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We extend the higher dimensional positive mass theorem infDai, X., Commun.
Math. Phys. 244, 335–345s2004dg to the Lorentzian setting. This includes the
original higher dimensional positive energy theorem whose spinor proof is given in
fWitten, E., Commun. Math. Phys.80, 381–402s1981dg and fParker, T., and
Taubes, C., Commun. Math. Phys.84, 223–238s1982dg for dimension 4 and in
fZhang, X., J. Math. Phys.40, 3540–3552s1999dg for dimension 5. ©2005
American Institute of Physics.fDOI: 10.1063/1.1862095g

I. INTRODUCTION AND STATEMENT OF THE RESULT

In this note, we formulate and prove the Lorentzian version of the positive mass theorem in
Ref. 4. There we prove a positive mass theorem for spaces of any dimension which asymptotically
approach the product of a flat Euclidean space with a compact manifold which admits a nonzero
parallel spinorssuch as a Calabi–Yau manifold or any special honolomy manifold except the
quaternionic Kähler manifoldd. This is motivated by string theory, especially the recent work in
Ref. 7. The application of the positive mass theorem of Ref. 4 to the study of stability of Ricci flat
manifolds is discussed in Ref. 5.

In general relativity, a space–time is modelled by a Lorentzian 4-manifoldsN,gd together with
an energy-momentum tensorT satisfying Einstein equation

Rab − 1
2gabR= 8pTab. s1.1d

The positive energy theorem11,14says that an isolated gravitational system with non-negative local
matter density must have non-negative total energy, measured at spatial infinity. More precisely,
one considers a complete oriented spacelike hypersurfaceM of N satisfying the following two
conditions.

sad M is asymptotically flat, that is, there is a compact setK in M such thatM −K is the
disjoint union of a finite number of subsetsM1, . . . ,Mk and each endMl is diffeomorphic toR3

−BRs0d. Moreover, under this diffeomorphism, the metric ofMl is of the form

gij = di j + Osr−td, ]kgij = Osr−t−1d, ]k]lgij = Osr−t−2d. s1.2d

Furthermore, the second fundamental formhij of M in N satisfies

hij = Osr−t−1d, ]khij = Osr−t−2d. s1.3d

Heret.0 is the asymptotic order andr is the Euclidean distance to a base point.
sbd M has non-negative local mass density: for each pointpPM and for each timelike vector

e0 at p, Tse0,e0dù0 andTse0, ·d is a nonspacelike covector. This implies the dominant energy
condition

T00 ù uTabu, T00 ù s− T0iT
0id1/2. s1.4d

The total energysthe ADM massd and the totalslineard momentum ofM can then be defined
as follows1,10 ffor simplicity we suppress the dependence here onl sthe endMldg:
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E = lim
R→`

1

4vn
E

SR

s]igij − ] jgiid p dxj ,

s1.5d

Pk = lim
R→`

1

4vn
E

SR

2shjk − ] jkhiid p dxj .

Herex1, . . . ,xn are the Euclidean coordinates on the end;p denotes the Hodge star operator;vn

denotes the volume of then−1 sphere andSR the Euclidean sphere with radiusR centered at the
base point. When the asymptotic ordert. sn−2d /2, these quantities are finite and independent of
the asymptotic coordinates.fHeren=3.g

Theorem 1.1: (Refs. 12–14):With the assumptions as above and assuming that M is spin, one
has

E − uPu ù 0

on each end Ml. Moreover, if E=0 for some end Ml, then M has only one end and N is flat along
M.

Now, according to string theory,2 our universe is really 10-dimensional, modelled onR3,1

3X whereX is a Calabi–Yau threefold. This is the so-called Calabi–Yau compactification6 which
motivates the spaces we now consider.

