (π̃ε)∗(V ) = 0, and V |B0b
= 0}.

This determines the structure bundle s0TXs0 by the equation

Vs0(Xs0) = C∞(Xs0; s0TXs0). (5.29)

That s0TXs0 is a well-defined smooth vector bundle over Xs0 follows from
a general statement in [7] (see also [14]). In fact, over the part of Xs0 where
ε > 0, s0TXs0 is simply the pull-back of 0TM while restricted to Bbb it is
canonically isomorphic to the b-tangent bundle of this compact manifold
with boundary. When restricted to Bss it is canonically isomorphic to the
b-tangent bundle of this manifold near the boundary that meets Bbb and
the 0-tangent bundle near the boundary that meets B0b.

The structure algebra Vs0(Xs0) is a Lie algebra of vector fields which
degenerates in the same manner as the de Rham operator in this geometric
degeneration (except at the boundary where the degeneration is created for
treating the boundary problem). To analyze the de Rham operator via
microlocal analysis we first construct from it the space of s0-differential
operators Diff∗s0(M ;E,F ) (E, F vector bundles on Xs0) in the usual way.
Indeed, the space Diffk

s0(M ;E,F ) consists of those differential operators
from C∞(Xs0;E) to C∞(Xs0;F ) which are given, with respect to local
basis of E and F , by sums of up to k-fold products of elements of Vs0(Xs0).

A s0-differential operator can be analyzed by its symbol plus the so-
called normal homomorphisms. The symbol sort of measures its ”interior
strength”, and is defined as follows. By (5.29) and the natural isomorphism
between a vector space and its double dual, a vector field in Vs0(Xs0) can
be naturally identified with a C∞ function on s0T ∗Xs0 that is linear along
the fiber. This gives rise to the symbol map

s0σ : Diffk
s0(M ;E,F ) → Sk(s0T ∗Xs0; hom(E,F )).

The normal homomorphisms, on the other hand, capture the leading
terms in the degeneration. These are defined by restriction. The restriction
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of the Lie algebra Vs0(Xs0) to the boundary hypersurface Bbb gives the full
algebra Vb(Bbb), the space of vector fields on Bbb tangent to the boundary of
Bbb and its restriction to Bss gives the algebra V0b(Bss), the space of vector
fields on Bss tangent to one boundary component, Bss∩Bbb, and vanishing
at the other, Bss ∩B0b. As a consequnce, the space Diff∗s0(M ;E,F ) comes
equipped with the normal homomorphisms

Nb : Diffk
s0(M ;E,F ) → Diffk

b (M ;E,F ),
Ns : Diffk

s0(M ;E,F ) → Diffk
0b(Bss;E,F ).

Here the image space Diffk
b has a normal homomorphism itself, called

the indicial homomorphism:

I : Diffk
b (M ;E,F ) → Diffk

I,b(∂M × [0, ∞);E,F ),

where the space with the subscript I denotes the subspace of R+-invariant
operators. Similarly the indicial operator of an element of Diffk

0b(Bss;E,F )
at the b-boundary ∂M is also an element of Diffk

I,b(∂M×[0, ∞);E,F ). The
compatibility condition between the normal operators is just

N∂M (P ) def= I(Nb(P )) = I(Ns(P )), P ∈ Diffk
s0(M ;E,F ),

which is a consequence of (5.29).
If we choose local coordinates (x, y) on M near the boundary, where y

is a local coordinate on ∂M and x the geodesic distance to the boundary,
one obtains defining functions for the various boundary hypersurfaces:

ρss =
√

x2 + ε2, ρbb =
ε√

x2 + ε2
, ρ0b =

x√
x2 + ε2

.

From (4.17) we have for the de Rham operator Aε

Aε = γ
√

x2 + ε2∂x + σA∂M = γρss∂x + σA∂M . (5.30)

This is not yet a s0-differential operator. However

ρ0bAε ∈ Diff1
s0(M ;F ),

and

Nb(ρ0bAε) = ρ0bA0 ∈ Diff1
b(M ;F ). (5.31)

Ns(ρ0bAε) = ρ0bABss
∈ Diff1

0b(Bss;F ). (5.32)

Moreover the restriction at the corner Bss ∩B0b = ∂M is given by

R∂M (ρ0bAε) = ρ0bA∂M ∈ Diff1(∂M ;F ). (5.33)
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5.2. Double surgery space

We analyze the degenerating de Rham operator by looking at the resolvent
and the singularity of its Schwartz kernel. This is done by constructing a
pseudo-differential calculus in which lies the resolvent of the degenerating
de Rham operator. This pseudo-differential calculus comes from microlo-
calizing s0-differential operators.

To microlocalize the Lie algebra of vector fields Vs0(Xs0) we now define
the double surgery 0-space, on which live the kernels of surgery 0-operators
(or s0-operators):

X2
s0,f = [M2 × [0, 1]; (∂M)2 × {0}; ∂M ×M × {0};

M × ∂M × {0}; ∆(∂M)× [0, 1]],

where the subscript f indicates that this is a full blown-up version of the
double surgery 0-space. The blow down map will be denoted by β2

s0.
There are seven boundary hypersurfaces besides the trivial extension

face {ε = 1}, which we will ignore. We have Bds from the first blow up; Bls,
Brs from the second and third respectively; and B0s from the last blow up.
Finally the original boundary hypersurfaces {ε = 0}, ∂M ×M × [0, 1], and
M×∂M×[0, 1] lift to boundary hypersurfaces Bdb, Blb and Brb respectively.
Also the diagonal ∆(M) × [0, 1] lifts to an embedded submanifold ∆s0

meeting only Bds, Bdb, B0s and does so transversally.

