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NEUMANN ISOPERIMETRIC CONSTANT ESTIMATE

FOR CONVEX DOMAINS

XIANZHE DAI, GUOFANG WEI, AND ZHENLEI ZHANG

(Communicated by Lei Ni)

Abstract. We present a geometric and elementary proof of the local Neu-
mann isoperimetric inequality on convex domains of a Riemannian manifold
with Ricci curvature bounded below.

1. Introduction

Isoperimetric and Sobolev inequalities are equivalent inequalities (see e.g. The-
orem 1.3 below) which play an important role in geometric analysis on manifolds.
Indeed, doing analysis on manifolds usually depends on the estimate of the Sobolev
constant which could then be obtained via the isoperimetric constant. There is
extensive work on isoperimetric constant estimates. An important method pio-
neered by Gromov relies on the geometric measure theory and its regularity theory,
which works for closed manifolds or convex domains with smooth boundary; see e.g.
the survey article [10] and the recent paper [15]. One may also obtain an estimate
through the Li-Yau gradient estimate for the heat kernel [13] and the equivalence of
heat kernel bounds, Sobolev inequality, isoperimetric inequality; see [18, page 448],
which again requires smooth and convex boundary. Another method using needle
decomposition from convex geometry has also been very successful and, very re-
cently, has been combined with optimal transport and extended to the non-smooth
case; see [4] and the references therein. For star-shaped domains in a manifold
with Ricci curvature bounded from below, Buser [3] gave an elementary proof for
a Neumann isoperimetric constant (the Cheeger constant) estimate using compar-
ison geometry, but the estimate depends on the in and out radius of the domain,
which does not give a uniform estimate for convex domain as the in-radius might
be small. In the presence of positive Ricci lower bound, see [2,16,17]; in particular
[16] also treats the non-smooth boundary in that setting. For general convex do-
mains with non-smooth boundaries, the estimate for the isoperimetric constant is
only obtained in the very recent paper [4] mentioned above. In this short note we
give a very geometric and elementary proof of a Neumann isoperimetric inequality,
albeit with non-optimal constant, for convex domains whose boundaries need not
be smooth.

First we recall some definitions.

Received by the editors July 18, 2017.
2010 Mathematics Subject Classification. Primary 53C20.
Key words and phrases. Ricci curvature, isoperimetric constant.
The first author was partially supported by the Simons Foundation, NSF, and NSFC.
The second author was partially supported by the Simons Foundation and NSF DMS 1506393.
The third author was partially supported by CNSF11371256.

c©2018 American Mathematical Society

3509

Licensed to Univ of Calif, Santa Barbara. Prepared on Thu Oct 11 14:06:05 EDT 2018 for download from IP 128.111.88.38.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/proc/
http://www.ams.org/proc/
http://dx.doi.org/10.1090/proc/14079


3510 XIANZHE DAI, GUOFANG WEI, AND ZHENLEI ZHANG

Definition 1.1. When M is compact (with or without boundary), the Neumann
α-isoperimetric constant of M is defined by

INα(M) = sup
H

min{vol(M1), vol(M2)}1−
1
α

vol(H)
,

where H varies over the compact (n− 1)-dim submanifold of M which divides M
into two disjoint open submanifolds M1,M2 (with or without boundary).

Definition 1.2. The Neumann α-Sobolev constant of M is defined by

SNα(M) = sup
f∈C∞(M)

infa∈R ‖f − a‖ α
α−1

‖∇f‖1
.

The isoperimetric constant and Sobolev constant are equivalent.

Theorem 1.3 ([5]; see also [12]). For all n ≤ α ≤ ∞,

INα(M) ≥ SNα(M) ≥ 1

2
INα(M).

For convenience we consider the normalized Neumann α-isoperimetric and α-
Sobolev constant:

IN∗
α(M) = INα(M) vol(M)1/α, SN∗

α(M) = SNα(M) vol(M)1/α.

Using comparison geometry and Vitali covering we give an estimate on the nor-
malized Neumann isoperimetric constant for convex domain in terms of the Ricci
curvature lower bound and the diameter of the domain.

Theorem 1.4. Let (M, g) be a complete Riemannian manifold of dimension n,
with Ric ≥ −(n− 1)K for some K ≥ 0. Let Ω be a bounded convex domain. Then

(1.1) IN∗
n(Ω) ≤ 40ne11(n−1)

√
Kd · d,

where d is the diameter of the domain Ω. In particular, if M is closed with diameter
d, then

(1.2) IN∗
n(M) ≤ 40ne11(n−1)

√
Kd · d.

