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Abstract

We study from a mostly topological standpoint, the L2-signature of certain spaces
with non-isolated conical singularities. The contribution from the singularities is identi-
fied with a topological invariant of the link fibration of the singularities. This invariant
measures the failure of the signature to behave multiplicatively for fibrations for which
the boundary of the fibre in nonempty. The result extends easily to cusp singularities
and can be used to compute the L2 cohomology of certain noncompact hyper-kähler
manifolds which admit geometrically fibered end structures.

1 Introduction

In this paper, we study the L2-cohomology and L2-signature for certain spaces with non-
isolated conical singularities. We call these generalized Thom spaces. Appropriately formu-
lated, our results extend easily to cusp singularities as well. Our main theorem identifies
the contribution to the L2-signature from a singular stratum with a topological invariant
of the link fibration of the stratum. As an immediate application, we get a proof of the
adiabatic limit formula of [13], in the case of odd dimensional fibre, without resorting to
the quite nontrivial analytical results of [24]. This was actually one of original motivations.
A second motivation was to study certain spaces with singularities which can be viewed as
generalizations of Thom spaces.1

The L2-cohomology of spaces with conical singularities has been studied extensively
in [9, 10]; see also [9, 12] for the relation with intersection cohomology, and [12, 26] for the
Cheeger-Goresky-MacPherson conjecture. For case of the cusp singularities, see [31, 32] and
for Zucker’s conjecture, see [22], [28]. For hyperbolic manifolds, see [23, 25].

The singular spaces that we consider can described as follows. Recall that a compact
Riemannian manifold M with finite isolated conical singularities is modeled on the finite
cone. That is, M is a compact topological space such that there are finite many points
p1, · · · , pk, so that M \{p1, · · · , pk} is a smooth Riemannian manifold and a neighborhood of
each singular point pi is isomorphic to a finite metric cone, C[0,a](Zi), on a closed Riemannian

1This part of our work was done more than fifteen years ago but remained unpublished. We learned of
the more recent connections with the Sen’s conjecture from conversations with Tamas Hausel; see the end
of this section.
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manifold Zi. In addition to isolated conical singularities, we also allow finitely many closed
singular strata of positive dimension, whose normal fibres are of metric conical type. A
prominent feature of these spaces is that the link fibration of a singular stratum need
not be trivial. The discussion in this generality is necessary since we wish to identify the
contribution to the L2-signature from the singular strata in terms of global topological
invariants of the link fibration.

A neighborhood of a singular stratum of positive dimension can be described as follows.
Let

Zn →Mm π→ Bl (1.1)

denote a fibration of closed oriented smooth manifolds. Denote by CπM the mapping
cylinder of π. This is obtained by attaching a cone to each of the fibres. Indeed, we have

C[0,a](Z)→ CπM → B . (1.2)

The space CπM also comes with a natural quasi-isometry class of metrics. A metric can
be obtained by choosing a submersion metric on M :

gM = π∗gB + gZ .

Then, on the nonsingular part of CπM , we take the metric,

g1 = dr2 + π∗gB + r2gZ , (1.3)

and complete it.
The general class of spaces with non-isolated conical singularities as above can be de-

scribed as follows. A space X in the class will be of the form

X = X0 ∪X1 ∪ · · · ∪Xk, (1.4)

where X0 is a compact smooth manifold with boundary, and each Xi (for i = 1, . . . , k) is the
associated mapping cylinder, CπiMi, for some fibration, (Mi, πi), as above. We require that
the restriction of the metric to Xi is quasi-isometric to one of the form (1.3). Spaces with
more complicated singularities can be obtained by iterating this construction, namely, by
allowing the base and fibre of the fibration, (1.1), to be closed manifolds with non-isolated
conical singularities.

Consider again the space, CπM , in (1.2). By coning off the boundary, ∂M , we obtain
what we call a generalized Thom space T . Thus, T = CπM ∪M C(M) is a stratified space
with two singular strata, namely, B and a single point.

The metric on T is constructed as follows. Equip C(M) with the conical metric

g2 = dr2 + r2gM .

Perturb g1, g2 near r = 1 so that they can be glued together so as to obtain to a smooth
metric, g, on T . We will call (T, g) a generalized Thom space; see the example below.
Clearly, a different choice of gM will give rise to a metric quasi-isometric to g.
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Example 1 Let ξ π→ B be a vector bundle of rank k. Then we have the associated sphere
bundle:

Sk−1 → S(ξ) π→ B.

The generalized Thom space constructed out of this fibration coincides with the usual Thom
space equipped with a natural metric.

We now introduce the topological invariant which gives the contribution to the L2-
signature for each singular strata. In, [13], in studying adiabatic limits of eta invariants,
the second author introduced a global topological invariant associated with a fibration. (For
adiabatic limits of eta invariants, see also [5, 6, 11, 30].) Let (Er, dr) be the Er-term with
differential, dr, of the Leray spectral sequence of (1.1). Define a pairing

Er ⊗ Er → R
φ⊗ ψ 7→ 〈φ · drψ, ξr〉

,

where ξr is a basis for Emr naturally constructed from the orientation. In case m = 4k − 1,

when restricted to E
m−1

2
r , this pairing becomes symmetric. We define τr to be the signature

of this symmetric pairing and put
τ =

∑
r≥2

τr .

It is shown in [13] that, unlike the case of fibrations whose fibres are closed manifolds,
when the fibres have nonempty boundary, the signature does not always behave multiplica-
tively, even in a generalized sense; compare [27], [1]. The failure of such multiplicative
behavior is intrinsically measured by the τ invariant of the associated boundary fibration;
see [13].

Bismut and Cheeger studied related questions by introducing spaces with conical sin-
gularities as a technical tool; see [3], [4] . They showed that if one closes up the fibration
of manifolds with boundary by attaching cones to the boundary of each fibre then for the
corresponding fibration of manifolds with singularities, then the L2-signature does in fact
behave multiplicatively. One reason for studying generalized Thom spaces is to understand
the difference between the approaches of [13] and [3], [4].