Let πL, πR denote the projections of X2 def= M2 × [0, 1] onto X by
omitting the right and left factors respectively. These lift to b-fibrations

πs0,L : X2
s0,f → Xs0,

πs0,R : X2
s0,f → Xs0.

Both restrict to ∆s0 to a diffeomorphism: ∆s0
∼= Xs0. Moreover, by ana-

lyzing the lifting properties of Vs0(Xs0), it is not hard to see that there is
a natural isomorphism:

N(∆s0) ∼= s0TXs0. (5.34)

Let ρ0s be a defining function of B0s. Define the kernel density bundle
KD so that

C∞(X2
s0,f ,KD) = ρ

−n/2
0s C∞(X2

s0,f ,Ω1/2((X2
s0,f )).

The small surgery 0-calculus is

Ψm
s0(M ;E,F ) = ρ∞ls ρ∞rsρ

∞
lb ρ∞rbI

m−1/4(X2
s0,f ,∆s0;Hom(F,E)⊗KD).
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This is a microlocalization for Vs0(Xs0) since Diff∗s0(M) ⊂ Ψ∗
s0(M). How-

ever this calculus is too small to contain the inverses of its elliptic ele-
ments. Thus one has to enlarge the calculus to include boundary terms.
Let us denote by A(X2

s0,f ;Hom(F,E) ⊗ KD) the space of all sections of
Hom(F,E) ⊗ KD smooth in the interior and conormal to all boundary
faces. For a positive number τ define

Aτ
−(X2

s0,f ;Hom(F,E)⊗KD)

=
⋂
δ>0

ρτ−δ
ds ρτ−δ

db ρτ−δ
ls ρτ−δ

rs A(X2
s0,f ;Hom(F,E)⊗KD)

=
⋂
δ>0

ετ−δA(X2
s0,f ;Hom(F,E)⊗KD).

We call τ the conormal bound for the conormal sections in Aτ
−.

Using this notation the residual calculus is defined as

Ψτ
s0,res(M ;E,F ) = Aτ

−(X2
s0,f ;Hom(F,E)⊗KD) (5.35)

This is the space of ‘good’ error terms in the sense that they vanish at a
positive rate at ε = 0.

The space of boundary terms is defined as (using the notation of [14])

Ψ−∞,τ
s0 (M ;E,F ) = BdBAτ

−(X2
s0,f ;Hom(F,E)⊗KD), (5.36)

where dB = {ds, db, 0s} and τ is a positive number. Roughly speaking
Ψ−∞,τ

s0 consists of all sections smooth in the interior and conormal to the
boundary faces (with conormal bound 0) and vanish at rate τ at the bound-
ary faces Bls, Brs and have some partial smoothness up to Bds, Bdb, B0s.

Now the ‘calculus with (conormal) bounds’ is defined as

Ψm,τ
s0 (M ;E,F ) = Ψm

s0(M ;E,F ) + Ψ−∞,τ
s0 (M ;E,F ). (5.37)

Since

Ψm
s0(M ;E,F ) ∩Ψ−∞,τ

s0 (M ;E,F ) = Ψ−∞
s0 (M ;E,F ),

the first thing to note here is that the symbol map for conormal distributions

s0σm : Ψm
s0(M ;E,F ) → Sm(s0TX∗

s0;E,F ) (5.38)

extends to the whole calculus.
The symbol map alone is not enough to invert the elliptic elements

modulo compact errors. The utility of the calculus constructed above lies
largely in the existence of additional, non-commutative ‘symbols’. These
are obtained by restricting the elements to each of the boundary faces Bds,
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Bdb, B0s, Bls, Brs. Since an element of Ψm,τ
s0 is required to vanish at a

positive rate at the boundary faces Bls, Brs, the restrictions will be trivial
there and will be ignored. The only nontrivial ones are at Bdb, Bds, B0s,
called the b-normal homomorphism, the surgery normal homomorphism,
and the 0-normal homomorphism respectively.

Clearly the b-normal homomorphism Nb maps onto the b-calculus with
conormal bounds on M :

Nb : Ψm,τ
s0 (M ;E,F ) → Ψm,τ

b (M ;E,F ). (5.39)

The name homomorphism indicates that Nb respects the composition (in
the sense of operators acting on distributions, see Proposition 5.1). But
only the weaker form Nb(P ◦A) = Nb(P ) ◦Nb(A), P ∈ Diff∗s0 will be used
here. This will be discussed below (Proposition 5.2).

Similarly the surgery normal homomorphism is a map

Ns : Ψm,τ
s0 (M ;E,F ) → Ψm,τ

0b (H̄;E,F ). (5.40)

Here H̄ = ∂M × [0, 1] is the compactification of the half normal bundle of
∂M , or in other words the half infinite cylinder. And the image lies in the
0b-calculus which will be briefly discussed in the next section.

