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The pinvariant of an odd dimensional manifold with boundary is investigated. The 
natural boundary condition for this problem requires a trivialization of the kernel of 
the Dirac operator on the boundary. The dependence of the Tinvariant on this 
trivialization is best encoded by the statement that the exponential of the 
qinvariant lives in the determinant line of the boundary. Our main results are a 
variational formula and a gluing law for this invariant. These results are applied to 
reprove the formula for the holonomy of the natural connection on the determinant 
line bundle of a family of Dirac operators, also known as the “global anomaly 
formula.” The ideas developed here fit naturally with recent work in topological 
quantum field theory, in which gluing (which is a characteristic formal property of 
the path integral and the classical action) is used to compute global invariants on 
closed manifolds from local invariants on manifolds with boundary. 

The qinvariant was introduced by Atiyah, Patodi, and Singer (APS)’ in a series of papers 
treating index theory on even-dimensional manifolds with boundary. It first appears there as a 
boundary correction in the usual local index formula. Suppose X is a closed odd-dimensional spin 
manifold (which in their index theorem is the boundary of an even-dimensional spin manifold). 
The Dirac operator D, is self-adjoint and has discrete real spectrum. (For simplicity we only 
consider the basic Dirac operator, though as usual in geometric index theory all of our results hold 
for twisted Dirac operators, i.e., for operators of “Dirac type.“) Define 

~x(s,=k~o sl$k 7 Re(s)%O, 
i 

where the sum ranges over the nonzero spectrum of D,. Then s(s) is analytic in s and has a 
meromorphic continuation to s EC. It is regular at s =0, and its value there is the ~invariant. More 
precisely, what appears in the Atiyah-Patodi-Singer index formula is the &invariant 

h= 
vx( 0) + dim ker DX 

2 

Under a smooth variation of parameters (for example, the metric on X) the &invariant jumps by 
integers, whereas 5 (mod 1) is smooth. In this paper we are interested in the latter, so consider the 
exponentiated &invariant 
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instead. In fact, our interest is in manifolds with boundary and we use “global” self-adjoint elliptic 
boundary conditions for the Dirac operator, which are the odd-dimensional analog of the Atiyah- 
Patodi-Singer boundary conditions.’ To formulate these boundary conditions we need to choose a 
“trivialization” of the graded kernel of the Dirac operator on ax. (Other authors describe this 
choice as a Lagrangian subspace of the kernel, or as an involution on the kernel. All of these 
descriptions are equivalent.) The exponentiated &invariant depends on this trivialization (Theorem 
1.4) in a simple way. 

Our first observation is that this dependence means that the exponentiated &invariant naturally 
lives in the inverse determinant line of the Dirac operator on the boundary (Proposition 2.15). [An 
unfortunate choice of sign in the whole index theory-perhaps dating back to Fredholm+xplains 
why it is the inverse determinant line which occurs here. An operator D:H++H- is an element 
of H- & (H+) *, so the codomain appears with a + sign and the domain with a - sign. It would 
be better, then, to define the index of D as dim coker D -dim ker D. To make the index theorem 
for manifolds with boundary come out,nthe c-invariant would also be defined with the opposite 
sign from the usual one, as would the A-genus. On the other hand, the determinant line (2.7) is 
defined with the “proper” sign. Regardless of what is proper, this discrepancy explains some of 
the funny signs which crop up in index theory.] In fact, it has unit norm in the Quillen metric. For 
a family of Dirac operators this invariant is then a section of the inverse determinant line bundle 
over the parameter space. In Theorem 1.9 we generalize the usual formula for the variation of the 
&invariant to a formula for the covariant derivative of this section. Here we use the natural 
connection on the (inverse) determinant line bundle defined by Bismut and Freed.2 The proof of 
Theorem 1.9 occupies Sec. III. Our other main result is a gluing formula for the exponentiated 
&invariant, which we state in Theorem 2.20 and prove in Sec. IV. To get the signs right in that 
theorem we view the determinant line as a graded vector space, as explained in Sec. II. In Sec. V 
we give a new proof of the holonomy formula for the natural connection on the determinant line 
bundle.3.4 This formula was originally conjectured by Witten’ in connection with global anoma- 
lies. It expresses the holonomy, or global anomaly, as the adiabatic limit of an exponentiated 
&invariant. In Sec. VI we explain how our results lead to a conjecture about the geometrical index 
of families of Dirac operators on odd-dimensional manifolds with boundary. [We understand that 
ongoing work of Melrose and Piazza is expected to prove this conjecture. (Note added in proof: 
See the recent preprint “An index theorem for families of Dirac operators on odd-dimensional 
manifolds with boundary” by R. B. Melrose and P. Piazza.)] 

