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Perelman’s W -functional on manifolds

with conical singularities

Xianzhe Dai and Changliang Wang

In this paper, we develop the theory of Perelman’sW -functional on
manifolds with isolated conical singularities. In particular, we show
that the infimum of W -functional over a certain weighted Sobolev
space on manifolds with isolated conical singularities is finite, and
the minimizer exists, if the scalar curvature satisfies certain condi-
tion near the singularities. We also obtain an asymptotic order for
the minimizer near the singularities.

1. Introduction

Let (M, g) be a smooth compact Riemannian manifold without boundary.
We recall some Riemannian functionals introduced by G. Perelman to study
Ricci flows[Per02]. The F-functional is defined by

(1.1) F(g, f) =

∫

M

(Rg + |∇f |2)e−fdvolg,

where Rg is the scalar curvature of the metric g, and f is a smooth function

on M . Let u = e−
f

2 , then the F-functional becomes

(1.2) F(g, u) =

∫

M

(4|∇u|2 +Rgu
2)dvolg.

The Perelman’s λ-functional is defined by

(1.3) λ(g) = inf

{

F(g, u) |

∫

M

u2dvolg = 1

}

.

Clearly, from (1.3) and (1.2), λ(g) is the smallest eigenvalue of the
Schrödinger operator −4∆g +Rg. Starting from this point of view, we have
extended Perelman’s theory for the λ-functional to a class of singular man-
ifolds, namely manifolds with isolated conical singularities in [DW18].
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To take into account of scale, Perelman also introducesW -functional and
µ-functional on smooth compact manifolds in [Per02]. They play a crucial
role in the study of singularities of Ricci flow. The W -functional is given by

W (g, f, τ) =

∫

M

[τ(Rg + |∇f |2) + f − n]
1

(4πτ)
n

2

e−fdvolg(1.4)

=
1

(4πτ)
n

2

τF(g, f) +
1

(4πτ)
n

2

∫

M

(f − n)e−fdvolg,

where f is a smooth function, and τ > 0 is a scale parameter. As in F-
functional, let u = e−

f

2 , then the W -functional becomes

(1.5) W (g, u, τ) =
1

(4πτ)
n

2

∫

M

[τ(Rgu
2 + 4|∇u|2)− 2u2 lnu− nu2]dvolg.

The µ-functional is defined by
(1.6)

µ(g, τ) = inf

{

W (g, u, τ) | u ∈ C∞(M), u > 0,
1

(4πτ)
n

2

∫

M

u2dvolg = 1

}

,

for each τ > 0. It is well-know that for each fixed τ > 0 the existence of
finite infimum follows from the Log Sobolev inequality on smooth compact
Riemnnian manifolds, while the regularity of the minimizer follows from the
elliptic estimates and Sobolev embedding. The nonlinear log term makes it
trickier than the eigenvalue problem (see, e.g. §11.3 in [AH10] for details).
For noncompact manifolds, the story is different, and the W -functional on
noncompact manifolds was studied in [Zha12]. On the other hand, Ricci flow
and Perelman’s theory on 2-spheres with conical singularities were studied
in [PSSW14].

In this paper we study the W -functional and µ-functional on compact
Riemannian manifolds with isolated conical singularities. Recall that, by a
compact Riemannian manifold with isolated conical singularities we mean
a singular manifold (M, g, S) whose singular set S consists of finite many
points and its regular part (M \ S, g) is a smooth Riemannian manifold.
Moreover, near the singularities, the metric is asymptotic to a (finite) met-
ric cone C(0,1](N) where N is a compact smooth Riemannian manifold with
metric h0 which will be called a cross section (see §1 for the precise defini-
tion). Our main result is the following theorem.

Theorem 1.1. Let (Mn, g, S) (n ≥ 3) be a compact Riemannian manifold

with isolated conical singularities. If the scalar curvature of the cross section
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at the conical singularity Rh0
> (n− 2) on N , then for each fixed τ > 0,

(1.7) inf

{

W (g, u, τ) | u ∈ H1(M), u > 0,

∥

∥

∥

∥

1

(4πτ)
n

4

u

∥

∥

∥

∥

L2(M)

= 1

}

> −∞.

Here H1(M) is the weighted Sobolev space defined in (3.3).
Moreover, there exists u0 ∈ C∞(M \ S) that realizes the infimum in (1.7).

Furthermore, if (Mn, g, S) satisfies the asymptotic condition AC1 defined

in (2.1), then near each singularity, the minimizer satisfies

(1.8) u0 = o(r−α), as r → 0,

for any α > n
2 − 1. Here r is the radial variable on each conical neighborhood

of the singularities, and r = 0 corresponds to the singular points.

Remark 1.2. The same result holds for n = 2 without the geometric con-
dition on the cross section, just as in the case of the F-functional in [DW18],
Cf. Remark 1.2 there. The proof requires only slight adaptation of the argu-
ments presented here; namely one uses the Lp (1 < p < 2) Sobolev inequality
(Proposition 3.3) to control the logarithmic term.

Remark 1.3. In a recent paper [Ozu19], T. Ozuch studied Perelman’s
functionals on cones and showed that the infimum in (1.7) is finite.