In this paper, we restrict attention to the case in which the fibre Z of (1.1) is either odd
dimensional or its middle dimensional L2-cohomology vanishes. Furthermore, we make the
same assumptions for the links of the isolated conical singular points of the base and the
fibre. (The general case requires the introduction of an “ideal boundary condition” as in
[10, 11].) The result of [9] shows that H∗(2)(T ), the L2-cohomology of T, is finite dimensional
and the Strong Hodge theorem holds. In fact, H∗(2)(T ) agrees with the middle intersection
cohomology of Goresky and MacPherson [14, 15]. Consequently, the L2-signature of T is a
topological invariant. Here, in defining the signature, we take the natural orientation on
CπM and glue to C(M) with the reverse of its natural orientation, in order to obtain the
orientation on T .
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Theorem 1.1. The L2-signature of the generalized Thom space T is equal to −τ :

sign(2)(T ) = −τ.

Let τ(Xi) denote the τ invariant for the fibration associated with Xi. Theorem 1.1
combined with Novikov additivity of the signature yields the following. (Note the reversing
of the orientation.)

Corollary 1.2. For the space X of the form (1.4) the L2-signature is given by

sign(2)(X) = sign(X0) +
k∑
i=1

τ(Xi) .

Example 2. Consider again the sphere bundle of a vector bundle,

Sk−1 → S(ξ) π→ B .

Let Φ denote the Thom class and χ the Euler class. Then the Thom isomorphism gives

H∗(D(ξ), S(ξ)) ⊗ H∗(D(ξ), S(ξ)) → R

↑ π∗(·) ∪ Φ ↑ π∗(·) ∪ Φ

H∗(B) ⊗ H∗(B) → R

φ ψ → [φ ∪ ψ ∪ χ][B] .

Thus, sign(D(ξ)) = −sign(2)(T ), is the signature of this bilinear form on H∗(B). Since in
this case, the spectral sequence degenerates at E2, and d2ψ = ψ ∪ χ, it follows that the
invariant, sign(D(ξ)), agrees with τ . According to Theorem 1.1, the same result is still true
even if the sphere bundle does not arise from a vector bundle.

In spirit, our proof of Theorem 1.1 follows Example 2. Thus, we first establish an analog
of Thom’s isomorphism theorem in the context of generalized Thom spaces. In part, this
consists of identifying the L2-cohomology of (T, g) in terms of the spectral sequence of the
original fibration. The Mayer-Vietoris argument as in [9] shows that

H i
(2)(T ) =



H i
(2)(CπM,M), i > m+1

2

Im (H i
(2)(CπM,M)→ H i

(2)(CπM)), i = m+1
2

H i
(2)(CπM), i < m+1

2

.

(Recall that m = dimM is the dimension of the total space of the fibration and n = dimZ
is the dimension of the fibre.)

Let Er(M) = ⊕Ep,qr (M), dp,qr : Ep,qr (M) → Ep+r,q−r+1
r (M), denote the Leray spectral

sequence of the fibration (1.1). (For some of the notation in the following theorem, we refer
to Section 4.)
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Theorem 1.3. The following are isomorphisms.

Hk(Cπ(M),M) ∼=⊕p+q=k,q≥(n+3)/2 [Im (dp,q−1
q−(n−1)/2)∗⊕

⊕ Im (dp,q−1
q−(n−1)/2+1)∗)⊕ · · · ⊕ Ep,q−1

∞ (M)] ,

and
Hk(Cπ(M)) ∼=⊕p+q=k,q≤(n−1)/2 [Im d

k−(n+3)/2,(n+1)/2
(n+3)/2−q ⊕

⊕ Im d
k−(n+5)/2,(n+3)/2
(n+5)/2−q ⊕ · · · ⊕ Ep,q∞ (M)] .

Moreover, in terms of these identifications, the map,

Hk(Cπ(M),M)→ Hk(Cπ(M)) ,

is given by ⊕dr.

Remark. It can be shown that Theorem 1.1, Corollary 1.2 and Theorem 1.3 have extensions
to the case of iterated conical singularities.

From the standpoint of index theory, the L2-signature is of particular interest. For the
case of fibrations with smooth fibers, it was considered in [4].

Let Z and B of (1.1) be closed smooth manifolds. Let AM denote the signature operator
on M with respect to the metric gM . In addition, let AM,ε denote the signature operator
on M with respect to the metric gM,ε, where

gM,ε = ε−1π∗gB + gZ .

Define the η̃-form as in [3, 5]. Let the modified, L-form, L, be defined as in [4]. Let RB

denote the curvature of B. According to [4] the following holds.

Theorem 1.4 (Bismut-Cheeger). If the fibre of (1.1) is odd dimensional, then

sign(2)(T ) = − lim
ε→0

η(AM,ε) +
∫
B
L(
RB

2π
) ∧ η̃ .

Remark. Since the smooth part of T is diffeomorphic to (0, 1)×M , its contribution to the
index formula vanishes. In the above formula, the first term arises from the isolated conical
point, while the second term arises from the singular stratum B.

Combining Theorem 1.4 with our result on the L2-signature, Theorem 1.1, we recover
the following adiabatic limit formula of [13]; see also [5, 6, 10, 30].

Corollary 1.5. With the same assumptions as in Theorem 1.4,

lim
ε→0

η(AM,ε) =
∫
B
L(
RB

2π
) ∧ η̃ + τ.
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Note that if (1.1) actually bounds a fibration of manifolds with boundary, then the above
adiabatic limit formula is a consequence of the signature theorem of Atiyah-Patodi-Singer [2]
and the Families Index Theorem for manifolds with boundary of Bismut-Cheeger; [3].2 On
the other hand, it seems difficult to decide whether every fibration (with odd dimensional
fibres) actually bounds and it is generally believed that this is not the case. The method
of attaching cones enables one to avoid this issue.

In the case in which (1.1) consists of closed smooth manifolds, in place of a cone, one
can attach a cusp to each fibre. The metric at infinity of a locally symmetric space of rank
one is of this type. Essentially because the Poincaré lemma for metric cusps gives the same
calculation as for metric cones, similar results hold in this case.

The study of the L2-cohomology of the type of spaces with conical singularities discussed
here turns out to be related to work on the L2-cohomology of noncompact hyper-kähler
manifolds which is motivated by Sen’s conjecture; see e.g [17], [16] . Hyper-kähler mani-
folds often arise as moduli spaces of (gravitational) instantons and monopoles, and so-called
S-duality predicts the dimension of the L2-cohomology of these moduli spaces (Sen’s conjec-
ture). Many of these spaces can be compactified to given a space with non-isolated conical
singularities. In such cases, our results can be applied. We would also like to refer the
reader to the work of Hausel-Hunsicker-Mazzeo, [16], which studies the L2-cohomology and
L2-harmonic forms of noncompact spaces with fibered geometric ends and their relation to
the intersection cohomology of the compactification. Various applications related to Sen’s
conjecture are also considered there.