Our results build on previous work treating ginvariants on manifolds with boundary. Many 
different kinds of boundary conditions appear in these works. Cheeger (Ref. 6, Sec. 6) introduced 
the v-invariant (for the signature operator) on manifolds with conical singularities, and he noted 
that this corresponds to global boundary conditions on a manifold with boundary when one 
attaches a cone to the boundary. Further, his “ideal boundary conditions” correspond to the 
trivialization of the graded kernel on the boundary. In later work6 he proves a variational formula 
for the vinvariant on a manifold with conical singularities. Gilkey and Smith7 discuss the 
Tinvariant for local boundary conditions, which were used in the original proof of the Atiyah- 
Singer index theorem to show that the index is a bordism invariant.8 Singer9 proved a formula 
relating the difference of Tinvariants for two specific local boundary conditions with the deter- 
minant of the Laplacian on the boundary. Mazzeo and Melrose” assume that the boundary Dirac 
operator is invertible and then define an Tinvariant using Melrose’s “b-calculus.” With this 
assumption they prove a gluing law. Dai” proved a formula relating this “b-eta invariant” to the 
vinvariant defined with local boundary conditions. Another approach is to attach a half-cylinder 
to the boundary and use L2 spinor fields. This was considered in special cases by the della 
Pietras’2”3 and more generally by Klimek and Wojciechowski’4 and Miiller.15 Miiller proves that 
this v-invariant is equal to the Binvariant for the global boundary conditions with a certain 
trivialization of the kernel picked out by the kernel of the Dirac operator on L2 spinor fields. It is 
also easy to see that it agrees with the b-eta invariant if the metric near the boundary is asymp- 
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totically cylindrical. The self-adjoint global boundary conditions, and certain generalizations, were 
first studied by Douglas and Wojciechowski.‘6 Miiller” gives a systematic treatment of the ana- 
lytic aspects of these self-adjoint boundary conditions. Lesch and Wojciechowski’7 determine the 
dependence of the exponentiated c-invariant on the boundary trivialization (Theorem 1.4). 
Miiller” derives this result as well; his argument rests on a variational formula. Bunke” proves a 
gluing formula for the (unexponentiated) Tinvariant in case a closed manifold is split into two 
pieces. Recent preprints of Wojciechowski19*20 also prove gluing formulas for the Tinvariant 
modulo one. 

Our contribution here begins with our geometric formulation of the exponentiated c-invariant 
as taking values in the inverse determinant line. For example, this leads to a geometric variational 
formula (1.10) that is crucial in all of our subsequent work. In particular, the variational formula 
relates the exponentiated t-invariant to the natural connection on the determinant line bundle. The 
gluing law we prove (Theorem 2.20) is more general than that obtained by cutting a closed 
manifold into two pieces. This is necessary, for example, in Sec. V, where we glue together 
cylinders, Thus we must consider gluing along manifolds where the index of the Dirac operator 
may be nonzero. The most natural formulation of the result is in terms of graded determinant, 
lines. This notion is discussed in Knudsen and Mumford*’ who credit the idea to Grothendieck. It 
also appears in later work of Deligne** as clearly the best way to avoid a cauchemar de signes! 
Our proof of the gluing law in Sec. IV is simpler than previous proofs. We begin with the same 
patching of spinor fields as in Bunke. i8 Then we note a symmetry that allows us to conclude easily 
with the variation formula. It is tempting to speculate that this approach to gluing may be useful 
in other linear problems and in nonlinear problems as well. 

Our proof of the holonomy theorem-also known as the global anomaly formula-is consid- 
erably simpler than previous proofs, partly due to our simple proof of the gluing law. We rely 
heavily on geometric ideas. Thus we avoid any consideration of large time behavior of heat 
kernels, and we also avoid using nonpseudodifferential operators.3 Cheeger’s argument in Ref. 4, 
Sec. 9, which proves the adiabatic limit formula for the signature operator in the invertible case, 
is very closely related to our proof here. He works on a manifold with conical singularities and 
applies his variational formula and his “singular continuity method;” the latter is analogous to our 
use of gluing. The idea of considering parallel transport also appears in papers of the della 
Pietras,‘2*‘3 but they failed to consider gluing. Our proof proceeds as follows: We use gluing to 
show that the adiabatic limit of exponentiated &invariants on cylinders defines the parallel trans- 
port of a connection on the determinant line bundle. Then we apply our geometric variational 
formula to prove that it agrees with the natural connection. In a sense we use the gluing law to 
break up the holonomy, a global problem on the circle, into a composition of parallel transports- 
local problems on small intervals. 

The idea of computing global invariants on closed manifolds from local invariants on mani- 
folds with boundary using gluing laws is informed by recent work in quantum field theory, 
particularly topological quantum field theory. The gluing is a characteristic property of the path 
integral, and it follows formally from a similar property of the classical action. These gluing laws 
are fundamental for computing quantum Chem-Simons invariants, Donaldson polynomials, and 
other topological and geometric invariants. Older invariants in topology and geometry also obey 
gluing laws23,24 and our work here fits the vinvariant into this story. The theory of the classical 
Chem-Simons invariant25 is very similar, and of course the original papers of Atiyah, Patodi, and 
Singer’ discuss the relationship of Tinvariants (and so exponentiated t-invariants) to Chem- 
Simons invariants for closed manifolds. We also remark that certain ratios of exponentiated 
einvariants are topological invariants that live in K-‘-theory with W/Z coefficients.’ Our work 
gives a factorization of these topological invariants as well. It is tempting to say that the expo- 
nentiated [-invariant is local and so can serve as an action for a field theory, just as the Chem- 
Simons invariant can. (For example, see the recent preprint Ref. 26.) One crucial difference is that 
the Chern-Simons invariant is multiplicative in coverings, whereas the exponentiated &invariant 
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is not. In any case, the gluing law does exhibit some local properties of the pinvariant. 
The suggestion that the ginvariant of a (three-) manifold with boundary lives in the determi- 

nant line of the boundary was made in a manuscript of Graeme Sega1.27 

I. THE EXPONENTIATED &-INVARIANT 

Suppose X is a compact odd-dimensional spin manifold with nonempty boundary. (We un- 
derstand a spin manifold to have a definite metric, orientation, and spin structure. Our work 
extends to spin” manifolds and to Dirac operators twisted by a vector bundle with connection, but 
for simplicity we omit these refinements.) Assume that X has a metric with an explicit product 
structure near dX. Thus in a neighborhood of the boundary there is a given isometq with 
(- 1,0]X~3X. Let H, denote the Hilbert space of L* spinor fields on X and D, : H,+ H, the 
formally self-adjoint Dirac operator. We use similar notation for the induced Dirac operator on the 
boundary. 

