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We extend the higher dimensional positive mass theorefidai, X., Commun.
Math. Phys. 244, 335-345(2004)] to the Lorentzian setting. This includes the
original higher dimensional positive energy theorem whose spinor proof is given in
[Witten, E., Commun. Math. Phys80, 381-402(1981)] and [Parker, T., and
Taubes, C., Commun. Math. Phy84, 223-238(1982] for dimension 4 and in
[Zhang, X., J. Math. Phys40, 3540-3552(1999] for dimension 5. ©2005
American Institute of Physic§DOI: 10.1063/1.1862095

I. INTRODUCTION AND STATEMENT OF THE RESULT

In this note, we formulate and prove the Lorentzian version of the positive mass theorem in
Ref. 4. There we prove a positive mass theorem for spaces of any dimension which asymptotically
approach the product of a flat Euclidean space with a compact manifold which admits a nonzero
parallel spinor(such as a Calabi—Yau manifold or any special honolomy manifold except the
quaternionic Kahler manifo)d This is motivated by string theory, especially the recent work in
Ref. 7. The application of the positive mass theorem of Ref. 4 to the study of stability of Ricci flat
manifolds is discussed in Ref. 5.

In general relativity, a space—time is modelled by a Lorentzian 4-marifibld) together with
an energy-momentum tensorsatisfying Einstein equation

Rup~ 3045R= 87T .. (1.1

The positive energy theoréh*says that an isolated gravitational system with non-negative local
matter density must have non-negative total energy, measured at spatial infinity. More precisely,
one considers a complete oriented spacelike hypersuNaoé N satisfying the following two
conditions.

(@ M is asymptotically flatthat is, there is a compact sktin M such thatM-K is the
disjoint union of a finite number of subse¥s, , ... ,M, and each endy, is diffeomorphic toR3
-Bg(0). Moreover, under this diffeomorphism, the metricMf is of the form

gij =& +00™), @;=00"""), ddg;=00"?). (1.2
Furthermore, the second fundamental fdmmof M in N satisfies
hij = O(r_T_l), &khij = O(T_T_Z). (1.3)

Here 7>0 is the asymptotic order andis the Euclidean distance to a base point.

(b) M has non-negative local mass densftyr each poinfp e M and for each timelike vector
e at p, T(ey,e) =0 andT(ey, -) is a nonspacelike covector. This implies the dominant energy
condition

TO= [T, TO= (- TTO)Y2 (1.9

The total energythe ADM mas$ and the totallinear) momentum of\ can then be defined
as follows"° [for simplicity we suppress the dependence her¢ @the endM,)]:
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) 1
E=lim —f (diGij = 9;0i) * dX;,
S

R 4,

(1.5
1
Py = lim — 2(th - ajkhii) * dXJ .

R—o 4Wn SR
Herexy, ... X, are the Euclidean coordinates on the endienotes the Hodge star operatoy;
denotes the volume of the-1 sphere an&g the Euclidean sphere with radiiscentered at the
base point. When the asymptotic order (n-2)/2, these quantities are finite and independent of
the asymptotic coordinatefHeren=3.]
Theorem 1.1: (Refs. 12-14)With the assumptions as above and assuming that M is spin, one
has

E-|P|=0

on each end M Moreover, if E=0 for some end M then M has only one end and N is flat along
M.

Now, according to string theo?ypur universe is really 10-dimensional, modelled bA*

X X whereX is a Calabi—Yau threefold. This is the so-called Calabi—Yau compactifi@a&ib'ru:h
motivates the spaces we now consider.