In the general case i.e. with no the dimension restriction on the fibre, the L2-signature
for generalized Thom spaces is discussed in [19]. In particular, Theorem 1.1 is proved for
the general case in [19]. However, one of ingredients there is the adiabatic limit formula
of [13], rather than the direct topological approach taken here. As mentioned earlier, one
of our original motivations was to give a simple topological proof of the adiabatic limit
formula. In [18], the methods and techniques introduced in our old unpublished work are
used in the more general situation to derive a very interesting topological interpretation for
the invariant τr. This circumstance provided additional motivation for us to write up this
work for publication.

Acknowledgement: The second author would like to thank Tamas Hausel, Eugenie Hun-
sicker and Rafe Mazzeo for very stimulating conversations. We also thank the referee for
useful suggestions.

2 Review of L2-cohomology

We begin by reviewing the basic properties of L2-cohomology; for details, see [9]. Let (Y, g)
denote an open (possibly incomplete) Riemannian manifold. We denote by [g] the quasi-
isometry class of g; i.e., the collection of Riemannian metrics g′ on M such that for some

2In this case, the invariant, τ , enters because it measures the non-multiplicativity of the signature as in
[13].
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positive constant c,
1
c
g ≤ g′ ≤ cg.

Let Ωi = Ωi(Y ) denote the space of C∞ i-forms on Y and L2 = L2(Y ) the L2 completion
of Ωi with respect to the L2-metric induced by g. Define d to be the exterior differential
with the domain

dom d = {α ∈ Ωi(Y ) ∩ L2(Y ); dα ∈ L2(Y )}.

Put Ωi
(2)(Y ) = Ωi(Y )∩L2(Y ). As usual, let δ denote the formal adjoint of d. In terms of

a choice of local orientation for Y , we have δ = ± ∗ d∗, where ∗ is the Hodge star operator.
We define the domain of δ by

dom δ = {α ∈ Ωi(Y ) ∩ L2(Y ); δα ∈ L2(Y )} .

Note that d, δ have well defined strong closures d̄, δ̄. That is, α ∈ dom d̄ and d̄α = η if
there is a sequence αj ∈ dom d such that αj → α and dαj → η in L2.

Usually, the L2-cohomology of Y is defined by

H i
(2)(Y ) = ker di/Im di−1 .

One can also define the L2-cohomology using the closure d̄. Put

H i
(2),#(Y ) = ker d̄i/Im d̄i−1 .

In fact, the the natural map,

ι(2) : H i
(2)(Y ) −→ H i

(2),#(Y ) ,

is always an isomorphism.
In general, the image of d̄ need not be closed. The reduced L2-cohomology is defined by

H̄ i
(2)(Y ) = ker d̄i/Im d̄i−1 .

The space of L2-harmonic i-forms Hi(2)(Y ) is the space,

Hi(2)(Y ) = {θ ∈ Ωi ∩ L2; dθ = δθ = 0}.

When Y is oriented, the Hodge star operator induces the Poincaré duality isomorphism

∗ : Hi(2)(Y )→ Hn−i(2) (Y ). (2.5)

Remark. Some authors define the space of harmonic forms differently, using the Hilbert
spaces adjoint of d̄; see for example, [29]. In this case, the Hodge star operator does not
necessarily leave invariant the space of harmonic forms.
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Clearly, there is a natural map

Hi(2)(Y )→ H i
(2)(Y ) . (2.6)

The question of when this map is an isomorphism is of crucial interest. The most basic
result here is the Kodaira decomposition,

L2 = Hi(2) ⊕ dΛi−1
0 ⊕ δΛi+1

0 ,

which leaves invariant the subspaces of smooth forms. It follows then that

ker d̄i = Hi(2) ⊕ dΛi−1
0 .

Adopting the terminology of [9], we will say that the Strong Hodge Theorem holds
if the natural map (2.6) is an isomorphism. By the above discussion, if Im d̄ is closed,
then the map in (2.6) is surjective. In particular, this holds if the L2-cohomology is finite
dimensional.

On the other hand, if we assume that Stokes’ theorem holds for Y in the L2 sense, i.e.,

〈d̄α, β〉 = 〈α, δ̄β〉 (2.7)

for all α ∈ dom d̄, β ∈ dom δ̄, or equivalently, for all α ∈ dom d, β ∈ dom δ, then one has

Hi(2)(Y ) ⊥ Im d̄i−1,

and hence,
Hi(2)(Y ) ⊥ Im d̄i−1 .

Thus, (2.6) is injective in this case. Moreover,

Hi(2)(Y ) ∼= H̄ i
(2)(Y ), (2.8)

and
H i

(2)(Y ) = H̄ i
(2)(Y )⊕ Im d̄i−1/Im d̄i−1. (2.9)

Here, by the closed graph theorem, the last summand is either 0 or infinite dimensional.
To summarize, if the L2-cohomology of Y is finite dimensional and Stokes’ Theorem

holds on Y in the L2-sense, then the L2-cohomology of Y is isomorphic to the space of
L2-harmonic forms and therefore, when Y is orientable, Poincáre duality holds as well.
Consequently, the L2 signature of Y is well-defined in this case.

Next, we recall the relative de Rham theory [7] and relative L2-cohomology. Let f :
S → Y denote a map between manifolds. Define a complex, (Ω∗(f), d), by

Ωp(f) = Ωp(Y )⊕ Ωp−1(S), d(ω, θ) = (dω, f∗(ω)− dθ) . (2.10)

Clearly, d2 = 0, and hence, the corresponding cohomology H∗(f) is well defined.
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Put α(θ) = (0, θ), β(ω, θ) = ω, and consider the short exact sequence,

0→ Ωp−1(S) α→ Ωp(f)
β→ Ωp(Y )→ 0, (2.11)

where the differential of the complex Ω∗−1(S) is −d . There is an induced a long exact
sequence on the cohomology,

· · · → Hp(f)
β∗→ Hp(Y )

f∗→ Hp(S) α∗→ Hp+1(f)→ · · · . (2.12)

If S is a submanifold of M and i : S → Y is the inclusion map, we define the relative
cohomology, H∗(Y, S), to be H∗(i). To define the relative L2-cohomology H∗(2)(Y, S), we
assume further that S has trivial normal bundle in Y and that the metric in a neighbor-
hood of S is quasi-isometric to the product metric. Then H∗(2)(Y, S) can be defined as the
cohomology of the complex,

Ω∗(2)(Y, S) = Ω∗(2)(Y )⊕ Ω∗−1
(2) (S) ,

with dom(d) = {(ω, θ) | dω ∈ L2, dθ ∈ L2.}. It follows that the long exact sequence for
the pair (Y, S) is also valid in L2-cohomology.