Corollary 1.5. Let (M, g) be a complete Riemannian manifold of dimension n,
with non-negative Ricci curvature. Let Ω be a bounded convex domain. Then

(1.3) IN∗
n(Ω) ≤ 40n · d,

where d is the diameter of the domain Ω. In particular, if M is closed with diameter
d, then

(1.4) IN∗
n(M) ≤ 40n · d.

Remark 1.6. The case when Ω equals the whole manifold is well-known. The refer-
ence we mentioned earlier for convex domain in the literature deals with domains
with (smooth) convex boundary which is a stronger condition.

Remark 1.7. For balls we can obtain both Dirichlet and Neumann isoperimetric con-
stant estimates even under the much weaker integral Ricci lower bound assumption
[8,21]. On the other hand it is not clear if that will remain true for convex domains.

Remark 1.8. Using the mean curvature estimate from [19] one gets a similar esti-
mate when the Bakry-Emery Ricci curvature is bounded from below and oscillation
of the potential function is bounded.
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2. Proof of Theorem 1.4

The proof goes by a covering argument of Anderson [1], combined with an ob-
servation of Gromov [11]. See [1] or [8] for a similar argument of estimating the
local Dirichlet isoperimetric constant. First of all we recall a lemma whose proof is
a slight modification of Gromov’s observation [11, 5.(C)].

Lemma 2.1. Let Mn be a complete Riemannian manifold. Let Ω be a convex
domain of M and let H be any hypersurface dividing Ω into two parts Ω1,Ω2. For
any Borel subsets Wi ⊂ Ωi, there exists x1 in one of Wi, say W1, and a subset W
in another one, W2, such that

(2.1) vol(W ) ≥ 1

2
vol(W2)

and any x2 ∈ W has a unique minimal geodesic connecting to x1 which intersects
H at some z such that

(2.2) dist(x1, z) ≥ dist(x2, z).

The convexity assumption of Ω is essential. It implies that any minimal geodesic
with endpoints in different parts must intersect H. The Bishop-Gromov relative
volume comparison theorem gives the following:

Lemma 2.2. Let H, W , and x1 be as in the lemma above. Then

(2.3) vol(W ) ≤ 2n−1De(n−1)
√
KD vol(H ′),

where D = supx∈W dist(x1, x) and H ′ is the set of intersection points with H of
geodesics γx1,x for all x ∈ W .

Proof. Let Γ ⊂ Sx1
be the set of unit vectors such that γv = γx1,x2

for some x2 ∈ W .
We compute the volume in the polar coordinate at x1. Write dv = A(θ, t)dθ ∧ dt
in the polar coordinate (θ, t) ∈ Sx1

× R
+. For any θ ∈ Γ, let r(θ) be the radius

such that expx1
(rθ) ∈ H. Then W ⊂ {expx1

(rθ)|θ ∈ Γ, r(θ) ≤ r ≤ 2r(θ)}. So, by
relative volume comparison,

vol(W ) ≤
∫
Γ

∫ 2r(θ)

r(θ)

A(θ, t)dtdθ

≤ sinhn−1(2
√
KD)

sinhn−1(
√
KD)

∫
Γ

r(θ)A(θ, r(θ))dθ

≤ D
sinhn−1(2

√
KD)

sinhn−1(
√
KD)

vol(H ′).

The required estimate follows from sinh(2t)
sinh t = 2 cosh t ≤ 2et whenever t ≥ 0. �

Corollary 2.3. Let H be any hypersurface dividing a convex domain Ω into two
parts Ω1, Ω2. For any ball B = Br(x) we have

min
(
vol(B ∩ Ω1), vol(B ∩ Ω2)

)
≤ 2n+1re(n−1)

√
Kd vol(H ∩B2r(x))(2.4)

where d = diam(Ω). In particular, if B ∩ Ω is divided equally by H, we have

vol(Br(x) ∩ Ω) ≤ 2n+2re(n−1)
√
Kd vol(H ∩B2r(x)).(2.5)

Proof. Put Wi = B ∩ Ωi in the above lemma and notice that D ≤ 2r and H ′ ⊂
H ∩B2r(x). �
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Now we are ready to prove our main theorem.

Proof of Theorem 1.4. We may assume that vol(Ω1) ≤ vol(Ω2). For any x ∈ Ω1,
let rx be the smallest radius such that

vol(Brx(x) ∩ Ω1) = vol(Brx(x) ∩ Ω2) =
1

2
vol(Brx(x) ∩ Ω).

Let d = diam(Ω). By the above corollary,

(2.6) vol(Brx(x) ∩ Ω) ≤ 2n+2rxe
(n−1)

√
Kd vol(H ∩B2r(x)).

The domain Ω1 has a covering

Ω1 ⊂
⋃

x∈Ω1

B2rx(x).