In [DW18], we have shown that the infimum of the F-functional over
the weighted Sobolev space H1(Mn) (n ≥ 3) is finite if Rh0

> (n− 2) on
the cross section. For 2-dimensional manifolds with conical singularities, no
assumption is needed and the finiteness of the infimum of the F-functional
essentially follows from Cheeger [Che79]. In order to control the term in-
volving lnu in the W -functional, similar as in the smooth compact case,
one uses Log Sobolev inequality on compact manifolds with isolated con-
ical singularities, which follows from a L2 Sobolev inequality on compact
manifolds with isolated conical singularities. Then we conclude that the in-
fimum in (1.7) is finite. The L2 Sobolev inequality on compact manifolds
with isolated conical singularities is established in [DY]. Clearly, it suffices
to establish the inequality on a metric cone. For this, a Hardy inequality
on model cones, which follows from the classical weighted Hardy inequality,
will play an important role.

Then we use the direct method in the calculus of variations to show the
existence of a minimizer of the W -functional, following similar strategy as
in [AH10] for the smooth compact case. However, there are new difficulties
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in the singular case that we need to overcome. For example, the scalar cur-
vature, which appears in the W -functional, blows up at the singularities.
Thus in order to deal with the limit for the term involving lnu in the W -
functional, instead of using the compactness of classical Sobolev embedding,
we need to use the compactness of certain weighted Sobolev embedding ob-
tained in Proposition 3.6 below. Then the regularity of the minimizer follows
from the classical elliptic equation theory, since this is a local problem.

Finally, we use certain weighted Sobolev embedding and weighted elliptic
estimates to obtain the asymptotic behavior (1.8) for the minimizer. These
weighted Sobolev embedding and weighted elliptic estimates follow from
classical Sobolev embedding, interior elliptic estimates, and an useful scaling
technique. The scaling technique can be applied in this problem because of
the obvious homogeneity of a model cone along the radial direction. And
the scaling technique has been demonstrated to be very useful in studying
weighted norms and weighted spaces on non-compact manifolds. For a brief
survey about its applications, we refer to §1 in [Bar86].

In a subsequent paper [DW19] we will generalize some of the results here
to the case of non-isolated conical singularity.

2. Manifolds with isolated conical singularities

As mentioned in the introduction, roughly speaking, a compact Riemannian
manifold with isolated conical singularities is a singular manifold (M, g)
whose singular set S consists of finite many points and its regular part (M \
S, g) is a smooth Riemannian manifold. Moreover, near the singularities,
the metric is asymptotic to a (finite) metric cone C(0,1](N) where N is a
compact smooth Riemannian manifold with metric h0. More precisely,

Definition 2.1. We say (Mn, d, g, x1, . . . , xk) is a compact Riemannian

manifold with isolated conical singularities at x1, . . . , xk, if

1) (M,d) is a compact metric space,

2) (M0, g|M0
) is an n-dimensional smooth Riemannian manifold, and the

Riemannian metric g induces the given metric d on M0, where M0 =
M \ {x1, . . . , xk},

3) for each singularity xi, 1 ≤ i ≤ k, their exists a neighborhood Uxi
⊂

M of xi such that Uxi
∩ {x1, . . . , xk} = {xi}, (Uxi

\ {xi}, g|Uxi
\{xi})

is isometric to ((0, εi)×Ni, dr
2 + r2hr) for some εi > 0 and a com-

pact smooth manifold Ni, where r is a coordinate on (0, εi) and hr is



✐

✐

“3-Dai” — 2020/7/21 — 14:53 — page 669 — #5
✐

✐

✐

✐

✐

✐

Perelman’s W -functional on manifolds 669

a smooth family of Riemannian metrics on Ni satisfying hr = h0 +
o(rαi) as r → 0, where αi > 0 and h0 is a smooth Riemannian metric

on Ni.

Moreover, we say a singularity p is a cone-like singularity, if the metric g
on a neighborhood of p is isometric to dr2 + r2h0 for some fixed metric h0
on the cross section N .

In our case, as usual, one does analysis away from the singular set.
And in the above definition, we only require the zeroth order asymptotic
condition hr = h0 + o(rα), as r → 0, for the family of metrics hr on the
cross section N with parameter r > 0. However, in some problems we need
certain higher order asymptotic conditions for hr as follows. We say that a
compact Riemannian manifold (Mn, g, x) with a single conical singularity
at x satisfies the condition ACk, if

(2.1) ri−1|∇i(hr − h0)| ≤ Ci < +∞,

for some constant Ci, and each 1 ≤ i ≤ k, near x.

Remark 2.2. For simplicity, in the rest of this paper, we will only work
on manifolds with a single conical point as there is no essential difference
between the case of a single singular point and that of multiple isolated
singularities. All our work and results for manifolds with a single conical
point go through for manifolds with isolated conical singularities.

For the simplicity of notations, we will use (Mn, g, x) to denote a com-
pact Riemannian manifold with a single conical singularity at x, because the
metric d is determined by the Riemannian metric g.

3. Sobolev and weighted Sobolev embedding

In this section, we recall certain weighted Sobolev spaces on compact Rie-
mannian manifolds with conical singularities. Then we establish the identi-
fication of some of them with the usual (unweighted) Sobolev spaces. More-
over, we also review and establish some Sobolev and weighted Sobolev em-
bedding on compact Riemannian manifolds with isolated conical singulari-
ties.