We note that L2-cohomology is quasi-isometry invariant, and conformally invariant in
the middle dimension. Also Künneth formula holds for the L2-cohomology. Furthermore,
given an open cover {Uα}α, the Mayer-Vietoris principle holds for the L2-cohomology, pro-
vided there is a constant, C, such that there is a partition of unity {fα} subordinate to
{Uα}, such that |dfα| ≤ C, for all α . Hence, the Leray spectral sequence in L2-cohomology
is valid for a fibration, if such a partition of unity, subordinate to a trivializing open cover,
can be found on the base.3 Clearly, this holds for the fibrations considered here.

3 L2-cohomology of generalized Thom spaces

In this section, we begin to specialize to the case of generalized Thom spaces. Thus, we
retain the notation of (1.1)–(1.3). The results in this section are special cases, and in some
instances, refinements, of those which hold for more general stratified pseudomanifolds; see
[9], and also [29]. For completeness and later purposes we provide a somewhat detailed
account.

Let N be a Riemannian manifold, possibly incomplete. For simplicity, we assume that
m = dimN is odd. Further, we assume that for N , the L2-cohomology is finite dimensional
and that Stokes’ theorem holds in the L2 sense. Then for the finite cone, C[0,1](N), over N ,
we have the following facts from [9].

1) The L2-cohomology is finite dimensional and Stokes’ theorem holds in the L2 sense.
Consequently, the Strong Hodge Theorem holds for the cone.

3This can be shown by the usual double complex construction as in [7]
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2) For i ≤ m/2, the restriction map induces an isomorphism,

H i
(2)(C[0,1](N)) ∼= H i

(2)(N) ,

and for i ≥ (m+ 1)/2,
H i

(2)(C[0,1](N)) = 0 .

The above results are consequences of the following lemmas; for proofs, see [9].

Lemma 3.1. Let θ be an i-form on N that is in L2. Let θ̃ denote the extension of θ to
C[0,1](N) so that θ̃ is radially constant. Then θ̃ ∈ L2(C[0,1](N)) if and only if i < (m+1)/2.

When there is no danger of confusion, we will just write θ for θ̃.
For some a ∈ (0, 1), define the homotopy operator K0 as follows. If α = φ + dr ∧ ω is

an i-form and i < (m+ 1)/2, then

K0α =
∫ r

a
ω .

If i ≥ (m+ 1)/2, then

K0α =
∫ r

0
ω.

Lemma 3.2 (Poincaré lemma). For α ∈ dom d̄,

(d̄K0 +K0d̄)α = α− α(a), i < (m+ 1)/2

and
(d̄K0 +K0d̄)α = α, i ≥ (m+ 1)/2.

We now turn to the case of fibrations whose fibres are cones.

Theorem 3.3. The L2-cohomology of CπM is finite dimensional and Stokes’ theorem holds
in the L2 sense. Hence the Strong Hodge Theorem holds.

Proof. By the Mayer-Vietoris principle, verifying finite dimensionality reduces to verifying
finite dimensionality for a product fibration. Since the L2-cohmology is a quasi-isometry
invariant, we can use the product metric. Then the Künneth formula yields the desired
result.

It was proved in [9] that if the L2-Stokes theorem holds locally then it holds globally.
Further, the validity of the L2-Stokes theorem is a quasi-isometry invariant. Thus, once
again we can reduce to a product situation and the validity of the L2-Stokes theorem follows
from its validity for C[0,1](Z) and B.

Finally, we give a vanishing statement for L2-cohomology which is a direct generalization
of the one which holds in the case in which the base consists of a single point; [9]. Put
dimB = `, dimZ = n.
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Lemma 3.4.
H i

(2)(CπM) = 0 for i ≥ l +
n+ 1

2
.

Consequently,
Hm+1

(2) (CπM,M) ' Hm(M) ∼= R .

Proof. Assuming the first statement, the second follows from the long exact sequence

→ H i
(2)(CπM,M)→ H i

(2)(CπM)→ H i
(2)(M)→ H i+1

(2) (CπM,M)→ .

To prove the first statement, we make use of K0, the chain homotopy operator for cones.
By defining K0 fibrewise, we can naturally extend K0 to a cone bundle. If α = φ+ dr ∧ ω
and degα ≥ l + n+1

2 , put

K0α =
∫ r

0
ω .

Clearly, from what was shown for the case of a single cone, if α ∈ L2(CπM), then K0α ∈
L2(CπM). Now we verify

(d̄K0 +K0d̄)α = α.

Again, everything is local on B and quasi-isometric invariant, therefore, we can check it for
a product fibration with product metric. In this case

d̄ = d̄C[0,1](Z) + dB ,

and (d̄C(Z)K
0 +K0d̄C(Z))α = α. Hence it suffices to check

(dBK0 +K0dB)α = 0.

Note that α can be written as linear combinations of forms of type, (φ+dr∧ω)⊗τB, where
φ+ dr ∧ ω lives on C[0,1](Z). Then

dB(K0α) = dB

(∫ r

0
ω ⊗ τB

)
= (−1)degω

(∫ r

0
ω

)
⊗ dτB,

K0dBα = (−1)degω+1

(∫ r

0
ω

)
⊗ dτB .

These terms cancel one another.

4 Spectral Sequences

In this section, we recall some basics concerning spectral sequences; a general reference is
[7].

A filtered differential complex (K, d) is a differential complex that comes with a filtration
by subcomplexes

K = K0 ⊃ K1 ⊃ K2 ⊃ · · · . (4.13)
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A graded filtered complex, (K, d), has in addition, a grading K = ⊕
n∈ZK

n. In this case,
the filtration (4.13) induces a filtration on each Kn: Kn

p = Kn ∩Kp.
One has the following general result; see [7].