Thus we consider a Lorentzian manifoldN fwith signatures2, 1, ¯, 1dg of dim N=n+1,
with a energy-momentum tensor satisfying the Einstein equation. Then letM be a complete
oriented spacelike hypersurface inN. Further, assume that the Riemannian manifoldsMn,gd with
g induced from the Lorentzian metric decomposesM =M0øM1ø ¯ øMs, whereM0 is compact
as before but now each of the endsMl .sRk−BRs0dd3Xl for some radiusR.0 andXl a compact
simply connected spin manifold which admits a nonzero parallel spinor. Moreover the metric on
eachMl satisfies

g = g̊ + u, g̊ = gRk + gX, u = Osr−td, ¹̊u = Osr−t−1d, ¹̊¹̊u = Osr−t−2d, s1.6d

and the second fundamental formh of M in N satisfies

h = Osr−t−1d, ¹̊h = Osr−t−2d. s1.7d

Here ¹̊ is the Levi–Civita connection ofg̊ sextended to act on all tensor fieldsd, r the Euclidean
distance in the Euclidean factor, andt.0 is the asymptotical order.

The total energy and total momentum for each endMl can then be defined bysagain we
suppress the dependence onl hered

E = lim
R→`

1

4vkvolsXdESR3X

s]igij − ] jgaad p dxj dvolsXd,

s1.8d

Pk = lim
R→`

1

4vkvolsXdESR3X

2shjk − ] jkhiid p dxj dvolsXd.

Here thep operator is the one on the Euclidean factor, the indexi, j run over the Euclidean factor
andgaa is the trace of the metricg on the manifoldM.

Then we have the following.
Theorem 1.2:Assuming that M is spin andt. sk−2d /2, kù2, one has

E − uPu ù 0

on each end Ml. Moreover, if E=0 for some end Ml, then M has only one end and N is flat along
M.
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In particular, this result includes the original positive energy theorem whose spinor proof is
given in Refs. 14 and 10 for dimension 4 and in Ref. 15 for dimension 5. The dimension specific
nature in these work is due to the use of special isomorphisms of low dimensional spin groups.
Here we construct the desired metrics directly using the Clifford algebra .

Remark:If M is globally a productRk3X topologically, then the compact factorX need not
be simply connected. The simply connected condition is imposed to guarantee that the spin
structure on the ends coincides with the one obtained by restricting the spin structure from the
inside.

II. THE HYPERSURFACE DIRAC OPERATOR

We will adapt Witten’s spinor method14 to our situation. For that, we follow the presentation
and notations of Ref. 10. The crucial ingredient here is the hypersurface Dirac operator onM,
acting on thesrestriction of thed spinor bundle ofN. Let S be the spinor bundle ofN and still
denote by the same notation its restrictionsor rather, pullbackd to M. Denote by¹ the connection
on S induced by the Lorentzian metric onN. The Lorentzian metric onN also induces a Riemann-

ian metric onM, whose Levi–Civita connection gives rise to another connection,¹̄ on S. The two,
of course, differ by a term involving the second fundamental form.

There are two choices of metrics onS, which is another subtlety here. Since part of the
treatment in Ref. 10 is special to dimension 4, we will give a construction directly using the
Clifford algebra Ref. 8.

Let SOsn,1d denote the identity component of the groups of orientation preserving isometries
of the Minkowski spaceRn,1. A choice of a unit timelike covectore0 gives rise to injective
homomorphismsa, â, and a commutative diagram

a: SOsnd → SOsn,1d
↑ ↑

â: Spinsnd → Spinsn,1d.

s2.1d

We now fix a choice of unit timelike normal covectore0 of M in N. Let FsNd denote the
SOsn,1d frame bundle ofN and FsMd the SOsnd frame bundle ofM. Then i*FsNd=FsMd
3 aSOsn,1d, where i :M�N is the inclusion. IfN is spin, then we have a principal Spinsn,1d
bundle PSpinsn,1d on N, whose restriction onM is then i*PSpinsn,1d=PSpinsnd3 âSpinsn,1d, where
PSpinsnd is the principal Spinsnd bundle of M. Thus, even ifN is not spin, i*PSpinsn,1d is still
well-defined as long asM is spin.