Various weighted Sobolev spaces and their properties have been intro-
duced and intensively studied in different settings, e.g. on complete non-
compact manifolds with certain asymptotic behavior at infinity (see, e.g.
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[Bar86], [Can81], [CBC81], [CLW12], [CSCB78] [Loc81], [LP87], [LM85],
[McO79], [NW73], and [Wan18]), or on various interesting bounded domains
in Rn (see, e.g. [KMR97], [Kuf85], [Tri78], and [Tur00]).

We recall the weighted Sobolev norms and spaces and weighted Ck norms
and spaces on compact Riemannian manifolds with isolated conical singu-
larities studied in [Beh13]. They are given as in (3.2), (3.4), and (3.5) below.
Similar weighted Sobolev spaces on compact Riemannian manifolds with iso-
lated tame conical singularities have been introduced and studied in [BP03].
A general discussion from the Melrose calculus viewpoint is given in [Ma91],
which also includes nonisolated conical singularity.

Let (Mn, g, x) be a compact Riemannian manifold with a single conical
singularity at x, and Ux be a conical neighborhood of x such that (Ux \
{x}, g|Ux\{x}) is isometric to ((0, ϵ0)×N, dr2 + r2hr). Let χ ∈ C∞(M \ {x})
be a positive weight function satisfying

(3.1) χ(y) =

{

1 if y ∈M \ Ux,
1
r

if y = (r, θ) ∈ Ux ⊂M, and r < ϵ0
4 ,

and 0 < (χ(y))−1 ≤ 1 for all y ∈M \ {x}.
For each k ∈ N, p ≥ 1, and δ ∈ R, the weighted Sobolev space W k,p

δ (M)
denotes the completion of the space of compactly supported smooth func-
tions onM \ {x}, C∞

0 (M \ {x}), with respect to the weighted Sobolev norm

(3.2) ∥u∥W k,p

δ (M) =

(

∫

M

(

k
∑

i=0

χp(δ−i)+n|∇iu|p

)

dvolg

)

1

p

,

where ∇iu denotes the i-times covariant derivative of the function u. For
the simplicity of notations, as in [DW18], we set Hk(M) ≡W k,2

k−n

2

(M), and

(3.3) ∥u∥2Hk(M) ≡

∫

M

(

k
∑

i=0

χ2(k−i)|∇iu|2

)

dvolg.

For each k ∈ N and δ ∈ R, Ck
loc(M) denotes the space of k-th times

continuously differentiable functions on M \ {x}. The weighted Ck space
Ck
δ (M) is defined as

(3.4) Ck
δ (M) = {u ∈ Ck

loc(M) | ∥u∥Ck
δ (M) <∞},
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where ∥ · ∥Ck
δ (M) is the weighted Ck norm defined as

(3.5) ∥u∥Ck
δ (M) =

k
∑

i=0

sup
y∈M\{x}

|χδ−i∇iu(y)|,

for u ∈ Ck
loc.

As usual,W k,p(M) denotes the completion of C∞
0 (M \ {x}) with respect

to the usual Sobolev norm

(3.6) ∥u∥W k,p(M) =

(

∫

M

(

k
∑

i=0

|∇iu|p

)

dvolg

)

1

p

.

We now recall a weighted Hardy inequality (see, e.g. 330 on p. 245
in [HLP34]), and from which derive a Hardy inequality on metric cones.
Later we will see that the Hardy inequality on cone will play an important
role for establishing Sobolev embedding on manifolds with isolated conical
singularities.

For p > 1 and a ̸= 1, we have

(3.7)

∫ ∞

0
|f |px−adx ≤

(

p

|a− 1|

)p ∫ ∞

0
|f ′(x)|pxp−adx,

for any f ∈ C∞
0 ((0,∞)).

This weighted Hardy inequality implies a Hardy inequality on an n-
dimensional metric cone (C(N) = (0,∞)×Nn−1, g = dr2 + r2h) over a
smooth compact Riemannian manifold (Nn−1, h). Indeed, for p > 1 and
k ∈ N with pk ̸= n, and any u ∈ C∞

0 (C(N)),

∫

C(N)

|u|p

rpk
dvolg =

∫

N

∫ ∞

0

|u|p(r, θ)

rpk
rn−1drdvolh

=

∫

N

∫ ∞

0
|u|p(r, θ)rn−1−pkdrdvolh

≤

(

p

|n− pk|

)p ∫

N

∫ ∞

0

∣

∣

∣

∣

∂u

∂r

∣

∣

∣

∣

p

(r, θ)rn−1−p(k−1)drdvolh

≤

(

p

|n− pk|

)p ∫

C(N)

|∇u|pg

rp(k−1)
dvolg.(3.8)

Here, for the first inequality, we used the inequality (3.7) for each u(r, θ)
with fixed θ and a = pk + 1− n. The last inequality follows from |∇u|g =
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(

∣

∣

∂u
∂r

∣

∣

2
+ 1

r2
|∇Nu|

2
h

)
1

2

, where ∇N is the covariant derivative on N with re-

spect to the metric h.
Then combining with the Kato’s inequality, |∇|∇ku|| ≤ |∇k+1u| for any

smooth function u and non-negative integer k, this Hardy inequality on
metric cones directly implies the following equivalence between the weighted
Sobolev norms and the usual Sobolev norms.