By the Vitali Covering Lemma (cf. [14, Section 1.3]), we can choose a countable
family of disjoint balls Bi = B2rxi

(xi) such that
⋃

i B10rxi
(xi) ⊃ Ω1. Applying the

relative volume comparison theorem and the convexity of Ω we have

vol(Ω1) ≤
∑
i

∫ 10rxi

0
sinhn−1(

√
Kt)dt∫ rxi

0
sinhn−1(

√
Kt)dt

vol
(
Brxi

(xi) ∩ Ω1

)

≤ 10
∑
i

sinhn−1(10
√
Krxi

)

sinhn−1(
√
Krxi

)
vol

(
Brxi

(xi) ∩ Ω1

)

≤ 10
sinhn−1(10

√
Kd)

sinhn−1(
√
Kd)

∑
i

vol
(
Brxi

(xi) ∩ Ω1

)

≤ 10ne9(n−1)
√
Kd

∑
i

vol
(
Brxi

(xi) ∩ Ω1

)

= 2−1 · 10n · e9(n−1)
√
Kd

∑
i

vol
(
Brxi

(xi) ∩ Ω
)
.

Moreover, since the balls Bi are disjoint, (2.6) gives

vol(H) ≥
∑
i

vol(Bi ∩H) ≥ 2−n−2e−(n−1)
√
Kd

∑
i

r−1
xi

vol(Brxi
(xi) ∩ Ω).

These two estimates lead to

vol(Ω1)
n−1
n

vol(H)
≤ 2 · 20ne10(n−1)

√
Kd

( ∑
i vol(Brxi

(xi) ∩ Ω)
)n−1

n∑
i r

−1
xi vol(Brxi

(xi) ∩ Ω)

≤ 40ne10(n−1)
√
Kd

∑
i vol(Brxi

(xi) ∩ Ω)
n−1
n∑

i r
−1
xi vol(Brxi

(xi) ∩ Ω)

≤ 40ne10(n−1)
√
Kd sup

i

vol(Brxi
(xi) ∩ Ω)

n−1
n

r−1
xi vol(Brxi

(xi) ∩ Ω)

= 40ne10(n−1)
√
Kd sup

i

(
rnxi

vol(Brxi
(xi) ∩ Ω)

) 1
n

.
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On the other hand, since vol(Ω1) ≤ vol(Ω2), we have rx ≤ d for any x ∈ Ω1. Thus,
by the relative volume comparison and convexity of Ω again, we have

vol(Ω) ≤
∫ d

0
sinhn−1(

√
Kt)dt∫ rx

0
sinhn−1(

√
Kt)dt

vol(Brx(x) ∩ Ω).

Therefore,

vol(Ω)
1
n · vol(Ω1)

n−1
n

vol(H)
≤ 40ne10(n−1)

√
Kd sup

0<r≤d

(
rn

∫ d

0
sinhn−1(

√
Kt)dt∫ r

0
sinhn−1(

√
Kt)dt

) 1
n

.

The last term on the right hand side has the estimate

rn
∫ d

0
sinhn−1(

√
Kt)dt∫ r

0
sinhn−1(

√
Kt)dt

≤ rn · d
r
· sinh

n−1(
√
Kd)

sinhn−1(
√
Kr)

≤ dn · sinh
n−1(

√
Kd)

(
√
Kd)n−1

≤ dne(n−1)
√
Kd.

The required normalized Neumann isoperimetric constant estimate now follows. �
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no. 2, 213–230. MR683635

[4] Fabio Cavalletti and Andrea Mondino, Sharp and rigid isoperimetric inequalities in metric-
measure spaces with lower Ricci curvature bounds, Invent. Math. 208 (2017), no. 3, 803–849.
MR3648975

[5] Jeff Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis
(Papers dedicated to Salomon Bochner, 1969), Princeton Univ. Press, Princeton, N. J., 1970,
pp. 195–199. MR0402831

[6] Jeff Cheeger and Shing Tung Yau, A lower bound for the heat kernel, Comm. Pure Appl.
Math. 34 (1981), no. 4, 465–480. MR615626

[7] S. Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and their geo-
metric applications, Comm. Pure Appl. Math. 28 (1975), no. 3, 333–354. MR0385749

[8] Xianzhe Dai, Guofang Wei, and Zhenlei Zhang, Local Sobolev constant estimate for integral
Ricci curvature bounds, Adv. Math. 325 (2018), 1–33. MR3742584

[9] Sylvestre Gallot, Isoperimetric inequalities based on integral norms of Ricci curvature, Col-
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[10] Sylvestre Gallot, Inégalités isopérimétriques et analytiques sur les variétés riemanniennes

(French, with English summary, On the geometry of differentiable manifolds (Rome, 1986)),
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