Thus we consider a Lorentzian manifd[with signature(—, +, ---, +)] of dimN=n+1,
with a energy-momentum tensor satisfying the Einstein equation. Thell lee a complete
oriented spacelike hypersurfaceNh Further, assume that the Riemannian maniftd,g) with
g induced from the Lorentzian metric decompodés MyU M, U --- U Mg, whereM, is compact
as before but now each of the enlds= (RK-Bx(0)) X X, for some radiu®k>0 andX, a compact
simply connected spin manifold which admits a nonzero parallel spinor. Moreover the metric on
eachM, satisfies

g=§+u, g=gpctogx, u=0(r"), %U:O(r_rl), e%U:O(T_T_Z), (1.6

and the second fundamental folmof M in N satisfies

h=0(r™Y), Vh=O(r"™2). (1.7)

HereV is the Levi-Civita connection of (extended to act on all tensor fiejgs the Euclidean
distance in the Euclidean factor, amd-0 is the asymptotical order.

The total energy and total momentum for each émdcan then be defined bfagain we
suppress the dependenceldmere

E=1

im— O = O - duol(X
R 4anwol(X) J g (195 = AiGea) * ¥ Aw0l(X),

(1.9

1
Pc=lim ————— 2(hy = dychii) * dx; dvol(X).
k R dawol(X) . ( ik~ Ok i) j du (X)
Here thex operator is the one on the Euclidean factor, the ingdéxun over the Euclidean factor
andg,, is the trace of the metrig on the manifoldM.
Then we have the following.
Theorem 1.2: Assuming that M is spin and> (k-2)/2, k=2, one has

E-|P|=0

on each end M Moreover, if E=0 for some end M then M has only one end and N is flat along
M.
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In particular, this result includes the original positive energy theorem whose spinor proof is
given in Refs. 14 and 10 for dimension 4 and in Ref. 15 for dimension 5. The dimension specific
nature in these work is due to the use of special isomorphisms of low dimensional spin groups.
Here we construct the desired metrics directly using the Clifford algebra .

Remark:If M is globally a producti*x X topologically, then the compact factérneed not
be simply connected. The simply connected condition is imposed to guarantee that the spin
structure on the ends coincides with the one obtained by restricting the spin structure from the
inside.

Il. THE HYPERSURFACE DIRAC OPERATOR

We will adapt Witten’s spinor methdto our situation. For that, we follow the presentation
and notations of Ref. 10. The crucial ingredient here is the hypersurface Dirac operatbr on
acting on the(restriction of the spinor bundle ofN. Let S be the spinor bundle ol and still
denote by the same notation its restriction rather, pullbackto M. Denote byV the connection
on Sinduced by the Lorentzian metric ®h The Lorentzian metric ol also induces a Riemann-
ian metric onM, whose Levi—Civita connection gives rise to another connecVam S. The two,
of course, differ by a term involving the second fundamental form.

There are two choices of metrics & which is another subtlety here. Since part of the
treatment in Ref. 10 is special to dimension 4, we will give a construction directly using the
Clifford algebra Ref. 8.

Let SAn, 1) denote the identity component of the groups of orientation preserving isometries
of the Minkowski spaceR™%. A choice of a unit timelike covectoe® gives rise to injective
homomorphismsy, a, and a commutative diagram

a: SOn) — SQhn,1)
T 7 2.9
a: Spinln) — Spin(n,1).

We now fix a choice of unit timelike normal covecte? of M in N. Let F(N) denote the
SQn,1) frame bundle ofN and F(M) the SQn) frame bundle ofM. Then i'F(N)=F(M)
X ,S0Q(n,1), wherei:M— N is the inclusion. IfN is spin, then we have a principal Sfin1)
bundle Pgyiyn,1) On N, whose restriction orM is theni*PSpin(nvl):PSpir(n)x&Spir(n,l), where
Pspirny is the principal Spitm) bundle of M. Thus, even ifN is not spin,i*Pspir(n,l) is still
well-defined as long aM is spin.

Similarly, whenN is spin, the spinor bundi8on N is the associated bundRspiyn 1) X pn 1 A,

ol (n+D)/2] . .
whereA=(? is the complex vector space of spinors and

pn,1:Spin(n, 1) — GL(A) (2.2
is the spin representation. Its restrictionNbis given byi*PSpir(n,l)Xpn,lA:PSpir(n) X pn A with

Pn,1

pn:Spir(n):Spir(n,l) —— GL(A). (2.3

Again, the restriction is still well defined as long Ekis spin.