Our first job is to specify self-adjoint elliptic boundary conditions. Our discussion here is 
somewhat formal. We leave the detailed analysis to the Appendix. Let J:H,-+H, be Clifford 
multiplication by the outward unit normal vector field to the boundary. Then J is skew-adjoint, 
J*=-1, and D,,J=-JD,. The ?i-eigenspaces of J induce the usual splitting 
H,= H&G3 Hyx. Now integration by parts yields the formula 

Thus if our boundary condition is described by $1 dx E WC H, , then the corresponding Dirac 
operator is self-ddjoint if JW= W* , at least formally. We also need elliptic boundary conditions, so 
we choose W “close” to the subspace that describes the Atiyah-Patodi-Singer nonlocal boundary 
conditions. ’ 

Our precise choice is this. The non-negative self-adjoint operator D& induces decompositions 

where Kix@ Kix is the kernel of D, and Eix(A) @ Eix(X) is the eigenspace with eigenvalue X. 
The sum is over the spectrum spec( D’,). Note that 

is an isomorphism, though it is not unitary-it is dA times a unitary map. Also, by the cobordism 
invariance of the index’ we have index D,=O and so dim Kzx=dim K,. Now for any positive 
a $ spec( Dzx) let 

(1.1) 

By ellipticity Kzx(y(a) is finite dimensional. A choice of boundary condition W(,,n is determined 
by the number a and by a choice of isometry 

I-et D,la denote the operator which restricts to D,f,lA on Ezx(,(X); it is defined on 

HixGKlx. We denote its restriction to Hix(u) by Dax(a)l~m. A spinor field 4+ E Hix 
decomposes according to Hix= Kix( a) G3 Hzx( a). Then 
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(1.2) 

This is a generalization of the boundary condition studied by previous authors15-‘8 who choose a 
less than the first ergenvalue of D&. (Other authors describe the isometry T by its graph, which is 
a Lugrungian subspace of the kernel.) We need this generalization to treat families. 

Now for any choice (a.T) of boundary conditions the Dirac operator D,(a, T) is self-adjoint 
elliptic and has a well-defined +nvariant vx(u.T). (See the Appendix.) We use the more refined 
&invariant 

~x(u T)= vx(u,T)+dim ker Dx(a,T) 
, 2 

and set 

Our first result is a generalization of Refs. 17, 18 (Corollary 9.3), and 15 (Theorem 2.21). It 
computes the dependence of ‘rX(ar T) on (a,T). To state it note that if OCu < b with a,b 
$spec(D$, and T:K~x(u)+K~x(u) is an isometry, then T $ D,x(u,b)ldm: 
K~x(b)+K~x(b) is also a unitary isomorphism. Here Dax(u,b) denotes the restriction of D, to 

H$-~(a,b)=~<~<~E&(h). (1.3) 

Theorem 1.4: Suppose O<u<b with u,b$spec(D$x) and T,T,,T2:K~x(u)+K~x(a) are 
isometries. Then 

(1.5) 

(1.6) 

Equation (1.6) is trivial since W(C,T@ Ddx(a,bJl J-) = W(,,T) . We defer the proof of (1.5) to 
Sec. IV (Corollary 4.22). 

We can interpret (1.5) and (1.6) as instructions for constructing a Hermitian line L, and an 
element rx E Ldx . Namely, let Fax = { (a, T)} be the set of possible boundary conditions and then 
define the complex line 

Ldx={r: Fax--K :T satisfies (1.5) and (1.6)). 

Since Idet( T; ’ T2) I= 1 in (1.5), we see that the expression 

(1.7) 

is independent of (u,T) and so defines a Hermitian metric on Lax. By construction T~E L, is an 
element of unit norm. 

We use a patching construction to extend to families (cf. Ref. 28). Let r:X--tZ be a fiber 
bundle whose typical fiber is a compact odd-dimensional manifold with boundary, and let 
&r:dX-tZ be the fiber bundle of the boundaries. A Riemannian structure on X-+Z is a metric on 
the relative tangent bundle T(X/Z) together with a field of horizontal planes on X, which we 
specify as the kernel of a projection P:TX+T(X/Z). Suppose also that T(X/Z) is endowed with 
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an orientation and spin structure. For simplicity we term rr a “spin map.” For our purposes we 
also assume that the metrics are products near the boundaries. Now for each a>0 define 

U,={ZEZ : a$spec(D&,)}. 

On this open set &$xl(a) are smooth vector bundles of equal rank. Choose a cover 

U,= U U,,i (1.8) 
i 

so that these bundles are isomorphic over each U,,i. Then choose a smooth family of isomor- 
phisms T,(a,i):K& (a)+K ix (a) and compute rx (a, T,(u,i)), which is a smooth function of z. 
The collection of th>se functilns for various choic& of a, i, and T,(u,i) satisfy (1.5) and (1.6). 
Definition (1.7) extends to this situation-now everything depends smoothly on z-to define a 
Hermitian line bundle L dxIz+Z. The functions rx,(u, T,( a, i)) patch together to form a smooth 
sectron rxlz of L,,, . 