Finally for the 0-normal homomorphism note that B0s can be identified
with a natural compactification of the half tangent bundle of M at ∂M

lifted to ∂M × [0, 1]. By definition then, one finds that N0 maps onto the
conormal distributions conormal to the section of the lifted normal bundle
over ∂M × [0, 1] given by (1, 0, · · · , 0) and which are smooth up to the
boundaries.

From definition it is not hard to see that, for an element in Ψm,τ
s0 its

various ‘symbols’ have to be compatible in the sense that restricted to the
common corner or the intersection with the diagonal the resulting ‘symbols’
have to agree. Moreover these are the only obstructions for the existence
of surgery 0-calculus with prescribed ‘symbols’.

Although defined as distributions the surgery 0-operators can be made
to act on distributions on Xs0, thus justifying the name. We state the
mapping properties in the following

Proposition 5.1. An element A of Ψm,τ
s0 (M ;E,F ) defines a bounded lin-

ear map

A : C−∞(Xs0;E) → C−∞(Xs0;F )

which restricts to

A : Ar
−(Xs0;E) → Ar

−(Xs0;F ),
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if r < τ . Moreover, if m ≤ 0, τ > 0, then

A : L2(Xs0;E ⊗ Ω1/2
s0 ) → L2(Xs0;F ⊗ Ω1/2

s0 ). (5.41)

is also bounded. Here Ω1/2
s0 (Xs0) = ρ

−n/2
0s Ω1/2(Xs0).

Proof. Recall that the projections πL, πR from X2 = M2 × [0, 1] to X,
obtained by dropping the right and left M factor in X2 respectively, lift to
b-fibrations

π̃L, π̃R : X2
s0,f → Xs0.

Similarly the projection onto the ε variable, πε : X2 → [0, 1], lifts to
b-fibration

π̃ε : X2
s0,f → [0, 1].

Now the equation

Au = (π̃L)∗[A · (π̃R)∗(u)(π̃ε)∗(|dε|−1/2)]

defines the action of A ∈ Ψm,τ
s0 (M ;E,F ); the fact that it is well defined is

a consequence of the calculus of wave front sets. This proves the first part.
The second follows from the calculus of conormal functions (Cf. [14]).

To show the L2 boundedness, it suffices to show that for A ∈ Ψ−∞,τ
s0

(by Hörmander’s lemma). We decompose A into four pieces, A = A1 +
A2 +A3 +A4, where A1 is supported near B0s; A2 supported near Blb, but
away from B0s; A3 supported near Brb, but away from B0s; and the final
piece A4 supported away from Blb ∪Bos ∪Brb.

By its support property, the L2-boundedness of A4 is a consequence of
[14]. For A2, A3, since the result of its action will always have support away
from B0s, the L2-boundedness also follows similarly. The L2-boundedness
of A1 is a uniform version of the result in [Ma] and can be shown in the
same way.

We now turn to the composition with s0-differential operators.

Proposition 5.2. If P ∈ Diff∗s0(M ;E,F ), A ∈ Ψ∗,τ
s0 (M ;E,F ), then P ◦

A ∈ Ψ∗,τ
s0 (M ;E,F ). Further

Nb(P ◦A) = Nb(P ) ◦Nb(A) (5.42)

and similarly for the other homomorphisms.
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Proof. Clearly, if P ∈ Diffk
s0, A ∈ Ψm

s0, then P ◦ A ∈ Ψm+k
s0 . Also if

A ∈ Ψ−∞,τ
s0 , then P ◦A ∈ Ψ−∞,τ

s0 . Now if V ∈ Diff1
s0, we have Nb(V ◦A) =

π∗s0,LV (A)|Bdb
= π∗s0,LV |Bdb

(A|Bdb
) = Nb(V ) ◦ Nb(A). The general case

follows.

The residual space Ψτ
s0,res is the space of good error terms. Crucial to

our construction is the ‘semi-ideal property’ that this space satisfies. Define
LC(M) to be the algebra of bounded operators on L2(Xs0; Ω

1/2
s0 ) which

depends parametrically and conormally on ε, i.e. an element of LC(M) is
a B ∈ L(L2(Xs0; Ω

1/2
s0 )) such that

[ε, B] = 0 and (ε
∂

∂ε
) kB ∈ L(L2(Xs0; Ω

1/2
s0 )) for all k ≥ 0.

Clearly Ψτ
s0,res(M) ⊂ LC(M) is a subalgebra, but more is true.

Proposition 5.3. If τ > 0, then

Ψτ
s0,res(M) · LC(M) ·Ψτ

s0,res(M) ⊂ Ψτ
s0,res(M).

Proof. Let A, B ∈ Ψτ
s0,res(M), and K ∈ LC(M). We need to examine

the kernel of BKA and show that it has the required regularity. For this
purpose, we apply the operator BKA to certain weighted delta half-density.
For z ∈ M , let δz ∈ C−∞(M ; Ω1/2) be a delta half-density at z. This gives
a continuous map

M 3 z 7→ δz|dε|1/2 ∈ H−k(X; Ω1/2), for k >
n

2
+ 1.