Let €°, € be an orthonormal basis of the Minkowski spdt®! such that/e’?=-1 (in this
section the indices andj range from 1 tan).

Lemma 2.1: There is a positive definite Hermitian inner prodg¢ton A which is
Spir(n)-invariant. Moreover (s,s')=(e"-s,s’) defines a Hermitian inner product which is also
Spin(n)-invariant but not positive definitén fact

(v-ss)=(sv-9)

for all v e R™L
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Proof: Detailed study vial™ matrices(Ref. 3, pp. 10 and J)1shows that there is a positive
definite Hermitian inner product) on A with respect to whicte' is skew-Hermitian while® is
Hermitian. It follows then that,) is Spin(n)-invariant. We now show thds,s’)=(e°-s,s’) defines
a Spir(n)-invariant Hermitian inner product. Sine is Hermitian with respect to), (,) is clearly
Hermitian. To show that,) is Spin(n)-invariant, we take a unit vectar in the Minkowski space,
v=ape’+ae, ay, & € R, and -85+ ,a?=1. Then

(vs,vs') = ("s,vs’) = a(e’%s,€%") + aan(e%'s,€%s') + aga(e°e’s,€'s’) + aia(e%'s, €s’)
= aj(s,€%') - a;a(ee’s,s') = aj(e’,s') + aja(e’eles,s')
=aX(e’,s') —aXe’,s') = - (s,9).

Consequentlyt,) is Spin(n)-invariant. The above computation also implies thagcts as Hermit-
ian operator o\ with respect ta(,). [ |

Thus the spinor bundi8restricted taV inherits an Hermitian metri¢) and a positive definite
metric {,). They are related by the equation

(s,s')=(e-s,8). (2.4)

Now the hypersurface Dirac operator is defined by the composition

\Y c
DIMS —T(M,TM®S ——T'(M,9), (2.5

wherec denotes the Clifford multiplication. In terms of a local orthonormal bagjs,, ... ,&, of
™,

Dy=€ Ve,

whereé denotes the dual basis.

The two most important properties of hypersurface Dirac operator are the self-adjointness
with respect to the metri¢) and the Bochner—Lichnerowicz—Weitzenbock formtfta®

Lemma 2.2: Define én—1)-form on M byw=(¢,€ - y)int(e)dvol, wheredvol is the volume
form of the Riemannian metric g anidt(e) is the interior multiplication by ¢ We have

[, D) — (D, h)]dvol = dw.

ThusD is formally self-adjoint with respect to the® Imetric defined by,) and dvol.
Proof: Sincew is independent of the choice of the orthonormal basis, we do our computation
locally using a preferred basis. For any given pgirt M, choose a local orthonormal fransgof

TM nearp such thatVe =0 atp. Extende,, e to a neighborhood gb in N by parallel translating
alonge, direction. Then, ap, V€ =—h;e” andV,e’=-h; €. Therefore(again atp),
dw=Ve(¢,€ - ydvol
=[(Ve€) - 4. - ) + (€2 Vo b€ - h) + (€7~ ¢,(Vo€) - ) + (€7 ¢h,€ - Ve ) Idvol
=[-hj(&- ¢, )+ (- Veop,h) —hi(€- ¢, 4h) + (b, D] dvol
=[-hj(€ & $,9) = (Dp, ) —hi(€”- $,6° - ) + (¢, Dy)]dvol
=[= (D¢, + (¢, D ]dvol.

|
The second property we need is the Bochner—Lichnerowicz—Weitzenbock formula. For a
proof, see Ref. 10.
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Lemma 2.3: One has

D?=V'V +R,
_ (2.6)
R =3(R+ 2Ry + 2Rye° - € -) e End(S).
Here the adjointV" is with respect to the metrig).
I1l. PROOF OF THE THEOREM
By the Einstein equation,
R =4m(Top+ Tye® - € +).