In Sec. II we identify Lax,, as the inverse determinant line bundle of the family of Dirac 
operators on dX-+Z with its Quillen metric. This line bundle carries a natural unitary connection 
V, constructed in Ref. 2. (In Sec. V we define a connection V’ directly on L,,, using the invariant 
%. We prove that it agrees with V under the isomorphism with the inverse determinant line 
bundle.) The following theorem computes the covariant derivative of rx,z with respect to this 
connection; it generalizes the standard formula on closed manifolds (e.g., Ref. 3, Theorem 2.10). 

Theorem 1.9: Let rr :X-+Z be a spin map whose typical fiber is an odd-dimensional manifold 
with boundary. Let fixlz denote the curvature of the relative tangent bundle and A(fl”‘) its 
~-polynomial. Then the covariant derivative of the exponentiated &invariant is 

Vrx,z=2ri [ ~x,z~t~x’z)]~l)~r,i~. (1.10) 

In (1.10) we use the standard sign convention (e.g., Ref. 29) for integration over the fiber. For 
example, if LY is a form on Z and /3 an n-form on an oriented manifold X”, then 

I CkAp= (ZXX)/Z i, i xP a* 

We defer the proof to Sec. III. 

II. GRADED DETERMINANT LINES 

Our first goal in this section is to identify the Hermitian line L, (1.7) with the inverse 
determinant line Detyi of the Dirac operator D, . (The inverse L-’ of a one-dimensional vector 
space L is its dual L*.) The Hermitian structure on Det, is due to Quillen. We then state various 
properties of rx and L, , the most important of which is the gluing law (Theorem 2.20). Here we 
encounter inverse determinant lines for operators of nonzero index. Then the gluing law involves 
some signs that are best understood in terms of the grading on the determinant line given by the 
index.‘l Hence we begin this section with an exposition of graded vector spaces. 

A graded vector space V= V+ @ V- is simply a direct sum of two vector spaces, which in this 
paper we always take to be complex. We call V+ (resp. V-) the even (resp. odd) part of V, and 
write 1 u I=0 (resp. 1 u I= 1) for u E V+ (resp. u E V-). For graded vector spaces V, W we write 
V6 W for the graded vector space whose underlying vector spaces is V@J W and with I u EI WI = I u) 
+ I WI (mod 2) for homogeneous elements u E V, w E W. We use the 6 notation to keep track of 
signs in the isomorphism 
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v6 w-+ w6 v, U@WH( - l)I~llW~wCX%J, u E v, w E w. (2.1) 

Here, as in subsequent expressions, we use homogeneous elements and extend by linearity. The 
dual space V* = (V+) * @ (V-) * of a graded vector space is also graded, and we use the natural 
pairing 

v*G v-+x, vv@w;(u). u E v, UVE v*. (2.2) 

The order of the factors in (2.2) is important! With this choice there is no sign in (2.2), nor is there 
any in the isomorphisms 

v*6w*+(w6v)*, ;@G+(e:w@u-UV(U)tqW)), (2.3) 

and 

W&V*-+Hom(V,W), w63&+(T:u4(u)w). (2.4) 

Notice that the natural isomoIphism 

v-+v**, u-+(e:;H( - l)l~ll%(u)), (2.5) 

picks up a sign in the graded context. The sequence of homomorphisms 

(2.4) * o-1) (2.2) 
Tr, : End( V) -vc3v*-v*civ+c (2.6) 

is the supertruce: For T= ($ “,) ~End( V+G3 V-) we have Tr, T=TrA -Tr D. 
The determinant line Det V of an ungraded vector space V is the one-dimensional vector 

space of totally antisymmetric tensors o=u tA.**Au,. We view Det V as a graded vector space 
whose degree is dim V (mod 2). If V= Vf @ V- is graded, then define 

Det V=(Det V-)&(Det I@)-‘. (2.7) 

This is again a graded line, the grading given by 

IDet VI=dim V=dim V+-dim V-(mod 2). 

Using (2.4) we see that if dim V+=dim V-, then the top exterior power of a homomorphism 
T: V+ --+ V- determines an element 

Det T E Det V. (2.8) 

If V+ = V-, then T has a numerical determinant det T EC, and this is related to (2.8) via the 
supertrace (2.6): 

Tr,(Det T) = ( - 1 )dim “+ det T. (2.9) 

Let - V denote V with the opposite grading: ( - V) ’ = V”. Note the sign in the isomorphism 

Det( - V)+Det( V)-‘, 
(2.10) 

where e? E Det(V’) and 6’ EDet(V’)-‘. Similarly, if W is another graded vector space, then 
there is a sign in the isomorphism 
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Det( VC3 W)-+Det V&Det W, 
(2.11) 

where w’ EDet(V’) and $EDet(W’). 
As a matter of notation, if WEL is a nonzero element of a graded line L, then we denote by 

w-l EL-’ the unique element so that w-‘(w)= 1 under the pairing (2.2). 
Suppose V, W are graded vector spaces with dim V+=dim V- and dim W+=dim W-. Note in 

particular that dim W and dim V are even. Then for T: V+-t V- and S: W+-+ W- we have 

Det(T-‘)=(-l)dimV+(Det T)-‘, 

Det( T@ S) = Det T@ Det S. 