The continuity is a consequence of the Sobolev Embedding Theorem. Since
this family of half-densities is ε-independent, it follows that the lifts to Xs0

of the following weighted half-densities give rise to a continuous map

M 3 z 7→ (x2 + ε2)1/4εν− 1
2 δz|dε|1/2 ∈ H−k

b (Xs0; Ω1/2), ∀ν > 0.

By the assumption on K and the mapping properties of Ψτ
s0,res(M), we

obtain a continuous map

z 7→ ε−2τ ′BKA((x2 + ε2)1/4εν− 1
2 δz|dε|1/2) ∈ H∞

b (Xs0; Ω1/2), ∀τ ′ < τ.

However the space H∞
b (Xs0; Ω1/2) consists of half-densities of the form

ε−1/2aµ where a is continuous on Xs and µ is a non-vanishing smooth half-
density on Xs0. This implies that the Schwartz kernel of BKA is of the
form

ε2τ ′bµ⊗ v

(x2 + ε2)1/4
⊗ |dε|−1/2,
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where b is continuous on Xs0×M and τ ′ < τ arbitrary. Lifting to X2
s0 shows

that the kernel is the product of ε2τ ′ and a continous section of the kernel
density bundle. Since this regularity is clearly stable under the repeated
action of ε∂ε and of Vb(Xs0) lifted from either the left or the right it follows
that

Ψτ
s0,res(M) · LC(M) ·Ψτ

s0,res(M) ⊂ Ψ2τ
s0,res(M).

For its role in the heat surgery 0-calculus, the reduced double surgery
space is defined to be

X2
s0 = [M2 × [0, 1]; (∂M)2 × {0}; ∂M ×M × {0}; M × ∂M × {0}].

It can be obtained from X2
s0,f by blowing down the boundary face B0s.

The elements of Ψ−∞
s0 (M ;E) are smoothing operators on M , hence trace

class. By Lidsky’s theorem the trace is the integral over the diagonal of the
point wise trace of the kernel, which can be interpreted as a density:

Hom(E)⊗ Ω1/2(X2
s0)|∆s0

∼= hom(E)⊗ Ω(Xs0).

Thus the trace of A ∈ Ψ−∞
s0 (M ;E) is, as a function, the push-forward to

[0, 1] of the density

(tr A)|∆s0 ∈ C∞(Xs0; Ω).

The following lemma is from [14].

Lemma 5.4. As a map

Tr : Ψ−∞
s0 (M ;E) → C∞([0, 1]) + log ε C∞([0, 1]).

I.e.

Tr(A) = rA(ε) + log ε r̃A(ε),

for rA, r̃A smooth functions of ε. Moreover for the leading terms

r̃A(0) =
∫

∂M

(tr A)|∂M , (5.43)

rA(0) = b-Tr(Ns(A)) + b-Tr(Nb(A)). (5.44)

5.3. The 0b-calculus

To construct a good parametrix for an elliptic s0-operator we need to invert
its various normal operators. The normal operator at B0s lands in the 0b-
calculus, which we discuss here in somewhat more detail.
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Let H̄ = ∂M × [0, 1] be the compactified normal bundle of ∂M . The
structure algebra V0b is defined to be the Lie algebra of all vector fields that
vanish at ∂M ×{0} and tangent to ∂M ×{1}. The structure bundle 0bTH̄

is defined, as usual, via

C∞(H̄,0bTH̄) = V0b.

From the structure algebra we construct the 0b-differential operators in the
usual way.

To define 0b-pseudodifferential operators we construct the double 0b-
space

H̄2
0b = [H̄2;∆(∂M)× {0}; (∂M)2 × {1}].

Denote by ∆0b the lifted diagonal. There are six boundary hypersur-
faces for H̄2

0b, namely Bd0, Bdb from the blow-up operations respectively;
Bl0, Br0, Blb, Brb from the lift of the original boundary faces. The lifted
diagonal intersects only Bd0 and Bdb and does so transversally.

Now the space of 0b-pseudodifferential operators is defined to be (τ > 0)

Ψm,τ
0b (H̄,Ω1/2) = ρ∞l0 ρ∞r0ρ

∞
lb ρ∞rbI

m(H̄2
0b;∆0b;KD) +Aτ

−(H̄2
0b;KD),

where kernel density bundle KD is defined so that

C∞(H̄2
0b;KD) = ρ

−n/2
d0 C∞(H̄2

0b; Ω
1/2).

We will denote Ψτ (H̄; Ω1/2) = Ψ−∞,τ
0b (H̄, Ω1/2) = Aτ

−(H̄2
0b;KD). Since

this is just a mixture of the 0-calculus and the b-calculus, it is quite clear
that their common properties carry over.

Proposition 5.5.

(1) The 0b-differential operators are 0b-pseudo-differential operators.
(2) The symbol map is a homomorphism:

σ0b : Ψm,τ
0b (H̄, Ω1/2) → Sm(0bT ∗H̄).