Similarly, whenN is spin, the spinor bundleSon N is the associated bundlePSpinsn,1d3rn,1 D,

whereD=C2fsn+1d/2g
is the complex vector space of spinors and

rn,1:Spinsn,1d → GLsDd s2.2d

is the spin representation. Its restriction toM is given byi*PSpinsn,1d3rn,1D=PSpinsnd3rn D with

rn:Spinsnd�
â

Spinsn,1d ——→
rn,1

GLsDd. s2.3d

Again, the restriction is still well defined as long asM is spin.
Let e0, ei be an orthonormal basis of the Minkowski spaceRn,1 such thatue0u2=−1 sin this

section the indicesi and j range from 1 tond.
Lemma 2.1: There is a positive definite Hermitian inner productk,l on D which is

Spinsnd-invariant. Moreover, ss,s8d=ke0·s,s8l defines a Hermitian inner product which is also
Spinsnd-invariant but not positive definite. In fact

sv ·s,s8d = ss,v ·s8d

for all vPRn,1.
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Proof: Detailed study viaG matricessRef. 3, pp. 10 and 11d shows that there is a positive
definite Hermitian inner productk,l on D with respect to whichei is skew-Hermitian whilee0 is
Hermitian. It follows then thatk,l is Spinsnd-invariant. We now show thatss,s8d=ke0·s,s8l defines
a Spinsnd-invariant Hermitian inner product. Sincee0 is Hermitian with respect tok,l, s,d is clearly
Hermitian. To show thats,d is Spinsnd-invariant, we take a unit vectorv in the Minkowski space,
v=a0e

0+aie
i, a0, ai PR, and −a0

2+oi=1
n ai

2=1. Then

svs,vs8d = ke0vs,vs8l = a0
2ke0e0s,e0s8l + aia0ke0eis,e0s8l + a0aike0e0s,eis8l + aiajke0eis,ejs8l

= a0
2ks,e0s8l − aiajkeje0eis,s8l = a0

2ke0s,s8l + aiajke0ejeis,s8l

= a0
2ke0s,s8l − ai

2ke0s,s8l = − ss,s8d.

Consequently,s,d is Spinsnd-invariant. The above computation also implies thatv· acts as Hermit-
ian operator onD with respect tos,d. j

Thus the spinor bundleS restricted toM inherits an Hermitian metrics,d and a positive definite
metric k,l. They are related by the equation

ss,s8d = ke0 ·s,s8l. s2.4d

Now the hypersurface Dirac operator is defined by the composition

D:GsM,Sd ——→
¹

GsM,T*M ^ Sd ——→
c

GsM,Sd, s2.5d

wherec denotes the Clifford multiplication. In terms of a local orthonormal basise1,e2, . . . ,en of
TM,

Dc = ei ·¹ei
c,

whereei denotes the dual basis.
The two most important properties of hypersurface Dirac operator are the self-adjointness

with respect to the metrick,l and the Bochner–Lichnerowicz–Weitzenbock formula.14,10

Lemma 2.2: Define asn−1d-form on M byv=kf ,ei ·clintseiddvol, wheredvol is the volume
form of the Riemannian metric g andintseid is the interior multiplication by ei. We have

fkf,Dcl − kDf,clgdvol = dv.

ThusD is formally self-adjoint with respect to the L2 metric defined byk,l and dvol.
Proof: Sincev is independent of the choice of the orthonormal basis, we do our computation

locally using a preferred basis. For any given pointpPM, choose a local orthonormal frameei of

TM nearp such that¹̄ei =0 atp. Extende0, ei to a neighborhood ofp in N by parallel translating
alonge0 direction. Then, atp, ¹ei

ej =−hije
0 and¹ei

e0=−hije
j. Thereforesagain atpd,

dv = ¹ei
kf,ei · cldvol

= fss¹ei
e0d · f,ei · cd + se0 ·¹ei

f,ei · cd + se0 · f,s¹ei
eid · cd + se0 · f,ei ·¹ei

cdgdvol

= f− hijsej · f,ei · cd + sei ·e0 ·¹ei
f,cd − hiise0 · f,e0 · cd + kf,Dclgdvol

= f− hijsei ·ej · f,cd − kDf,cl − hiise0 · f,e0 · cd + kf,Dclgdvol

= f− kDf,cl + kf,Dclgdvol.

j

The second property we need is the Bochner–Lichnerowicz–Weitzenbock formula. For a
proof, see Ref. 10.
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Lemma 2.3: One has

D2 = ¹* ¹ + R,

s2.6d
R = 1

4sR+ 2R00 + 2R0ie
0 ·ei · d P EndsSd.

Here the adjoint¹* is with respect to the metrick,l.