The equalities here stand for the isomorphisms (2.10) and (2.11). 
Next, we review the construction of the determinant line of a Dirac operator (see Ref. 28 for 

details), but now as a graded line. Let Y be a closed even-dimensional spin manifold. The spinor 
fields H,=H~CB H; on Y are graded, and the Dirac operator D,:H:+H; anticommutes with 
the grading. We use the notations K,(a), H,(u), and Hy(a,b) from (1.1) and (1.3), where a<b 
are positive numbers not in spec(Dt). Now Dy(u,b)=Dy:H;(u,b)--tH;(a,b) is an isomor- 
phism, so 

Det Dy(u,b) EDet H,(u,b) 

is a nonzero element. Define an isomorphism 

&(u,b):Det K,(u)-+Det Ky(a)6Det Hy(u,b)aDet K,(b), 

o(u)ww(u)@Det Dy(u,b). 
(2.12) 

pen an element of the determinant line is defined to be a set of compatible elements 
w(u) E Det K,(u) : 

Det,={u={w(u) ~Det Ky(u)},,,~D;~ :w(b)= &(u,b)w(u)}. 

Note that 

IDetyl=index Dy (mod 2). 

Now the lines Det KY(u) and Det Hy(u,b) inherit Hermitian metrics from the L2 metric on H,, 
and we compute 

Hence the expression 

ML,= rI h 1441LKy(.) 
i i X2-R 

is independent of a, where the product is defined using a l-function. This defines the Quillen 
metric on Dety . 
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A careful computation shows that (2.10) and (2.11) are compatible with the “patching” iso- 
morphism Byu,b) in (2.12), so they determine isometries 

Det-r=Det;‘, (2.13) 

DetrlUyZ=DetY,GDety 2’ (2.14) 

Here Y, Y, , Y2 are closed spin manifolds, ‘-Y’ denotes the spin manifold Y with the opposite 
orientation, and ‘Y t Ll Y2’ denotes the disjoint union of Y t and Y,. [Let Spin( Y) + Y denote the 
principal Spin,, bundle which defines the spin structure of Y; it is a double cover of the bundle of 
oriented orthonormal frames. Then the spin structure on -Y is defined by the complement of 
Spin(Y) in the Pin, bundle of frames Spin(Y) X sp,nPin,-t Y.] 

The patching isomorphism used to patch the inverse determinant line (which appears in 
(2.13). for example) is 

(&(u,b)*)-t:(Det KY(u))-‘+(Det Hy(u,b))-‘6(Det KY(u))-‘=(Det KY(b))-‘, 

vtaP--+W DA&))-‘@ v(a). 

With this understood we can identify the Hermitian line determined by the exponentiated 
&inv ‘ant. 

r ropositlon 2.15: Let X be a compact odd-dimensional spin manifold and Lax the Hermitian 
line defined in (1.7). Then 

(7(u,T) EC]-( v(u)= flu,T)( ga A) 1’2(Det T)-’ E (Det K&u))-‘} (2*16) 

is an isometry. 
The proof is straightforward. First, (1.5) and (1.6) imply that {77(u)} defines an element of 

De&!. Then (1.7) and (2.21) imply that the isomorphism (2.16) is an isometry. Here, following 
Ray and Singer?’ we use a {-function to define the infinite product in this isometry. 

From now on we identify L, as the inverse determinant line. So for any closed even- 
dimensional spin manifold Y the Hermitian line L, is defined. 

Now we state some properties of the lines L, and the exponentiated &invariant rx . (It might 
be illuminating to compare with the analogous assertions about the Chern-Simons invariant in 
Ref. 25, Theorem 2.19.) For simplicity we state these for a single manifold X rather than for 
families. However, they work as stated for families, and the proofs are designed to work with the 
patching construction of Sec. I. [Recall that this is our motivation to allow arbitrary a in (1.2).] 

First, (2.13) and (2.14) imply that there are isometries 

L-,=L;‘, (2.17) 

,. 
LY,uY2=LY,@LY2’ 

[Note that (2.17) is nor the inverse of (2.13); the sign in (2.5) enters. Also, one must keep in mind 
(2.3) when comparing (2.14) and (2.18).] For the exponentiated &invariant we have 
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FIG. 1. Cutting a manifold X along Y. 

where we use the isomorphisms (2.17) and (2.18) to compare the left- and right-hand sides of 
these equalities. 

If Y, Y’ are spin manifolds, then we define a spin isometly j to be an ordinary isometry 
f: Y’ + Y togetber with a lift f:Spin(Y’)-+Spin( Y) to the spin bundle of frames. A spin isometry 
induces an isometry 

j* 
LyrALy 

of inverse determinant lines. If k:Spin(X’)-+Spin(X) is a spin isometry, then 

Any spin manifold Y has a naturally defined spin isometry L:Spin( Y)-+Spin( Y) that is multipli- 
cation by - 1 E Spin,, ; it covers the identity diffeomorphism on Y. The induced map on the inverse 
determinant line is 

;-=(- l)indexDy. 

The most important property of the exponentiated ~-invariant is the gEuing law. 
Theorem 2.20: Let X be a compact odd-dimensional spin manifold, Y-X a closed oriented 

hypersurface, and Xc”’ the manifold obtained by cutting X along Y. (See Fig. 1.) We assume that 
the metric on Xc”’ is a product near dXc”‘=dXU YU - Y. Then 

7x = Tr,( rxcUt), (2.2 1) 

where Tr, is the contraction 

(2.18) (2.17) ~ ~ T% 
L~.p’ - L,6 L,6 L-y - L&3 L,@ L;’ -L, (2.22) 

using the supertrace (2.6). 
Notice that index D, is not necessarily zero, which is why we introduce graded determinant 

lines. We prove Theorem 2.20 in Sec. III. 
To illustrate the gluing law consider an arbitrary closed even-dimensional spin manifold Y and 

form the cylinder C= [ - 1, l] X Y with the product metric and spin structure. Then 
rc E L,& L- ,=End( L y). If we cut C along (0)X Y, we obtain a manifold “spin isometric” to 
CUC. Then (2.21) asserts that rc= rcorc, where ‘0’ denotes composition in End( L y). We con- 
clude 

r==idEEnd(Lr). (2.23) 
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This equation is derived assuming the gluing law (2.21). In Sec. IV we compute it directly 
(Proposition 4.7) as part of our proof of (2.21). 