Lemma 3.1. Let (Mn, g, x) be a compact Riemannian manifold with a

single conical singularity at x. For each p > 1 and k ∈ N with p i ̸= n for

all i = 1, 2, . . . , k, if (Mn, g, x) satisfies the condition ACk−1 near x defined

in (2.1), then we have for any u ∈ C∞
0 (M \ {x}),

(3.9) ∥u∥W k,p(M) ≤ ∥u∥W k,p

k−
n
p
(M) ≤ C(g, n, p, k)∥u∥W k,p(M),

for a constant C(g, n, p, k) depending on g, n, p, and k.
Consequently, we have W k,p

k−n

p

(Mn) =W k,p(Mn) for each p > 1 and k ∈

N with p i ̸= n for all i = 1, 2, . . . , k.

Even though we have obtained that some weighted Sobolev norms are
equivalent to the usual Sobolev norms, sometimes it is still more conve-
nient to use weighted Sobolev norms. For example, a certain homogeneity of
weighted Sobolev norms on metric cones has been demonstrated to be very
useful in §8 in [DW18] and the proof of Proposition 3.4 below. Moreover,
we only have equivalence between the usual Sobolev norms and weighted
Sobolev norms for special weight indices δ = k − n

p
with k, p, and n satis-

fying certain conditions. But, in some problems, we have to use weighted
Sobolev norms with more general weight indices, e.g. in §4 and §5.

Another application of the Hardy inequality obtained in (3.8) is the fol-
lowing Sobolev inequality on the metric cone (C(N) = (0,∞)×Nn−1, g =
dr2 + r2h).

Lemma 3.2. For 1 < p < n, and any u ∈ C∞
0 (C(N)), we have

(3.10) ∥u∥Lq(C(N)) ≤ C∥∇u∥Lp(C(N)),

for a constant C only depending on the cross section (Nn−1, h) and p, where
q = np

n−p
.

Sketch of the proof of Lemma 3.2: The Sobolev inequality in Lemma 3.2
has been established in [DY] for the case p = 2. And no essential difference
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between p = 2 case and general case in Lemma 3.2. For proof we refer to
[DY]. The basic idea is to choose a finite sufficiently small open cover for the
cross section (Nn−1, h) so that each piece can be embedded into Euclidean
unit sphere Sn−1 and the metric h restricted onto each small piece is equiva-
lent to standard metric on the Euclidean unit sphere. Then on the cone over
each small piece the metric h is equivalent to standard Euclidean metric on
Rn. Then we choose a partition of unity {ρi}

N
i=1 subject to the open cover

chose for (Nn−1, h). If we let π : C(N) → N be the natural projection. Then
an important observation pointed in [DY] is the pointwise estimate:

(3.11) |∇(π∗ρi)|(r, θ) ≤ Cir
−1,

where Ci is a constant, and ∇ is the covariant derivative with respect to
g = dr2 + r2h on the cone. Then combining (3.8) and (3.11), one can easily
obtain Sobolev inequality in Lemma 3.2.

By applying the Kato’s inequality again, Lemma 3.2 implies the follow-
ing Sobolev inequalities and Sobolev embedding on compact Riemannian
manifolds with isolated conical singularities.

Proposition 3.3. Let (Mn, g, x) be a compact Riemannian manifold with

a single conical singularity at x. For each 1 < p < n, we have

1) for any u ∈ C∞
0 (M \ {x})

(3.12) ∥u∥W l,q(M) ≤ C(M, g, p, k)∥u∥W k,p(M),

for any 1 ≤ q ≤ ql, where C(M, g, p, k) is a constant, and l < k and ql
satisfy 1

ql
= 1

p
− k−l

n
> 0,

2) hence continuous embedding W k,p(M) ⊂W l,q(M), for any 1 ≤ q ≤ ql,

Thus, the Sobolev embedding on compact manifolds with isolated conical
singularities relies on the weighted Lp-Hardy inequality (3.7) for p > 1, which
is known not to be true in the case of p = 1. So in general, we do not
have Sobolev embeddings on manifolds with isolated conical singularities
in the case of p = 1. However, in [Beh13], Behrndt has established weighted

Sobolev embeddings for all p ≥ 1 on compact manifolds with isolated conical
singularities as follows by using a homogeneity of weighted Sobolev norms
on metric cones and a scaling technique, which is used in [Bar86] in the case
of asymptotically Euclidean manifolds.
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Proposition 3.4 ([Beh13], Theorem 2.5). Let (Mn, g, x) be a compact

Riemannian manifold with a single conical singularity at x satisfying the

condition ACk−1 defined in (2.1).

1) For each 1 ≤ p < n, δ ∈ R, we have for any u ∈ C∞
0 (M \ {x})

(3.13) ∥u∥W l,q

δ (M) ≤ C∥u∥W k,p

δ (M),

for any 1 ≤ q ≤ ql, a constant C = C(g, n, p, k, l) is a constant, l < k,
and ql satisfy

1
ql
= 1

p
− k−l

n
> 0. Therefore, we have continuous embed-

ding W k,p
δ (M) ⊂W l,q

δ (M), for l < k and q ≤ ql.