We also have the 0-normal and b-normal homomorphisms:

N0 : Ψm,τ
0b (H̄; Ω1/2) → Ψm,τ

0 (H̄; Ω1/2),

Nb : Ψm,τ
0b (H̄; Ω1/2) → Ψm,τ

b,I (H̄; Ω1/2).

(3) Elements of Ψm,τ
0b (H̄, Ω1/2) define continuous linear operators:

C−∞(H̄; Ω1/2) → C−∞(H̄; Ω1/2),

Ar
−(H̄; Ω1/2) → Ar

−(H̄; Ω1/2). (r < τ)
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(4) We also have L2-continuity: A ∈ Ψm,τ
0b (H̄; Ω1/2) defines a continu-

ous linear map

A : ρzHk
0b(H̄;KD) → ρzHk−m

0b (H̄;KD), KD = ρ
−n/2
d0 Ω1/2.

Crucial to our discussion is the so-called semi-ideal property of the resid-
ual calculus. Let Lc(L2(H̄;KD)) = ∩zL(ρzL2(H̄, KD)).

Proposition 5.6. If τ > 0, Ψτ (M) is a semi-ideal in Lc(L2(H̄;KD)), i.e.
for any K a continuous linear operator on ρzL2(H̄;KD) for all z and any
A, B ∈ Ψτ (M),

BKA ∈ Ψ2τ (M).

Proof. To examine the Schwartz kernel of BKA, we apply it to the delta
densities. For z ∈ H̄, let δz ∈ C−∞(H̄; Ω1/2) be the delta half density at z.
As a map,

H̄ 3 z 7→ δz ∈ H−k
b (H̄; Ω1/2), k >

n

2

is continuous. It follows that

H̄ 3 z 7→ Aδz ∈ H∞
b (H̄; Ω1/2)

is also continuous. Therefore

H̄ 3 z 7→ BKAδz ∈ H∞
b (H̄; Ω1/2)

is continuous as well. But an element in H∞
b (H̄; Ω1/2) can be written as a

continuous section of the half-density bundle divided by the square root of
a defining function to the boundaries. This shows that the kernel of BKA

can be lifted to H̄0b.

Recall that A = d + δ is the (twisted) de Rham operator. We use AH̄

to denote the de Rham operator on H̄. Now we can show

Proposition 5.7. The resolvent of A2
H̄

lies in the 0b-calculus, i.e. ∃τ > 0
such that

(A2
H̄ − λ)−1 ∈ Ψ−2,τ

0b (H̄; Ω1/2).

Proof. First of all, by taking the Laplace transform of (4.24), we have

(A2
H̄ − λ)−1 ∈ Lc(L2(H̄; Ω1/2)).
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On the other hand, using the 0b-calculus, one can easily construct left and
right parametrices for D2

H̄
− λ:

(A2
H̄ − λ)G1 = Id + R1,

G2(A2
H̄ − λ) = Id + R2,

with G1, G2 ∈ Ψ−2,τ
0b (H̄; Ω1/2), R1, R2 ∈ Ψτ (H̄; Ω1/2). Applying (A2

H̄
−

λ)−1 to both equations we obtain

(A2
H̄ − λ)−1 = G1 − (A2

H̄ − λ)−1R1

= −G2R1 + R2(A2
H̄ − λ)−1R1 ∈ Ψ−2,τ

0b (H̄; Ω1/2)

by Proposition 5.6.

As before, all the constructions and the discussions apply to operators
acting on sections of a vector bundle. From now on, we denote by E the
vector bundle

E = Λ(M)⊗ ξ.

5.4. The uniform structure of the resolvent

Let A0 denote the (twisted) de Rham operator associated to the exact
b-metric g0 on M . Also, denote by Aε,a (Aε,r resp.) the (twisted) de
Rham operator associated to gε with the absolute (relative resp.) boundary
condition. With all the machinery developed so far we can now prove

Proposition 5.8. Assume that A∂M is invertible and also 0 is not in the
spectrum of A0. If Ω ⊂ C is an open bounded set with closure disjoint from
the spectrum of A2

0, then for some τ > 0 and ε0 > 0 the resolvent of A2
ε,a

(A2
ε,r resp.) is a holomorphic map

Ω → Ψ−2,τ
s0 (M ;E)

λ 7→ R(λ).

In particular the spectrum of A2
ε,a (A2

ε,r resp.) falls outside a neighborhood
of the imaginary axis.

Proof. One tries to solve the equation{
(A2

ε,a − λ)R(λ) = Id
R(λ) satisfies the boundary condition

(5.45)
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by solving the corresponding equations for the symbol map and the normal
homomorphisms. The symbol for R(λ) can be solved via

s0σ2(R(λ)) = |ξ|−2Id,

as does the b-normal homomorphism,

Nb(R(λ)) = (A2
0 − λ)−1 ∈ Ψ−2,τ

b (M ;E).

For the surgery normal homomorphism we note that

Ns(R(λ)) = (A2
H̄ − λ)−1

is the solution for the corresponding equation for the half infinite cylinder.
By taking the Laplace transform of (4.24) we find

Ns(R(λ)) ∈ Ψ−2,τ
0b (H̄;E).

Finally the 0-normal homomorphism of R(λ) satisfies a family of Laplace
equations on the half Euclidean space with the boundary condition. Hence
it can be solved similarly as in the half cylinder case.