Theorem 4.1. Let (K, d) denote a graded filtered differential complex such that the induced
filtration on each Kn has finite length. Then the short exact sequence,

0→ ⊕Kp+1 → ⊕Kp → ⊕Kp/Kp+1 → 0 ,

induces a spectral sequence, (Ep,qr , dr), which converges to the cohomology group H∗(K, d).

In fact, if d : Kn → Kn+1 is of degree one, then

Ep,qr =
d−1(Kp+q+1

p+r ) ∩Kp+q
p

d−1(Kp+q+1
p+r ) ∩Kp+q

p+1 +Kp+q
p ∩ d(Kp+q−1

p−r+1 )
, (4.14)

where the differential, dr, is naturally induced by d.
We now recall Serre’s filtration and the Leray spectral sequence of the fibration (1.1).

A p-form ω is in F i if
ω(U1, U2, . . . , Up) = 0,

whenever p− i+ 1 of the tangent vectors, Uj , are vertical. If the fibration is equipped with
a connection, there is a splitting

TM = THM ⊕ T VM ∼= π∗TB ⊕ T VM .

Thus, Λ∗M = π∗Λ∗B ⊗ Λ∗T VM . Formally, we can use a(y, z) dyα ∧ dzβ with y the local
coordinates of B, z local coordinates of Y to indicate such a splitting. With this convention
Serre’s filtration can be simply described as

F i = {a(y, z) dyα ∧ dzβ : |α| ≥ i}.

The global definition shows that this filtration is independent of the particular choice of
local coordinates.
Definition. The horizontal degree of ω is at least i, h-deg ω ≥ i, or equivalently, the
vertical degree of ω is at most p− i (p = degω), v-deg ω ≤ p− i, if ω ∈ F i.

Serre’s filtration, together with the grading given by the degree of differential form,
gives rise to the Leray spectral sequence of the fibration, (Er, dr), which converges to the
cohomology of the total space M . Moreover, the E2 term is given by

E2 = ⊕Ep,q2 , Ep,q2 = Hp(B,Hq(Z)) , (4.15)

where Hq(Z) denotes the flat bundle over B, for which the fibre over b ∈ B is the q-th
L2-cohomology of the fibre π−1(b).

Now assume that both the base B and the vertical tangent bundle T VM are oriented.
When the fibration is equipped with a submersion metric, we can identify Hq(Z) with
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the bundle of fibrewise L2-harmonic q-forms. This induces a fiberwise metric on Hq(Z).
Note that Hq(Z) is a flat vector bundle over B. Via Hodge theory for cohomology with
coefficients in a flat bundle, we obtain an inner product on Ep,q2 = Hp(B,Hq(Z)).

The E3 term of the spectral sequence is given by the cohomology groups of the E2 term
with respect to the differential d2. Therefore, finite dimensional Hodge theory gives us

E2 = E3 ⊕ Im d2 ⊕ Im(d2)∗, (4.16)

when the adjoint is defined with respect to the inner product introduced above. This in
turn, induces an inner product on the E3 terms. By iterating this construction, we obtain
inner products on each of the Er, with the associated Hodge decomposition.

The above discussion extends to fibrations whose base and fibres are closed manifolds
with conical singularities, if we replace the usual cohomology with the L2-cohomology.

5 The Generalized Thom Isomorphism

This section is devoted to the proof of Theorem 1.3, which is a generalization of the Thom
isomorphism theorem. As explained in the introduction, the statement consists of identify-
ing the L2-cohomology of CπM and (CπM,M) in terms of the Leray spectral sequence of
M . Additionally, the map,

H∗(2)(CπM,M)→ H∗(2)(CπM) ,

is identified in terms of the differential of the spectral sequence. We begin with H∗(2)(CπM).
Note that since CπM is fibered over B,

C[0,1](Z)→ CπM → B ,

we also have a spectral sequence, (Ep,qr (CπM)d̄p,qr ), converging to the L2-cohomology of
CπM . On the other hand, the pullback of the inclusion i : M → CπM ,

i∗ : Ω∗(CπM)→ Ω∗(M),

is filtration preserving. Hence, i∗ induces homomorphism

ir : Ep,qr (CπM)→ Ep,qr (M)

which commutes with the differentials.
Now

Ep,q2 (CπM) = Hp(B,Hq(C(Z))) =


0 , q > n/2

Hp(B,Hq(Z)) = Ep,q2 (M), q < n/2
.

13



It follows that Ep,qr (CπM) = 0, for all q > n/2 and r ≥ 2. Moreover, by the Poincaré
Lemma 3.2, the identification here is given by i2, i.e.

ip,q2 =
{

0, q > n/2
Ident, q < n/2

.

It follows that

d̄p,q2 =
{

0, q > n/2
dp,q2 , q < n/2

,

and thus
Ep,q3 (CπM) = Ep,q3 (M), if q < (n− 1)/2,

E
p,(n−1)/2
3 (CπM) = ker dp,(n−1)/2

2 = E
p,(n−1)/2
3 (M)⊕ Im d

p−2,(n+1)/2
2 .

This implies that for q < (n− 1)/2, ip,q3 = Ident.
Also since ip,(n−1)/2

3 is induced by

Ident : Ep,(n−1)/2
2 (CπM)→ E

p,(n−1)/2
2 (M) ,

one sees that ip,(n−1)/2
3 is the natural projection,

E
p,(n−1)/2
3 (CπM) = ker dp,(n−1)/2

2 → ker dp,(n−1)/2
2

Im d
p−2,(n+1)/2
2

= E
p,(n−1)/2
3 (M) .

Hence, since ir commutes with d̄r, dr, we get

d̄p,q3 = dp,q3 , if q < (n− 1)/2 ,

and
d̄
p,(n−1)/2
3 | Im d

p−2,(n+1)/2
2 = 0 ,

d̄
p,(n−1)/2
3 |Ep,(n−1)/2

3 (M) = d
p,(n−1)/2
3 .