2) For any u ∈W k,p
δ (M) with k > n

p
+ l, we have

(3.14) ∥u∥Cl
δ(M) ≤ C∥u∥W k,p

δ (M),

for a constant C = C(g, n, k). Therefore, we have continuous embed-

ding W k,p
δ (M) ⊂ C l

δ(M). Moreover,

(3.15) |∇lu(r, x)| = o(r−l+δ) as r → 0.

Remark 3.5. The local version of weighted Sobolev inequality in (3.13)
has been established in Theorems 2.1 and 2.2 in [CLW12] by a different
method.

The weighted Sobolev embeddings in Proposition 3.4 are special cases
of embeddings obtain in Theorem 2.5 in [Beh13] with the same weight index
δ. Here we also obtain the asymptotic behavior in (3.15) for functions in
certain weighted Sobolev spaces similarly as in Theorem 1.2 in [Bar86].
This asymptotic behavior will be used in obtaining an asymptotic behavior
for the minimizing function of the W -functional near the singularities on
manifolds with isolated conical singularities.

In Theorem 3.3 in [BP03], on a compact Riemannian manifold with
isolated tame conical singularities Mn of dimension n, the continuous em-
bedding W k,2

k−n

2

(Mn) ⊂ Lq(Mn) for k ≥ 1 and 2 ≤ q ≤ 2n
n−2 with n ≥ 5 has

been shown, and these can be considered as special cases of Proposition 3.4,
since ∥u∥Lq(M) ≤ ∥u∥W 0,q

k−
n
2

(M) for all k ≥ 1 and 2 ≤ q ≤ 2n
n−2 with n ≥ 5.

Finally, we show the following compactness property for a weighted
Sobolev embedding obtained in Proposition 3.4. This compactness property
will be used in showing the existence of the minimizer of the W -functional.
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Proposition 3.6. Let (Mn, g, x) be a compact Riemannian manifold with

a single conical singularity at x. The embedding W 1,1
1−n(M) ⊂ Lq(M) is com-

pact for any 1 ≤ q < n
n−1 .

Proof. The embedding follows from W 1,1
1−n(M) ⊂W 0,q

1−n ⊂ Lq(M) for 1 ≤
q < n

n−1 . The first inclusion is given in Proposition 3.4. The second inclu-
sion follows from q(1− n) + n > 0 and the definition of weighted Sobolev
norms (3.2). Thus, we only need to show the compactness of the embed-
ding. For that we will use the idea of the proof of Lemma 3.2 described right
after the lemma.

Choose 0 < ϵ < ϵ0
10 sufficiently small so that C3ϵ(N) = (0, 3ϵ)×N ⊂M

is a conical neighborhood of x, and on C2ϵ(N),

1

2
(g0 = dr2 + r2h0) ≤ (g = dr2 + r2hr) ≤ 2(g0 = dr2 + r2h0).

Then choose a smooth function ϕ1 on M \ {x} with ϕ1 ≡ 1 on Cϵ(N) ⊂
M \ {x}, supp(ϕ1) ⊂ C2ϵ(N), 0 ≤ ϕ1 ≤ 1, and ϕ1|C2ϵ(N) = ϕ1(r) is a radial
function. And set ϕ2 = 1− ϕ1 on M \ {x}.

Let {um}∞m=1 ⊂ C∞
0 (M \ {x}) ⊂W 1,1

1−n(M) be a sequence with bounded

W 1,1
1−n(M) norm, i.e.

(3.16) ∥um∥W 1,1
1−n(M) =

∫

M

(|∇um|+ χ|um|)dvolg ≤ A,

for some uniform constant A, where χ is the weight function given in (3.1).
We choose a finite sufficiently small open cover {Ui}

i0
i=1 of Nn−1, such

that Ui can be embedded into the Euclidean unit sphere Sn−1, and

(3.17)
1

2
gSn−1 ≤ h0|Ui

≤ 2gSn−1 ,

for all 1 ≤ i ≤ i0. Consequently, C2ϵ(Ui) = (0, 2ϵ)×N can be embedded into
Rn as Φi : C2ϵ(Ui) → B1(0) ⊂ Rn, and

(3.18)
1

4
Φ∗
i (gRn) ≤ (g = dr2 + r2hr)|C2ϵ(Ui) ≤ 4Φ∗

i (gRn),

for all 1 ≤ i ≤ i0, where B1(0) is the unit ball centered at the origin in Rn.
We also choose a partition of unity {ρi}

i0
i=1 subject to the open cover

{Ui}
i0
i=1 of Nn−1. Then for each 1 ≤ i ≤ i0, and m ∈ N, (π∗(ρi) · ϕ1 · um) ◦
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Φ−1
i ∈ C∞

0 (B1(0)), and

∥(π∗(ρi) · ϕ1 · um) ◦ Φ−1
i ∥

W 1,1(B1(0))

=

∫

B1(0)

(

|∇((π∗(ρi) · ϕ1 · um) ◦ Φ−1
i )|gRn + |(π∗(ρi) · ϕ1 · um) ◦ Φ−1

i |
)

dvolgRn

≤

∫

B1(0)
[(4|∇(π∗(ρi))|g|ϕ1 · um|) ◦ Φ−1

i +(π∗(ρi)4|∇(ϕ1 · um)|g) ◦ Φ
−1
i ]dvolgRn

+

∫

B1(0)
|(π∗(ρi) · ϕ1 · um) ◦ Φ−1

i |dvolgRn

≤ 4n+1C

∫

C2ϵ(N)