III. PROOF OF THE THEOREM

By the Einstein equation,

R = 4psT00 + T0ie
0 ·ei · d.

It follows then from the dominant energy conditions1.4d that

R ù 0. s3.1d

Now, for fPGsM ,Sd and a compact domainV,M with smooth boundary, the Bochner–
Lichnerowicz–Weitzenbock formula yields

E
V

fu ¹ fu2 + kf,Rfl − uDfu2gdvolsgd =E
]V

o ks¹ea
+ ea ·Ddf,flintseaddvolsgd s3.2d

=E
]V

o ks¹n + n ·Ddf,fldvolsugu]Vd, s3.3d

whereea is an orthonormal basis ofg andn is the unit outer normal of]V.
Now without loss of generality, assume thatM has only one end. That is, let the manifold

M =M0øM` with M0 compact andM`.sRk−BRs0dd3X, and sX,gXd a compact Riemannian
manifold with nonzero parallel spinors. Moreover, the metricg on M satisfiess1.6d. Let ea

0 be the
orthonormal basis ofg̊ which consists of] /]xi followed by an orthonormal basisfa of gX.
Orthonormalizingea

0 with respect tog gives rise an orthonormal basisea of g. Moreover,

ea = ea
0 − 1

2uabeb
0 + Osr−2td. s3.4d

This gives rise to a gauge transformation

A:SOsg̊d { ea
0 → ea P SOsgd

which identifies the corresponding spin groups and spinor bundles.
We now pick a unit norm parallel spinorc0 of sRk,gRkd and a unit norm parallel spinorc1 of

sX,gXd. Then f0=Asc0 ^ c1d defines a spinor ofM`. We extendf0 smoothly inside. Then
¹0f0=0 outside the compact set.

Lemma 3.1: If a spinorf is asymptotic tof0:f=f0+Osr−td, then we have

lim
R→`

RE
SR3X

o ks¹ea
+ ea ·Ddf,flintseaddvolsgd = vkvolsXdkf0,Ef0 + Pk dx0 · dxk · f0l,

whereR means taking the real part.

Proof. Recall that¹̄ denote the connection onS induced from the Levi–Civita connection on
M. We have

¹ea
c = ¹̄ea

c − 1
2habe

0 ·eb · c. s3.5d

By the Clifford relation,
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ks¹ea
+ ea ·Ddf,fl = − 1

2kfea · ,eb · g¹eb
f,fl.

Hence

E
SR3X

o ks¹ea
+ ea ·Ddf,flintseaddvolsgd

= −
1

2
E

SR3X

kfea · ,eb · g¹̄eb
f,flintseaddvolsgd

+
1

4
E

SR3X
o kfea · ,eb · ghbce

0 ·ec · f,flintseaddvolsgd.

Using s3.4d and the asymptotic conditionss1.7d, the second term on the right-hand side can be
easily seen to give us

lim
R→`

1

4
E

SR3X

k2shac − dachbbde0 ·ec · f,flintseaddvolsgd = vkvolsXdkf0,Pk dx0 · dxk · f0l.

The first term is computed in Ref. 4 to limit

vkvolsXdkf0,Ef0l.

j

The following lemma is standard, see Refs. 10 and 14.
Lemma 3.2: If

kf0,Ef0 + Pk dx0 · dxk · f0l ù 0

for all constant spinorsf0, then

E − uPu ù 0.

As usual, the trick to get the positivity now is to find a harmonic spinorf asymptotic tof0.
Lemma 3.3: There exists a harmonic spinorf on sM ,gd which is asmptotic to the parallel

spinor f0 at infinity,

Df = 0, f = f0 + Osr−td.

Proof: The proof is essentially the same as in Ref. 4fCf. Refs. 6 and 9g. We use the Fredholm
property ofD on a weighted Sobolev space andRù0 to show that it is an isomorphism. The
harmonic spinorf can then be obtained by settingf=f0+j and solvingjPOsr−td from the
equationDj=−Df0. j

Thus, with the choice of harmonic spinor as above, the left-hand side ofs3.4d will be non-
negative sinceRù0. Taking the limit asR→0 and using Lemma 3.1 and Lemma 3.2 then give us
the desired result.4,9,10,14
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