These solutions for the normal homomorphisms and symbol clearly sat-
isfy the compatibility condition. Thus there exists a family of surgery 0-
operators E′(λ) ∈ Ψ−2,τ

s0 (M ;E) with the correct symbol and normal homo-
morphisms. This means that E′(λ) is already a parametrix for the resolvent
family.

To get a better parametrix, note that the interior singularity can be
removed in the small calculus. It follows then that there is a correction
term G′

0(λ) ∈ Ψ−2
s0 (M ;E) such that E = E′ − G′

0 is a parametrix in the
strong sense that

(A2
ε,a − λ)E(λ) = Id−G(λ), G(λ) ∈ Ψτ

s0,res(M ;E).

Now G(λ) vanishes at a positive rate at ε = 0. Hence where ε is small the
Neumann series provides an inverse for Id−G(λ) and

R(λ) = E(λ)(Id−G(λ))−1.

6. Heat surgery 0-calculus

After the discussion of the elliptic calculus we now turn to the parabolic
calculus and examine the uniform structure of the heat kernel.
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6.1. Heat surgery 0-operators

To construct the heat surgery 0-space we note that ∆s0 intersects the
boundaries of X2

s0 at Bds, Bdb, and at the lift of (∂M)2 × [0, 1] which
is a corner. This means that in defining the heat surgery 0-space one needs
to first blow up the intersection at the corner, which is ∆(∂M)× [0, 1]:

X2
hs0 = [X2

s0 × [0,∞); ∆(∂M)× [0, 1]× {0}, S; ∆s0 × {0}, S],

where S is the parabolic bundle sp(dt) (see [14]). The blow down map is
denoted by βh.

For analyzing the normal homomorphisms we look at the structures of
the boundary hypersurfaces of X2

hs0. There are three of them lying above
{t = 0}: Bff from the blow up of ∆(∂M)× [0, 1]×{0}; Btf from the blow
up of ∆s0 × {0}; and Btb, the lift of {t = 0}. The first two are fibered over
the submanifolds to be blown up. In fact Bff can be viewed as the natural
compacitification of the lift to ∂M × [0, 1] of the half tangent bundle of M

at ∂M times [0,∞) and Btf
∼= s0TXs0.

The rest of the boundary hypersurfaces arise from the lift of those of
X2

s0. Precisely we have

Bds(X2
hs0) = [Bds(X2

s0)× [0,∞);∆(∂M)× {0}, S; ∆ds × {0}, S],

Bdb(X2
hs0) = [Bdb(X2

s0)× [0,∞);∆db × {0}, S],

Bls(X2
hs0) = Bls(X2

s0)× [0,∞),

Brs(X2
hs0) = Brs(X2

s0)× [0,∞),

Blb(X2
hs0) = [Blb(X2

s0)× [0,∞); ∆(∂M)× [0, 1]× {0}, S],

Brb(X2
hs0) = [Brb(X2

s0)× [0,∞); ∆(∂M)× [0, 1]× {0}, S],

Note that Btf only meets Bff , Btb, Bdb and Bds.
The kernels of the heat surgery 0-operators are normalized with respect

to the half-density

KDhs0 = ρ
−(n+2)/2
ff ρ

−(n+3)/2
tf Ω1/2(X2

hs0).

Let I denote the index set {k1, k2, k3, k4}. The space of the heat surgery
0-operators is defined to be

ΨI
hs0 = ρk1

ffρk2
tf ρk3

dsρ
k4
dbρ

∞
ls ρ∞rsρ

∞
tb C∞(X2

hs0;KDhs0).
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6.2. Normal homomorphisms

The normal homomorphism at Bff is defined by dividing by ρk1
ff and re-

stricting to Btf :

Nhs0;f,k1 : ΨI
hs0 → ρk2

tf ρk3
dsρ

∞
tb C∞(Bff ;KDhs0|Bff

).

By the previous discussion on the structure of Bff we see that it can also
be thought as the front face of the heat 0-space of the half normal bundle
of ∂M . Therefore the range of Nhs0;f,k1 is also the range of the normal
homomorphism of this heat 0-calculus at the front face.

The normal homomorphism at Btf , or the heat homomorphism, is de-
fined similarly.

Nhs0;h,k2 : ΨI
hs0 → ρk1

ffρk3
dsρ

k4
dbρ

∞
tb C∞(Btf ;KDhs0|Btf

).

Since KDhs0|Btf
is canonically isomorphic to the fiber density bundle of

s0TXs0, the heat homomorphism can be rewritten as

Nhs0;h,k2 : ΨI
hs0 → ρk1

ffρk3
dsρ

k4
dbS(s0TXs0; Ωfiber).

Restricting to Bdb gives us the surgery homomorphism:

Nhs0;b : Ψhs0(M) → Ψhb(M),

while restricting to Bds gives a normal homomorphism which maps onto
the heat 0b-calculus of the compactified half normal bundle of ∂M :

Nhs0;s : Ψhs0(M) → Ψh0b(N+(∂M)).