(

1

r
|um|+ |∇um|g + |um|

)

dvolg

≤ 4n+1C

∫

M

(|∇um|g + χ|um|)dvolg

= 4n+1C∥um∥W 1,1
1−n(M) ≤ 4n+1C ·A,

where C and A are constants independent of m and i.
Then we choose a finite open cover {Vj}

j0
j=1 for the compact manifold

M \ Cϵ(N) with smooth boundary (N, ϵ2hϵ) such that the metric g on M
restricted on each Vj is quasi-isometric to the standard n-dimensional unit
ball or a subset of the unit ball, say Ψj : Vj → B1(0) ⊂ Rn. We also choose

a partition of unity {ψj}
j0
j=1 subject to the open cover. Then for each 1 ≤

j ≤ j0, and m ∈ N, (ψj · ϕ2 · um) ◦Ψ−1
j ∈ C∞

0 (B1(0)), and

∥(ψj · ϕ2 · um) ◦Ψ−1
j ∥

W 1,1(B1(0))
≤ C ′∥um∥W 1,1(M)(3.19)

≤ C ′∥um∥W 1,1
1−n(M) ≤ C ′ ·A,

for constants C ′ and A independent of m and i.
Then for each fixed 1 ≤ q < n

n−1 , by the compactness of usual Sobolev
embedding on the closed unit ball in Rn, we can choose a subsequence of
{um}∞i=1, which is still denoted by {um}, such that {π∗(ρ1) · ϕ1 · um}∞m=1

is a Cauchy sequence in Lq(M). And do this for i = 2, . . . , i0, and then
j = 1, . . . , j0, and the subsequences from each step. Finally, we can ob-
tain a subsequence of the original sequence {um}, which is still denoted
by {um}, such that all {π∗(ρi) · ϕ1 · um} for 1 ≤ i ≤ i0 and all {ψj · ϕ2 · um}
for 1 ≤ j ≤ j0 are Cauchy sequences in Lq(M). Therefore, {um} is a Cauchy
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sequence in Lq(M), since

∥um − um′∥Lq(M)(3.20)

≤

i0
∑

i=1

∥π∗(ρi) · ϕ1 · um − π∗(ρi) · ϕ1 · um′∥Lq(M)

+

j0
∑

j=1

∥ψj · ϕ2 · um − ψj · ϕ2 · um′∥Lq(M).

This completes the proof, since C∞
0 (M \ {x}) is dense in W 1,1

1−n(M). □

4. Finite lower bound of W -functional

In this section, we show that on a manifold with a single conical singular-
ity (Mn, g, x) the W -functional has a finite lower bound over all functions
in H1(M). By the work in [DW18] about the λ-functional on these mani-
folds, the key here is to obtain a bound for the term

∫

M
u2 log udvolg in the

definition of the W -functional.
By using the L2 Sobolev inequality on compact manifolds with isolated

conical singularities obtained in Proposition 3.3 for the particular case of
k = 1, p = 2, it is well-known that we can derive the following Logarithmic
Sobolev inequality (see, e.g. Lemma 5.8 in [CLN06]).

Lemma 4.1. Let (Mn, g, x) be a compact Riemannian manifold with a

single conical singularity at x. For any a > 0, there exists a constant C(a, g)
such that if u ∈W 1,2(M) with u > 0 and ∥u∥L2(M) = 1, then

(4.1)

∫

M

u2 lnudvolg ≤ a

∫

M

|∇u|2dvolg + C(a, g).

Then for any a > 0, and u ∈ H1(M) ≡W 1,2
1−n

2

(M) ⊂W 1,2(M) with u >

0 and
∥

∥

∥

1
(4πτ)

n
4

u
∥

∥

∥

L2(M)
= 1, we have
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W (g, u, τ) =
1

(4πτ)
n

2

∫

M

[τ(Rgu
2 + 4|∇u|2)− 2u2 lnu− nu2]dvolg

≥
1

(4πτ)
n

2

∫

M

τ(Rgu
2 + 4|∇u|2)dvolg − a

1

(4πτ)
n

2

∫

M

|∇u|2dvolg

−
n

2
ln(4πτ)− C(a, g)− n

=
τ

(4πτ)
n

2

∫

M

(Rgu
2 +

(

4−
a

τ

)

|∇u|2)dvolg

−
n

2
ln(4πτ)− C(a, g)− n.(4.2)

Moreover, for each fixed τ > 0, by Remark 1.3 in [DW18], we can choose
a sufficiently small a > 0 such that

inf

{
∫

M

(Rgu
2 +

(

4−
a

τ

)

|∇u|2)dvolg | u ∈ H1(M), u > 0,
∥u∥L2(M)

(4πτ)
n

4

= 1

}

> −∞,

if Rh0
> (n− 2) on the cross section of at the conical singularity.

Thus, we have

Theorem 4.2. Let (Mn, g, x) be a compact Riemannian manifold with a

single conical singularity at x. If the scalar curvature of the cross section at

the conical singularity Rh0
> (n− 2) on N , then for each fixed τ > 0,

(4.3) inf

{

W (g, u, τ) | u ∈ H1(M), u > 0,

∥

∥

∥

∥

1

(4πτ)
n

4

u

∥

∥

∥

∥

L2(M)

= 1

}

> −∞.