It follows then from the dominant energy conditi¢h.4) that

R=0. (3.1

Now, for ¢ € I'(M,S) and a compact domail C M with smooth boundary, the Bochner—
Lichnerowicz—Weitzenbock formula yields

L[l V ¢*+ (¢, R¢) - [Df*]dvol(g) = JQ 2 ((Ve, *+ & D) pint(e)dvol(g) (3.2

:f 2 {(V,+ v D), p)dvol( glsn), (3.3
19

wheree, is an orthonormal basis @f and v is the unit outer normal o#().

Now without loss of generality, assume thdt has only one end. That is, let the manifold
M=MyU M., with M, compact andV..,= (RK-Bg(0)) X X, and (X,gx) a compact Riemannian
manifold with nonzero parallel spinors. Moreover, the megricn M satisfieq(1.6). Let eg be the
orthonormal basis ofy which consists ofg/dx; followed by an orthonormal basi, of gy.
Orthonormalizingeg with respect tag gives rise an orthonormal bass of g. Moreover,

€, = €2 — U e0 + O(r27). (3.4)

This gives rise to a gauge transformation

A:SQQ) > €2 — e, € SOQ)

which identifies the corresponding spin groups and spinor bundles.

We now pick a unit norm parallel sping, of (R¥,ggx) and a unit norm parallel spina#; of
(X,09%). Then ¢o=A(p® ;) defines a spinor oM... We extend¢, smoothly inside. Then
VO4,=0 outside the compact set.

Lemma 3.1: If a spinokb is asymptotic tapy: ¢=¢+O(r~7), then we have

lim % 2 (Ve + €, D) ¢, )int(e,)dvol(g) = wywol(X)(o, Edhg + Py dX® - ok - bg),
R—o SRXX

whereR means taking the real part

Proof. Recall thatV denote the connection ddinduced from the Levi—Civita connection on
M. We have

Ve h=Ve = 3hae’ € . (3.9
By the Clifford relation,
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(Ve +€a-D)p ) == 3([€*- € IVe b, ).

Hence

2 ((Ve, + €~ D), int(e;)dvol(g)
SKRXX

L f (6 &1V, ¢, Bint(e,)dvol(g)
2 J soxx

1
+- 2 ([ & Ty - € - ¢, Pint(el)dvol(g).
4 SRXX
Using (3.4) and the asymptotic conditiord.7), the second term on the right-hand side can be
easily seen to give us

R—o

1
lim — f (2(hae = Sachon) € - €° - b, p)int(e,)dvol(g) = wwol(X){cbo, Py X - X" - o).
SRXX
The first term is computed in Ref. 4 to limit

wOl(X){ o, Ebp) .

The following lemma is standard, see Refs. 10 and 14.
Lemma 3.2: If

(o, Echp + Py dx - i< - pp) =0

for all constant spinorsp,, then
E-|P|=0.

As usual, the trick to get the positivity now is to find a harmonic spig@symptotic togy.
Lemma 3.3: There exists a harmonic spinrpron (M,g) which is asmptotic to the parallel
spinor ¢, at infinity,

D¢=0, ¢=do+O(r™).

Proof: The proof is essentially the same as in ReffCA Refs. 6 and 8 We use the Fredholm
property of D on a weighted Sobolev space aRd=0 to show that it is an isomorphism. The
harmonic spinor¢ can then be obtained by setting= ¢o+ £ and solvingé e O(r™") from the
equationDE=—D . |

Thus, with the choice of harmonic spinor as above, the left-hand sid8.4fwill be non-
negative sinc&k = 0. Taking the limit a&k— 0 and using Lemma 3.1 and Lemma 3.2 then give us
the desired resuft®!%
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