Recall that the circle St admits two inequivalent spin structures, and we denote the corre- 
sponding spin manifolds ‘SLounding’ and ‘S,!,onboundins .’ The former is the boundary of the disk (with 
its unique spin structure), while for the latter the bundle Spin(S~,,bounding)~SO(SI) is the trivial 
double cover of the bundle of oriented orthonotmal frames SO@‘). Now consider S~onboundingXY 
with the product metric and product spin structure. If we cut along {pt}X Y, we obtain C, and the 
gluing law (2.21) asserts 

T‘S’ nonboundi.gX~=TrJ( rc) =Tr,(id)=( - l)index ‘r. 

On the other hand, if we apply the spin isometry L to one boundary component of C and then glue, 
we obtain S’ boundingXY. It follows from (2.19) that 

7s’ ba”“*i”gXY=t- 1) i”dexDy Tr,(rc)=l. (2.25) 

Equations (2.24) and (2.25) agree with known results and provide a simple check of the signs in 
the gluing law. 

III. THE VARIATION FORMULA 

The purpose of this section is to present the proof of Theorem 1.9. 
Let cX--+Z be a spin map whose typical fiber is a compact odd-dimensional manifold with 

boundary. Since the assertion to be proved is local, it suffices to work over an open set U,,i, 
defined in (1.8). Over U, i we have smooth isomorphic Hermitian bundles K2x,z(a) and we 
choose a smooth family of’isometries 

(3.1) 

By Proposition 2.15 over the open set U,*i, the smooth section ~~~~ of LdxIz-‘Z can be identified 
with 

7x12 = e 
25Ti&&,T)U- 1 

f 

where 

u = (Det T)l x/- E De&z (3.2) 

is a smooth section of unit Quillen norm. Clearly, then, Theorem 1.9 is equivalent to the following. 
Theorem 3.3: Modulo the integers tx(u,T(u,i)) defines a smooth function on U,,i and 

dt&,T)=[ i,,,i(~x’z)]~l~+& u-‘Vu. 

As we mentioned earlier the connection V here is the natural unitary connection on the 
determinant line bundle introduced in Ref. 2 by Bismut-Freed. It is a natural generalization of the 
induced connection in the finite-dimensional case to the infinite-dimensional setting and uses the 
heat equation regularization. For our purpose we recall its construction. (See Ref. 28 for a treat- 
ment in terms of c-functions.) 

Let r:Y=JX+Z be a spin map and D+=D;,z be the family of fiber Dirac operators. 
(l$erything works even if Y is not a boundary.) Now D+ can be considered as a smooth section 
of Hom(H+,H-), where Hc are infinite-dimensional Hermitian bundles over 2 (see Ref. 2 for 
details). Assume for the moment that H’ are finite-dimensional Hermitian bundles over Z. In this 
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case the determinant line bundle can be identified with (Det H-)B(Det H+)-‘, and so is naturally 
endowed with a Hermitian metric. Clearly Det D+ is a smooth section. Now if H’ are also 
endowed with unitary connections V, then they induce a unitary connection V on the determinant 
line bundle. In fact when D+ is invertible, 

VDet D’=Tr[(D’)-‘vD+]sDe.t De. 

Further, if H’ = K’ @ Hf is an orthogonal decomposition invariant under D+, then 

V=VK+VH’. 

(3.4) 

(3.5) 

These two properties fully suggest how to define it in the infinite-dimensional setting. 
Thus over U, let 

H’=K’(u)@H’(a) 

be the orthogonal decomposition defined in Sec. I. The infinite-dimensional Hermitian bundles H’ 
are equipped with the uniq connection V defined in Ref. 3, Def. 1.3. (Note that the notation 
there for that connection is ‘VU,') Over U, we have smooth finite-dimensional subbundles K’(u) 
of H’. Hence they inherit a unitary connection, which in turn induces a unitary connection V" on 
(Det K-(a))G(Det K+(u))-‘. By the additivity (3.5) this is the K’(a)-part of the connection. 

To define the H’(u)-part of the connection one makes sense of (3.4) in the infinite- 
dimensional setting by the heat equation regularization. Note that the restriction D+(u) of D+ to 
H+(u) is indeed invertible. When there is no confusion we also use ‘D2(u)’ [instead of 
‘D-(u)D+(u)‘] to denote the restriction of D2 to H+(u). The formal expression 
T$(D*(u))-‘ED+] will be defined by 

TrC(D+(u))-‘~D’(u)]=f.p.{Tr[(D+(a))-’~D+(a)e-’D2(“)]}, 

where f.p. is a suitably defined finite part of the right-hand side of (3.6) as t+O. 
To define this finite part, note that 

(3.6) 

It follows that as t-+0 

T~(Df(~))-‘~D’(~)~-fD2’a’]- ~ Uifi+Uo+Uo,l log t+ ~ UjP. 
j= -nl2 j=l 

Then the finite part is defined as 

f.p.{Tr[(D+(u))-‘~D+(u)e-‘D2~a)]}=u,,+l?(l)ao,l, 

or symbolically, 

f.p.{T~(D+(~))-‘VD+(u)e-‘D2(“)]}=LIM Tr[(D+(a))-‘~D+(a)e-‘D2(“)] 
t-+0 

+r’( 1)LIM r-*O & T~[~D’(u))-‘QD+(u)~-~~~(~)], 

(3.7) 
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Finally the Bismut-Freed connection is defined as 

Coming back to Theorem 3.3, when D,,, is invertible we can choose a less than the smallest 
nonzero eigenvalue of D,x,,. In this case u=Det D&,zl)lDet D&,zll and thus U-‘Vu=Im o, 
where o is the connection form for the Bismut-Freed connection: 

V(Det D&,,)=o.Det D&,,. 