Moreover, there exists u0 ∈ C∞(M \ {x}) that realizes the infimum.

Proof. We have seen that the infimum is finite with the condition Rh0
>

(n− 2). Now we show the existence of the minimizer u0 by using direct
methods in the calculus of variations by the following two steps.

Step 1. Let
(4.4)

m = inf

{

W (g, u, τ) | u ∈ H1(M), u > 0,

∥

∥

∥

∥

1

(4πτ)
n

4

u

∥

∥

∥

∥

L2(M)

= 1

}

> −∞,



✐

✐

“3-Dai” — 2020/7/21 — 14:53 — page 679 — #15
✐

✐

✐

✐

✐

✐

Perelman’s W -functional on manifolds 679

and {ui}
∞
i=1 be a minimizing sequence, i.e.

(4.5) ui > 0,

∥

∥

∥

∥

1

(4πτ)
n

4

ui

∥

∥

∥

∥

L2(M)

= 1, for all i,

and

(4.6) lim
i→∞

W (g, ui, τ) = m.

By the work in [DW18], there exist constants A = A(g), C1 = C1(g,A),
and C2 = C2(g,A), such that for any u ∈ H1(M)

(4.7) C1∥u∥H1(M) ≤

∫

M

((Rg +A)u2 + 4|∇u|2)dvolg ≤ C2∥u∥H1(M).

Here, the left inequality follows from Theorem 5.1 in [DW18] with the con-
dition Rh0

> (n− 2), and the right inequality follows from the definition of
the weighted Sobolev norm ∥ · ∥H1(M) and the fact that M and the cross
section N are compact.

Then by (4.2) and (4.7), there exists a constant B such that

(4.8) ∥ui∥H1(M) ≤ B,

for all i. Thus, by Theorem 3.1 in [DW18], there exists a subsequence of the
minimizing sequence {ui}, which is still denoted by {ui}, weakly converges to
u0 in H1(M), and strongly converges to u0 in L2(M) for some u0 ∈ H1(M).

Consequently, u0 ≥ 0 a.e., and
∥

∥

∥

1
(4πτ)

n
4

u0

∥

∥

∥

L2(M)
= 1.

Step 2. Now we will show that W (g, u0, τ) ≤ lim
i→∞

W (g, ui, τ) = m, and

then u0 is a minimizer.
For any u, v ∈ H1(M), let

(4.9) (u, v)A ≡

∫

M

((Rg +A)u · v + 4⟨∇u,∇v⟩)dvolg.

Then by (4.7), (u, v)A is an inner product on H1(M), and it induces a norm
∥ · ∥A that is equivalent to H1(M) norm. Then we have

∥ui∥
2
A = ∥u0∥

2
A + 2(u0, ui − u0)A + ∥ui − u0∥

2
A(4.10)

≥ ∥u0∥
2
A + 2(u0, ui − u0)A.
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Becasue u0 ∈ H1(M) and ui weakly converges to u0 in H1(M), one has

(4.11) lim
i→∞

(u0, ui − u0)A = 0.

Thus,

(4.12) lim
i→∞

∥ui∥
2
A ≥ ∥u0∥

2
A.

Then combining with lim
i→∞

∥ui∥L2(M) = ∥u0∥L2(M), we obtain

lim
i→∞

∫

M

[τ(Rgu
2
i + 4|∇ui|

2)− nu2i ]dvolg(4.13)

≥

∫

M

[τ(Rgu
2
0 + 4|∇u0|

2)− nu20]dvolg.

So it suffices to show that
∫

M
u2i lnuidvolg →

∫

M
u20 lnu0dvolg, as i→

∞, for a subequence of the minimizing sequence {ui}. As in the proof of
Proposition 11.10 in [AH10], ∇(u2 lnu) = (2u lnu+ u)∇u, and for any γ >
0 there exists constants a, b > 0 such that |u lnu| ≤ a+ bu1+γ . Then for
sufficiently small γ > 0, we have

∫

M

|∇(u2i lnui)|dvolg ≤

∫

M

|ui + 2ui lnui| · |∇ui|dvolg

≤

(
∫

M

|2a+ ui|
2dvolg

)
1

2

(
∫

M

|∇ui|
2

)
1

2

+ 2b

(
∫

M

|ui|
2+2γ

)
1

2

(
∫

M

|∇ui|
2dvolg

)
1

2

≤ C3,(4.14)

for a constant C3 independent of i. Here, we use the Sobolev embedding
H1(M) ⊂W 1,2(M) ⊂ Lq(M) for 1 ≤ q ≤ 2n

n−2 . And also

∫

M

χ|u2i lnui|dvolg ≤

∫

M

χ|ui| · |a+ bu1+γ
i |dvolg

≤

(
∫

M

χ2|ui|
2dvolg

)
1

2

(
∫

M

|a+ bu1+γ
i |2dvolg

)
1

2

≤ ∥ui∥H1(M)

(

a(Volg(M))
1

2 + b

(
∫

M

|ui|
2+2γdvolg

)
1

2

)

≤ C4,(4.15)
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for a constant C4 independent of i.
Thus,

(4.16) ∥u2i lnui∥W 1,1
1−n(M) ≤ C3 + C4,

for all i (including i = 0). Then by Proposition 3.6, the sequence vi := u2i lnui
has a subsequence that converges to some v0 in L1(M). Moreover, u2i lnui
has a subsequence that converges to u20 lnu0 almost everywhere on M , since
ui converges to u0 in L

2(M). Thus v0 = u20 lnu0 in L
1(M), and so by passing

to a subsequence we have lim
i→∞

∫

M
u2i lnuidvolg =

∫

M
u20 lnu0dvolg.