These normal homomorphisms are nontrivial only for k3 = 0, k4 = 0.
Moreover if Nhs0;b(A) = 0 and Nhs0;s(A) = 0 for A ∈ Ψhs0(M) then
A = εB for B ∈ Ψhs0(M). This will be used in the construction of the heat
kernels.

Individually, each normal homomorphism is surjective. However the
normal operators for an element of Ψhs0(M) have to agree at the common
corners. These are the compatibility conditions. On the other hand, since
essentially just smooth functions are involved, the compatibility conditions
are the only obstructions to the existence of heat surgery 0-operator with
given normal operators.

6.3. Uniform structure of the heat kernel

It suffices to consider the heat kernel for A2
ε,a, the other boundary condition

being similar. The proceeding construction enables us to prove the following
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Theorem 6.1. There is a unique H ∈ ΨI
hs0(M ;E) where I =

{−2,−2, 0, 0} such that

x2(∂t + A2
ε)H = 0 in ΨI′

hs0(M ;E) (6.46)

for I ′ = {−2, 0,−2, 0}, and

Nhs0;h,−2(H) = Id, (6.47)

and H satisfies the boundary condition

PaH|B0b
= 0, PaAεH|B0b

= 0.

Proof. Equation (6.46) and (6.47) translate to conditions on the four nor-
mal operators of H:

(s0σ2(x2A2
ε−

1
2
(R+n))Nhs0;h,−2(H) = 0,

∫
fiber

Nhs0;h,−2(H) = Id, (6.48)

x2(∂t + Nb(A2
ε))Nhs0;b(H) = 0, (6.49)

ρ2
0b((∂t + Ns(A2

ε))Nhs0;s(H) = 0, (6.50)

s′2(∂T ′ + ∆E)Nhs0;f (H) = 0. (6.51)

Finally the boundary condition translates to boundary conditions for (6.51)
and (6.50).

The first equation is a fiber by fiber differential equation and can be
solved uniquely subject to the integral condition. Furthermore, because of
the compatibility condition, this fixes the integral conditions for (6.49) and
(6.50). Thus the two normal operators Nhs0;b(H), Nhs0;s(H) are necessarily
the heat kernels for the elliptic b-differential operator Nb(A2

ε) and elliptic 0b-
differential operator Ns(ρ2

0bA
2
ε). As such they are unique and are elements

of the corresponding small heat calculus. These two operators have the
same indicial family, so using the existence part of the compatibility it
follows that there is an element H ′ ∈ ΨI

hs0(M ;E) satisfying the symbolic
conditions (6.48), (6.49), (6.50), (6.51).

This first approximation therefore satisfies

x2(∂t + A2
ε)H

′ = −εR1, R1 ∈ Ψ−3,−3,0,0
hs0 (M ;E). (6.52)

Now we proceed exactly as in [14].
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7. Large time behavior of heat kernel

The implication of the previous construction of the uniform heat kernel will
be further exploited in this section following the ideas of [14].

7.1. The resolvent near infinity

The resolvent and the heat kernel are related by the Laplace transform

(A2
ε,a − λ)−1 =

∫ ∞

0

eλte−tA2
ε,adt,

e−tA2
ε,a =

1
2πi

∫
Γ

e−tλ(A2
ε,a − λ)−1dλ,

(7.53)

where Γ is a contour enclosing the spectrum of A2
ε,a. This makes it possible

to obtain information about one from the other. In fact, the large spectral
parameter behavior of the resolvent corresponds to the small time behavior
of the heat kernel and the large time behavior of the heat kernel corresponds
to the small spectral parameter of the resolvent.

To estimate the resolvent as the spectral parameter tends to infinity
outside a sector containing the spectrum we use the discussion of the heat
kernel in the last section. Choose φ ∈ C∞

c (R) with φ(t) = 1 in |t| < 1 and
φ(t) = 0 in |t| > 2. Let

R1(λ) =
∫ ∞

0

eλtφ(t)e−tA2
ε,adt. (7.54)

Then

(A2
ε,a − λ)R1(λ) = Id− E1(λ), (7.55)

where the error term

E1(λ) =
∫ ∞

0

eλtφ′(t)e−tA2
ε,adt ∈ Ψ−∞

s0 (M), (7.56)

is in the small calculus, and since φ′(t) has compact support in (0,∞),
vanishes rapidly as |λ| → ∞ in any closed sector in Reλ < 0.

To improve on the parametrix we now solve the equation

(A2
ε,a − λ)R2(λ) = E1(λ)− εE2(λ). (7.57)

This reduces to solving for the resolvent of the normal operators. It follows
that we can solve R2 ∈ Ψ−∞,τ

s0 (M) with the error E2(λ) ∈ Ψ−∞,τ
s0 (M).

Therefore

(A2
ε,a − λ)(R1(λ) + R2(λ)) = Id− εE2(λ). (7.58)
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For small ε, Id − εE2(λ) can be inverted in L2 by the Neumann series.
Writing the inverse as Id−S(λ), one sees that the norm of S(λ) is rapidly
decreasing as |λ| → ∞. Moreover, S(λ) is conormal in ε, and therefore,
belongs to Lc. Again from the Neumann series,

S(λ) = εE2(λ) + ε2E2(λ)E2(λ) + ε2E2(λ)S(λ)E2(λ). (7.59)

Thus, by the semi-ideal property, S(λ) is also in the surgery calculus and
rapidly decreasing in λ.