The imaginary part of w has the following explicit formula: 

I 

m 
Tr,(D,,~D,,e-‘D~Xlz)dr. 

0 

That the integral in (3.8) is well defined comes from the following cancellation result:3,4 

Tr,(Ddxlz~D,xlze-‘D~xiz)=O( 1) as t-0. (3.9) 

This result holds without the assumption on the invertibility of Daxlz and is also crucial in our 
proof of Theorem 3.3. 

Thus in the invertible case our formula states 

where + is the differential form generalization of 37 introduced in Ref. 32. We point out that 
Cheeger4 has also proven a formula similar to the above in the context of manifolds with conical 
singularities. 

The proof of Theorem 3.3 is divided into several lemmas and two propositions. 
The first lemma deals with a special case. Namely, we assume that the metrics along the fibers 

are of the form 

g,=dU’+gax 2 

near the boundary, where gdx, is independent of z, i.e., the metrics near the boundary are all the 
same (and of product type). Fix a choice of boundary condition (a, T). 

Lemma 3.10: Under these conditions &(a,Z’) (mod 1) is a smooth function on U, and 

d&a,T)= -’ 
d- 

LlM t1’2 Tr(~D(a,T)e-‘D2(“,T)), 
n- t-to 

where LIM means taking the constant term in the asymptotic expansion. 
Proofi This is a slight generalization of Ref. 15, Prop. 2.15. His proof can be easily general- 

ized to this situation and is given in Proposition A17. 
In general the boundary geometry and the boundary conditions vary. The idea here is to 

conjugate to a family with fixed boundary conditions. 
Thus write the metric g, near the boundary as 
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and let III,(z) denote the orthogonal projection onto the space spanned by eigensections of 
D,(z) with eigenvalues h>&. Then II,(z) is a smooth family of (pseudodifferential) projec- 
tions on L2(aXIZ,S) (for z E U,), and let H&z) denote the corresponding orthogonal projection 
onto the graph of T,(a,i), defined in (3.1). Then 

q*,,)(z) = &z(z) +l-bm 

is a smooth family of pseudodifferential projections that describes the family of the boundary 
conditions. From the general perturbation theory, for any fixed z. E Z there is a smooth family of 
unitary operator U(z) on L2( 3X, ,S) (see Ref. 33, Lemma 2.9, for example) such that 

In fact, as we will see later, 

U(z) = 
( 

B-‘(z)B(zo) 0 
0 1 1 ’ 

(3.11) 

where B(z) = T(z) @ D,xZtu)l@@j:H++H-. 
Now extend U(z) to a smooth family of unitary operators on L2(XIZ,S) such that U(z) is 

constant along normal directions to a neighborhood of ax/Z and identity in the interior and 
interpolate in between. This can be done, at least in a neighborhood of zo. For example, let x(u) 
be a smooth function on [0, l] such that x(u) =0 for u ?=a and x(u) = 1 for u=s$. Then 
U(x(u)z+(l -x(u))zo) does the job. (Here we interpret z as local coordinates around zo.) For 
simplicity we still denote this extension by U(z). 

Lemma 3.12: Modulo the integers &,T(z)) defines a smooth function on U, and 

dS(u,T(z))= -’ 
J- 

LIM t1’2 Tr(~D(u,T)e-‘D2ca,n) 
T r-+0 

-’ LlM t*‘2 T~D(a,T),QUe-‘D2c’~~]. 
d- 

(3.13) 
-IT t-to 

Proof Since D(u,T(z)) and U(z)-‘D(u,T(z))U(z) have the same eigenvalues, we have 

E(~~~)=~(~(z)-‘D(~,~(z))U(Z)). 

However, now U(z) - ‘D(u, T( z))U(z) is a smooth family of operators satisfying conditions (Ha), 
(Hb), and (Hc), which are defined in the Appendix preceding Lemma Al4 and Lemma A15 
Therefore, we apply Lemma Al7 of the Appendix to obtain 

=A- i L,, t1’2 Tr~~D(u,~)e-‘D1(O’)~-~ I-.-. t”’ T~[D(u,?‘),~U~-‘~~(‘*~]. 

Remark: In the second term of (3.13), [D(u,~),~U~-‘~‘~~~~] should be interpreted as an 
operator acting on the Sobolev space H’(X,S). As we see from the proof, this term comes from 
[D(~,T),hl]e-‘~~(~~~, which is clearly trace class on L2(X,S). Of course, both traces are equal. 
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We now look at the first term in (3.13). 
Proposition 3.14: We have 

-lLIMt 
d- 

1’2 Tr(vD(u,T)e 
lr t-to 

-tD*w+ [ (x,z&nX’Z)] . 
(1) 

PI-OOJ? By the explicit construction of the heat kernel e-tDP(a*T) [see (AS)], the asymptotic 
expansion separates into an interior part and a boundary part, and by the corresponding result for 
closed manifold we have 

-1LIMt 
d-- 

1’2 Tr(vD(u,T)e 
7r t-0 

-fD2(u.n)=[ [x,~(n”z)]~tj+boundary term. 