It follows that

Ep,q4 (CπM) = Ep,q4 (M) if q < (n− 1)/2− 1,

E
p,(n−3)/2
4 (CπM) = ker dp,(n−3)/2

3

= E
p,(n−3)/2
4 (M)⊕ Im d

p−3,(n+1)/2
3 ,

E
p,(n−1)/2
4 (CπM) = ker dp,(n−1)/2

3 ⊕ Im d
p−2,(n+1)/2
2

= E
p,(n−1)/2
4 (M)⊕ Im d

p−3,(n+3)/2
3 ⊕ Im d

p−2,(n+1)/2
2 .

By an inductive argument, we obtain the following proposition, in which some of the
Im d summands are obviously zero.
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Proposition 5.1. There are equalities,

E
p,(n−1)/2
∞ (CπM) = E

p,(n−1)/2
∞ (M)⊕ Im d

p−2,(n+1)/2
2 ⊕ Im d

p−3,(n+3)/2
3 ⊕ · · ·

· · · ⊕ Im d
p−l,(n+1)/2+l−2
l ,

E
p,(n−3)/2
∞ (CπM) = E

p,(n−3)/2
∞ (M)⊕ Im d

p−3,(n+1)/2
3 ⊕ Im d

p−4,(n+3)/2
4 ⊕ · · ·

· · · ⊕ Im d
p−l,(n+1)/2+l−3
l ,

...
Ep,0∞ (CπM) = Ep,0∞ (M)⊕ Im d

p−(n+3)/2,(n+1)/2
(n+3)/2 ⊕ Im d

p−(n+5)/2,(n+3)/2
(n+5)/2 ⊕ · · ·

· · · ⊕ Im dp−l,l−1
l .

Similarly, we have:

Proposition 5.2. For the relative cohomology,

E
p,(n+3)/2
∞ (CπM,M) = E

p,(n+1)/2
∞ (M)⊕ Im (dp,(n+1)/2

2 )∗ ⊕ Im (dp,(n+1)/2
3 )∗ ⊕ · · ·

· · · ⊕ Im (dp,(n+1)/2
l )∗,

E
p,(n+5)/2
∞ (CπM,M) = E

p,(n+3)/2
∞ (M)⊕ Im (dp,(n+3)/2

3 )∗ ⊕ Im (dp,(n+3)/2
4 )∗ ⊕ · · ·

· · · ⊕ Im (dp,(n+3)/2
l )∗,

...

Ep,n+1
∞ (CπM,M) = Ep,n∞ (M)⊕ Im (dp,n(n+3)/2)∗ ⊕ Im (dp,n(n+5)/2)∗ ⊕ · · ·

· · · ⊕ Im (dp,nl )∗.

Proof. Recall that
Ω∗(2)(CπM,M) = Ω∗(2)(CπM)⊕ Ω∗−1

(2) (M) .

Clearly, the map,
Ω∗−1

(2) (M) → Ω∗(2)(CπM,M)
θ → (0, θ) ,

is filtration preserving and commuting with differentials. Hence, this map induces homo-
morphisms

jr : (Ep,q−1
r (M), dr)→ (Ep,qr (CπM,M), d̃r) .

Moreover,

Ep,q2 (CπM,M) =

 Hp(B,Hq−1(Z)) = Ep,q−1
2 (M), q > n/2 + 1

0, q < n/2 + 1
.

In terms of this identification,

jp,q2 =
{

id q > n/2 + 1
0 q < n/2 + 1

.
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It follows that

d̃p,q2 =
{
dp,q−1

2 q > (n+ 3)/2
0 q ≤ (n+ 3)/2

,

and thus
Ep,q3 (CπM,M) = Ep,q−1

3 (M), if q > (n+ 3)/2 ,

E
p,(n+3)/2
3 (CπM,M) =

E
p,(n+1)/2
2 (M)

Im d2
= E

p,(n+1)/2
3 (M)⊕ Im (dp,(n+1)/2

2 )∗ .

This implies that jp,q3 = Ident, for q > (n+ 3)/2.
Again, since jp,(n+3)/2

3 is induced by

Ident : Ep,(n+1)/2
2 (M)→ E

p,(n+3)/2
2 (CπM,M) ,

one sees that jp,(n+3)/2
3 is the natural inclusion. It follows that

d̃p,q2 =
{
dp,q−1

2 q > (n+ 3)/2
0 q ≤ (n+ 3)/2

,

and therefore,

Ep,q4 (CπM,M) = Ep,q4 (M), if q > (n+ 5)/2,

E
p,(n+5)/2
4 (CπM,M) = E

p,(n+3)/2
4 (M)⊕ Im (dp,(n+3)/2

3 )∗,

E
p,(n+3)/2
4 (CπM,M) = E

p,(n+1)/2
4 (M)⊕ Im (dp,(n+1)/2

3 )∗ ⊕ Im d
p,(n+1)/2
2 )∗ .

By proceeding inductively, the desired result follows.

We are now ready to prove Theorem 1.3.
Proof. From the general theory of the spectral sequence, the filtration on Ω∗(2)(CπM) induces
a filtration on H∗(2)(CπM),

H∗(2)(CπM) ⊃ F 0H∗(2)(CπM) ⊃ F 1H∗(2)(CπM) ⊃ · · · ⊃ 0,

such that
Ep,q∞ (CπM) ∼= F pHp+q

(2) (CπM)/F p+1Hp+q
(2) (CπM).

Therefore,

Hk(CπM) ∼= ⊕p+q=kEp,q∞ (CπM)
∼= ⊕p+q=k,q≤(n−1)/2[Ep,q∞ (M)⊕ Im(dk−(n+3)/2,(n+1)/2

(n+3)/2−q )⊕ Im(dk−(n+5)/2,(n+3)/2
(n+5)/2−q )⊕ · · · ].
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Similarly

Hk(Cπ(M),M) ∼= ⊕p+q=k,q≥(n+3)/2[Ep,q−1
∞ (M)⊕Im(dp,q−1

q−(n−1)/2)∗⊕Im(dp,q−1
q−(n−1)/2+1)∗⊕· · · ].

We claim that in terms of this identification, the map,

Hk(Cπ(M),M)→ Hk(Cπ(M)) ,

is given by applying appropriate dr’s to the appropriate factors. To verify that this is
the case, we need to trace back the isomorphisms. It suffices to look at, for example,
Im(dp,(n+1)/2

2 )∗.
Let [θ] ∈ Im(dp,(n+1)/2

2 )∗ ⊂ E
p,(n+1)/2
2 (M). In this case, θ can be represented by a

(p+ (n+ 1)/2)-form, such that

θ ∈ F p, dθ ∈ F p+2.