Hence we have

(A2
ε,a − λ)−1 = R1(λ) + R1(λ) (7.60)

with R1(λ) = R2(λ)(Id − S(λ)) ∈ Ψ−∞,τ
s0 (M) being holomorphic in λ and

rapidly decreasing as |λ| → ∞.

7.2. Large time behavior of heat kernel

We can now determine the large time behavior of the heat kernel. By (7.53),
(7.54), (7.60), one has

(1− φ(t))e−tA2
ε,a =

1
2πi

∫
Γ

e−tλR1(λ)dλ. (7.61)

By our assumption, the contour Γ can be deformed to a contour lying in the
right half plane but still below the spectrum. It follows then that e−tA2

ε,a

is exponentially decreasing, with all t-derivatives, as t → ∞ with values
in Ψ−∞,τ

s0 (M), where τ > 0 is the largest τ for which the resolvent takes
values in Ψ−∞,τ

s0 (M) along the new contour.

7.3. Proof of Theorem 3.1

Finally we are in a position to prove Theorem 3.1.

Proof. Let i : ∆hs0 → X2
hs0 be the embedding of the lifted diagonal. We

have

∆hs0
∼= [Xs0 × [0, ∞);B0b × {0}, S] (7.62)

which blows down to Xs0 × [0, ∞). Denote the blow down map by β. On
the other hand, the projection πε : M × [0, 1] → [0, 1] lifts to a b-fibration

πs0 : Xs0 → [0, 1].

Let us use the same notation to denote the induced b-fibration

πs0 : Xs0 × [0, ∞) → [0, 1]× [0, ∞).
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Finally let πs = πs0 ◦ β and πt be the projection [0, 1] × [0, ∞) → [0, 1].
Then we can rewrite the eta function as

η(Aε,a, s) = (πt)∗(πs)∗[i∗trF ], F =
t(s−1)/2

Γ((s + 1)/2)
Aε,ae−tA2

ε,a . (7.63)

The polyhomogeneity of i∗trF follows immediately from Theorem 6.1.
Now for each t > 0 the computation of the pushforward (πs)∗ falls into
the realm of Lemma 5.4. To apply this result we must compute the three
terms in (5.43). By (5.32) the leading term for the log term is the integral
of tr(Ae−tA2

a)|∂M where A lives on the half infinite cylinder. By (4.24) and
(4.17),

tr(Ae−tA2
a) = tr(γ∂xe−tA2

a) + tr(σA∂Me−tA2
a) = 0.

Here the second term is identically zero by the splitting (4.16). Thus, the
leading log term vanishes. The leading coefficient for the other term is given
by

b-Tr(Nb(i∗F )) + b-Tr(Ns(i∗F )).

It follows that, when dim M is odd,

η(Aε,a) = b-Tr(Nb(i∗F )) + b-Tr(Ns(i∗F )) + r1(ε) + r2(ε) log ε.

The first term is by definition ηb(A0), while the second one is computed in
Proposition 4.2. Note that η(A∂M ) = 0 in this case.

For the even dimensional case, the term tr(A∂Me−t∆∂M ) no longer van-
ishes and it gives rise to the eta invariant for A∂M , whereas the b-eta term
vanishes because of the parity of the dimension.

We now explain how the analysis extends to the analytic torsion. The
analytic torsion is defined in terms of the zeta function

ζT (s) =
1

Γ(s)

∞∫
0

ts−1Trs(Ne−t∆)dt, <s >> 0,

where Trs is the supertrace associated to the usual Z2-grading via even/odd
degree, and N is the number operator acting as multiplication by k on k-
forms. Also, ∆ denotes the Laplacian restricted to the orthocomplement
of its null space. In our situation, the acyclicity condition rules out the
null space and so it is just the Laplacian. This zeta function extends to
a meromorphic function on the entire complex plane with s = 0 a regular
value. We define the analytic torsion of Ray and Singer by

log T (M,ρ) = ζ ′T (0).
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For the half infinite cylinder, using (4.24), (4.25), one derives for ∆ = A2
a

trs(Ne−t∆)

=
1√
πt

e−u2/ttr∂M
s (N∂Me−t∆∂M )− 1√

4πt
(1 + e−u2/t)tr∂M

s (e−t∆∂M ).

Hence

Trs(Ne−t∆) =
1
2
Tr∂M

s (N∂Me−t∆∂M ).

Here we have used the fact that Tr∂M
s (e−t∆∂M ) = χ(∂M, ξ) = 0 by our

assumption. It follows then that for half infinite cylinder,

Ta(M,ρ) =
1
2
T (∂M, ρ),

and similarly

Tr(M,ρ) = −1
2
T (∂M, ρ).

Even though the analytic torsion is defined in terms of analytic continu-
ation, it has an explicit heat kernel representation involving the coefficients
of the asymptotic expansion of Trs(Ne−t∆), see for example Dai-Melrose
[7] where all negative powers except t−1/2 are shown to vanish. Using this,
one can proceed as before and derive the results for the analytic torsion.
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