Now we have obtained a minimizer u0 ∈ H1(M), and u0 is a weak solu-
tion of the elliptic equation

(4.17) − 4∆u+Rgu−
2

τ
u lnu−

n

τ
u−

m

τ
u = 0,

wherem is the infimum of theW -functional. The regularity of u0 and u0 > 0
can be shown locally. Thus the proof is the same as the compact smooth
case, for details, see, e.g. p. 179 in [AH10]. □

5. Asymptotic behavior of the minimizer

In this section, we obtain an asymptotic order for the minimizer near the
singularity by using a weighted elliptic bootstrapping. For this, we need the
following weighted Lp elliptic estimate. In the following, we set

(5.1) L := −∆+
1

4
R.

Proposition 5.1 (cf. Proposition 2.7 (ii) in [Beh13]). Let (Mn, g, x)
be a compact Riemannian manifold with a single conical singularity at x
satisfying the condition AC1 defined in (2.1). If u ∈W 0,p

δ (M), and Lu ∈

W 0,p
δ−2(M), then

(5.2) ∥u∥W 2,p

δ (M) ≤ C
(

∥Lu∥W 0,p

δ−2
(M) + ∥u∥W 0,p

δ (M)

)

,

for a constant C = C(g, n, k, δ).

This weighted elliptic estimate follows from the usual interior elliptic
estimates and the homogeneity of the operator L the same as the Laplace
operator for an exact cone. Combining this weighted elliptic estimate and
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the weighted Sobolev inequalities in Proposition 3.4 implies the following
asymptotic order estimate for the minimizer of the W -functional near the
conical singularities.

Theorem 5.2. Let u be the minimizer of W -functional obtained in Theo-

rem 4.2. If the manifold satisfying the condition AC1 defined in (2.1), then
we have

(5.3) u = o(r−α), as r → 0,

for any α > n
2 − 1.

Proof. Since u satisfies the second order elliptic equation

(5.4) Lu =
2

τ
u lnu+

n+m

τ
u,

and u ∈W 1,2
1−n

2

(M), where m is the infimum of the W -functional, by the

weighted Sobolev embedding in Proposition 3.4, we have u ∈W 0,p
1−n

2

(M), for

any 1 ≤ p ≤ 2n
n−2 .

Because for each γ > 0 there exists a constant a(γ) such that |u lnu| ≤
a(γ) + |u|1+γ , we have u lnu ∈W 0,p

(1−n

2
)(1+γ)(M) ⊂W 0,p

(1−n

2
)(1+γ)−2(M) for any

1 ≤ p ≤ 2n
(n−2)

1
(1+γ) and any γ > 0. So we have Lu ∈W 0,p

(1−n

2
)(1+γ)−2(M),

since u ∈W 0,p
1−n

2

(M) ⊂W 0,p
(1−n

2
)(1+γ)−2(M).

Thus, by Proposition 5.1, u∈W 2,p
(1−n

2
)(1+γ)(M) for any 1≤p≤ 2n

(n−2)
1

(1+γ)

and any γ > 0. If 2 < n < 6, then by (2) in Proposition 3.4 we have obtained
that u = o(r−α) as r → 0 for any α > n

2 − 1, since γ > 0 could be arbitrarily
small.

If n ≥ 6, then using Proposition 3.4 again, we have u ∈W 0,p
(1−n

2
)(1+γ)(M)

for any 1 ≤ p ≤ 2n
(n−2)(1+γ)−4 and any γ > 0, and u lnu ∈W 0,p

(1−n

2
)(1+γ)2(M)

for any 1 ≤ p ≤ 2n
[(n−2)(1+γ)−4]

1
(1+γ) and any γ > 0. Then as before we

have Lu ∈W 0,p
(1−n

2
)(1+γ)2−2(M), and by Proposition 5.1, we have u ∈

W 2,p
(1−n

2
)(1+γ)2(M), for any 1 ≤ p ≤ 2n

[(n−2)(1+γ)−4]
1

(1+γ) and any γ > 0.

For n = 6, we can choose p ≥ 1, such that 2 > n
p
= 6

p
> 2γ(1 + γ). And

then by (2) in Proposition 3.4 we have obtained that u = o(r−α) as r → 0
for any α > n

2 − 1, since γ > 0 could be arbitrarily small.
For 6 < n < 10, because 2n

[(n−2)(1+γ)−4]
1

(1+γ) <
2n

(n−6)(1+γ)2 , we can choose

p ≥ 1 such that 2 > n
p
> (n−6)(1+γ)2

2 for sufficiently small γ > 0. Thus u =

o(r−α) as r → 0 for any α > n
2 − 1, since γ > 0 could be arbitrarily small.
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Then for each fixed n ≥ 10, by repeating this process finitely many times,
we can always obtain that u = o(r−α) as r → 0 for any α > n

2 − 1. □
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