Therefore, v-deg dθ ≤ p + (n + 1)/2 − (p + 2) ≤ (n − 1)/2. By Lemma 3.1, dθ can be
extended to an L2-form on Cπ(M). To make [0, θ] an element of Ep,(n+1)/2

∞ (Cπ(M),M), we
modify its representative slightly:

(dθ, θ) ∈ [0, θ] and [dθ, θ] ∈ Ep,(n+1)/2
∞ (Cπ(M),M) .

This implies that
(dθ, θ) ∈ F pHp+(n+1)/2

(2) (CπM,M),

which is mapped to
dθ ∈ F pHp+(n+1)/2

(2) (CπM),

which, via the identification with the spectral sequence terms, is

dθ |M = dMθ.

This is exactly d2[θ]. The rest of the terms can be treated in exactly the same fashion.

6 L2-signatures of Generalized Thom Spaces

Assume that that dimT = m+ 1 is divisible by 4.
By definition, the L2-signature, sign(2)(T ), of the generalized Thom space, (T, g), is the

signature of the pairing,

H
(m+1)/2
(2) (T )⊗H(m+1)/2

(2) (T )→ R ,

induced by wedge product and integration.
The L2-signature of CπM as a (singular) manifold with boundary, ∂(CπM) = M , is, by

definition, the signature of the (possibly degenerate) pairing

H
(m+1)/2
(2) (CπM,M)⊗H(m+1)/2

(2) (CπM,M)→ R , (6.17)
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defined via the map
Hk(Cπ(M),M)→ Hk(Cπ(M)) , (6.18)

and the (nondegenerate) pairing

Hm+1−k
(2) (CπM,M)⊗Hk

(2)(CπM)→ R , (6.19)

given by

([ω, θ], [α])→
∫
CπM

ω ∧ α−
∫
M
θ ∧ α. (6.20)

As in [9], one has
sign(2)(T ) = sign(2)(CπM).

Thus, to prove Theorem 1.1, we just have to compute the L2-signature of CπM . The com-
putation is in the spirit of Example 2 of the introduction.

Proof of Theorem 1.1:
The outline of the proof is as follows. First, we consider the intersection matrix with

respect to the block decompositions in terms of Er,s∞ (CπM,M) and Ep,q∞ (CπM), and show
that the matrix is lower anti-diagonal. Then we consider each of these anti-diagonal blocks
and show that they are also anti-diagonal with respect to the block decompositions given
by the Thom isomorphism. Finally, we identify the pairings along the anti-diagonals and
show that they give rise to the τ invariant.

Consider the pairing between Hk
(2)(CπM) and Hm+1−k

(2) (CπM,M). Let ` = dim B,
n = dim Z. (In what follows below, we make a change of index.)

First of all, we show that in terms of the identifications,

Hk(Cπ(M)) ∼=
⊕p+q=k,q≤(n−1)/2[Ep,q∞ (M)⊕ Im d

k−(n+3)/2,(n+1)/2
(n+3)/2−q ⊕ Im d

k−(n+5)/2,(n+3)/2
(n+5)/2−q ⊕ · · · , ]

and

Hm+1−k(Cπ(M),M) ∼=
⊕p′+q′=k,q′≤(n−1)/2[El−p

′,n−q′
∞ (M)⊕ Im (dl−p

′,n−q′
(n+3)/2−q′)

∗ ⊕ Im (dl−p
′,n−q′

(n+5)/2−q′)
∗ ⊕ · · · ]

the pairing has the form of the block matrix,
0 · · · 0 ∗
0 · · · ∗ ∗
...

...
...

∗ · · · ∗ ∗

 ,

with the blocks on the anti-diagonal coming from the pairing between Ep,q∞ (M) and El−p,n−q∞ (M),
Ep,q(n+3)/2−q(M) ⊃ Im d

k−(n+3)/2,(n+1)/2
(n+3)/2−q and El−p,n−q(n+3)/2−q(M) ⊃ Im dl−p,n−qq−(n−1)/2)∗, etc..
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To see this, we observe that in terms of the identification,

Hk(CπM) ∼= ⊕p+q=kEp,q∞ (CπM) ,

and
Hm+1−k(CπM,M) ∼= ⊕p′+q′=kEl−p

′,n+1−q′
∞ (CπM,M) ,

the pairing is of the form 
0 · · · 0 ∗
0 · · · ∗ ∗
...

...
...

∗ · · · ∗ ∗

 ,

with the entries on the anti-diagonal coming from the pairing between El−p,n+1−q
∞ (CπM,M)

and Ep,q∞ (CπM). This is a consequence of the following formal properties of the spectral
sequence:

Ep,k−p∞ = F pHk/F p+1Hk ,

F p(CπM,M) · F p′(CπM) ⊂ F p+p′((CπM,M)) ,

and
F p+p

′
= 0 , if p+ p′ > l .

We now consider the pairings between El−p,n+1−q
∞ (CπM,M) and Ep,q∞ (CπM). For this

we need to once again look at the isomorphisms in Propositions 5.1 and 5.2. As we have
shown before, an element [θ] ∈ El−p,n−qr (M) lifts to [dθ, θ] ∈ El−p,n+1−q

∞ (Cπ(M),M), where
r = (n+ 3)/2− q + k with k a nonnegative integer. On the other hand, for q ≤ (n− 1)/2,
an element, [ω] ∈ Ep,q∞ (M), Im d

k−(n+3)/2,(n+1)/2
(n+3)/2−q , · · · , lifts to [ω] ∈ Ep,q∞ (CπM). Hence, by

tracing through the isomorphisms, we find that the pairing is given by

〈[θ], [ω]〉 =
∫
CπM

dθ ∧ ω −
∫
M
θ ∧ ω .

Now
h- deg dθ ∧ ω ≥ h- deg dθ + h- degω ≥ l + 2 ,

which implies
ω ∧ dθ = 0 .

Thus,

〈[θ], [ω]〉 = −
∫
M
θ ∧ ω.

If both [θ] and [ω] are elements of Er, i.e if both are at the same level, this yields

〈[θ], [ω]〉 = −〈[θ] · [ω], ξr〉.
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We now show that if [θ] and [ω] are in different levels of the spectral sequence, then the
pairing, ∫

M
θ ∧ ω ,

is of the desired triangular form. We do it for

[θ] ∈ Im d
k−(n+3)/2,(n+1)/2
(n+3)/2−q , [ω] ∈ Im (dl−p,n−q(n+5)/2−q)

∗ .

The remaining cases are similar.
By assumption θ = dα, for some α ∈ F k−(n+3)/2. Therefore, by the L2-Stokes’ theorem,∫

M
θ ∧ ω = (−1)k

∫
M
α ∧ dω.

Since
h- degα ∧ dω ≥ k − (n+ 3)/2 + l − p+ (n+ 5)/2− q = l + 1 ,

it follows that α ∧ dω = 0 as claimed.
To compute the signature of CπM , we note that the pairing (6.17) factors through the

pairing (6.19), via the map in (6.18). It is known that the radical for this pairing is

Im(Hk−1(M)→ Hk(CπM,M)) ,

which in terms of the Leray spectral sequence, is given by

⊕p′+q′=k,q′≤(n−1)/2E
l−p′,n−q′
∞ (M) .

It follows that we can choose our decomposition so that the pairing will look like
0 · · · 0

0


0 · · · 0 ∗
0 · · · ∗ ∗
...

...
...

∗ · · · ∗ ∗



 ,

with the entries on the anti-diagonal given by the nondegenerate pairing

Im (dp,qr )∗ ⊗ Im (dp,qr )∗ → R
∩ ∩
Ep,qr ⊗ Ep,qr → R
ϕ ψ → −〈ϕ · drψ, ξr〉

(6.21)

for [n+r
2 ] ≤ q ≤ [n+r

2 ] + r − 2 and p + q = m−1
2 . Now, one can deform the matrix,

without changing its signature, to one whose entries are all zero except on the anti-diagonal.
Consequently, sign(2)(T ) is given by the signature of the pairing (6.21) restricted to the
direct sum of the Ep,qr , with [n+r

2 ] ≤ q ≤ [n+r
2 ] + r − 2 and p+ q = m−1

2 .
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To get the final result, we observe the following symmetry of the pairing on E
m−1

2
r =

⊕p+q=m−1
2
Ep,qr . Recall the inner product, ( , )r, on Er, defined at the end of Section 4. Also,

there is a natural basis, ξr ∈ El,nr , (i.e. a volume element) constructed from the orientation.
Define the finite dimensional star operator, ?r, by

〈ϕ · ψ, ξr〉 = (ϕ, ?rψ)r.

In fact, ?2 coincides with the usual ∗ operator when E2 is identified with the harmonic
differential forms on the base with values in the harmonic differential forms along the fibres.

Then τr, the signature of the pairing on E
m−1

2
r , is exactly the signature of the self adjoint

operator, ?rdr, on E
m−1

2
r . Now,

?rdr : Ep,qr → El−p−r,n−q+r−1
r .

Moreover q = n− q + r − 1 iff q = n+r−1
2 . It follows that we have the decomposition,

E
m−1

2
r = A0 ⊕A1 ⊕A2 ,

where if r is even,
A0 = E(l−r)/2,(n+r−1)/2

r ,

and otherwise, A0 = 0.
Also,

A1 =
∑

p+q=m−1
2
,q<n+r−1

2

Ep,qr ,

and
A2 =

∑
p+q=m−1

2
,q>n+r−1

2

Ep,qr .

With respect to this decomposition, the operator ?rdr restricts to ?rdr on A0, and has
the form (

0 T
T ∗ 0

)
.

Hence, the spectrum of this operator is symmetric about 0. This shows that only the term,
E

(l−r)/2,(n+r−1)/2
r , contributes to the signature, τr, and in fact, only when r is even. This

completes the proof of Theorem 0.1.

7 L2-cohomology of hyperkähler manifolds

In recent years, there has been considerable interest in L2-harmonic forms on noncompact
moduli spaces arising in gauge theory. Typically, these spaces come equipped with hyper-
kähler structures. In [17], using Gromov’s Kähler hyperbolicity trick as adapted by Jost-Zuo

21



[20], (see also [8]) Hitchen showed that for complete hyper-kähler manifolds, with one of
the Kähler forms having linear growth, the L2-harmonic forms are all concentrated in the
middle dimension. Moreover, these L2-harmonic forms are either all self-dual or all anti-self-
dual. Thus, on these hyper-kähler manifolds, the L2-cohomology is completely determined
by the L2-signature.

Theorem 7.1 (Hitchin). Let M be a complete hyper-kähler manifold of real dimension
4k such that one of the Káhler forms ωi = dβ where β has linear growth. Then any L2

harmonic forms is primitive and of the type (k, k) with respect to all complex structures.
Therefore they are anti-self-dual when k is odd and self-dual when k is even.

The complete hyper-kähler manifolds that are ALE have been classified by Kronheimer
[21]. The general classification remains open. So far, all known examples come with a
fibered (or more generally, stratified) geometric structure at infinity. In such cases, our
results can be applied. More precisely, consider a complete hyperkähler manifold, M , of
real dimension 4k, such that

M = M0 ∪M1,∪ · · · ∪Mr , (7.22)

where M0 is a compact manifold with boundary and each of Mi, 1 ≤ i ≤ r, is a geometrically
fibered ends ([16]). By this we mean that there is a fibration

Zi → Yi
π→ Bi

such that Mi = [1, ∞)× Yi, and themetric is quasi-isometric to the fibered cusp metric,

gMi = dr2 + π∗gBi + e−2rgZi , (7.23)

respectively, the fibered boundary metric

gMi = dr2 + r2π∗gBi + gZi . (7.24)

Such metrics appear in the ALF and ALG gravitational instantons, for example, Taub-NUT
space.

Theorem 7.2. With the same hypothesis as above, we have

sign(2)(M) = sign(M0) +
r∑
i=1

τ(Mi),

Proof. We note that our result on the conical singularity extends easily to cusp singularities.
This is because it depends only on two ingredients: Lemma 3.1 on the radially constant
forms and the Poincaré Lemma, Lemma 3.2. Both of these are true for cusp singularities;
see [31, 32]. Also, the fibered conical end is conformally equivalent to a fibered cusp end.
Since the middle dimensional L2-cohomology is conformally invariant, the theorem follows.
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