As to computing the boundary term we can replace the manifold X/Z by the half cylinder 
R+XdXIZ, with the family of the metrics given by 

To compute the heat kernel CY-~~*(‘*~ on the half cylinder, we let (9x) be an orthonormal basis of 
eigensections of D,,,, such that Jrp,=q-+, . Then 

e-‘D2(n,T)=E>a(t)+E<,(t), (3.15) 

where 

E,,(t)= c A,\I;; z (~-(.-.““.-L-‘.-.“‘4t)~A~~~+~ (e-(u-u)*/4t+e-(U+U)*14t)J~A 
@Jq$-Xe *(Yfu)erfc(~ +hJ;)JcpiOJqc, 

with 

and E,,(t) is the heat kernel of the following system on the half-line ~20: 

(d,-d~+A2)E,,(t,u,v)=0, 
E<,I,=o=U 
~&<alu=O=o, 
JIITJ(d,+A)E,,~,=,=O. 

Here A = D,XIZ K(a) . Note that A is a smooth family of finite-dimensional (symmetric) endomor- 
phisms and the boundary condition here is local. 

Therefore, 
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t.4~DW’)~>,W)b)= c 
@t 
- (1 -e-U2”)(JVD~~ ,c,oA)+- 

A>& G 

Here, and also in what follows, we have suppressed the subscript ax/Z of D. Integrating with 
respect to u from 0 to 03 yields 

Here the last equation follows from the fact that 

which is a consequence of the following equations: 

JvD=-VDJ, JqA=q-A. (3.16) 

Now, 

Tr,(D(u)~D(u)e-“2D2’n))=O( 1) as t-+0, 

as it follows from (3.9). Consequently, 

LIM r1’2 Tr(‘?D(u,T)E,,(t))=O. 
t-+0 

On the other hand, 

Tr(~D(u,T)E,,(r))=Tr(J~DE,,(t))=i Tr#DE,,(t)). 

By (3.16) VD is an odd operator. However, the heat kernel E,,(t) is not even because of the 
boundary condition. The crucial observation here is that the leading asymptotic as t-t0 is indeed 
even, for local boundary conditions do not contribute to the leading asymptotic. Since the under- 
lying manifold here is one dimensional, the leading asymptotic is r-In, which implies 

Tr,(vDE,,(r))=O( 1) as t-+0. 

Therefore, 

LIM r”2 Tr(vD(u,T)E,,(t))=O. 
r-+0 

Thus the boundary term is zero. This finishes our proof. 
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We now turn to the computation’ of the commutator term in (3.13). In general the trace of the 
commutator of a bounded linear operator with a trace class operator is zero. On a closed manifold, 
this can be extended to 

Tr[D, K]=O 

for D a differential operator and K a smoothing operator (say), This is no longer true on a 
manifold with boundary. However, we have the following. 

Lemma 3.17: For D the Dirac operator and K a smoothing operator with smooth kernel 
K(x,x’) on a compact spin manifold A4 with boundary we have 

Tr[D, K]=- 
I 

tr(JK(y,y))d vol(y). 
dM 

Remurk: This is quite similar to the characteristic feature of _. 

(3.18) 

the b-trace introduced by 
Melrosej4 in the context of manifolds with asymptotically cylindrical ends. 

Proofi Clearly DK is a smoothing operator with kernel given by DxK(x,x’). Thus 

Tr(DK)= 
I 

tr(DxK(x,x’) lx, =,)d vol(x). 
M 

On the other hand, 

(m)f(x)= /MK(~,~‘)(~f )(x’)d VOW= JdlDxt~(XI~~).f(~~)d VOW) 

+ I JK(x,y’)f(y’)d VOW. 
ahf 

Therefore the kernel of KD is given by D,tK(x,x’)+JK(x,x’)SaM, and hence 

TtiD,K]=Tr(DK)-Tr((DK)*)- lM ~~JK(x,x)S~M d vol(x)=- IaM tr(JK(y,y))d VOW. 

It should be pointed out that for the above equation the Lid&ii’s theorem does not apply 
immediately to JK(x,x’) S,, . However, this can be overcome by approximating the delta func- 
tion via smooth functions and estimating the trace norm of the approximation via the Hilbert- 
Schmidt norms. 

With this lemma at our disposal we now turn to the commutator term. Recall the definition of 
u from (3.2). 

Proposition 3.19: We have 

i 
LIM t1’2 T~ED(~,T),~:u~.-‘~*(~.~)]=- u -‘VU. 
t-10 2&i 

Proof: Clearly Q Ue -rD2(aJ7 is a smoothing operator. Therefore, according to (3.18) the trace 
of the commutators part can be computed by taking pointwise trace of the Schwartz kernel of 
9 Ue-‘DZ(u*V and integrated over the boundary. Thus U can be taken to be the original family of 
unitary operators on the boundary, extended radially constant to the whole cylinder. For our 
computation we need the precise construction of U. 

Recall that U is constructed to conjugate the family of boundary conditions, which are de- 
scribed by [see (1.2)] 

J. Math. Phys., Vol. 35, No. 10, October 1994 



5172 X. Dai and D. S. Freed: Tinvariants and determinant lines 

(~+,~-)~Kx,z:~ -+( *cB;+FE)rqi-0). 
In other words, they are described by the graph of the pseudodifferential operator: 

B(z)=T(z)@ 

Then it is not hard to verify that formula (3.11) defines such a unitary conjugation. One easily 
finds 

VU(zo)= 
i 

-B-‘(zo)v’B(zo) 0 
0 0 i 

and 

Using these and (3.15) we obtain 

- tr JvUe- rD2(a,T)=tr(JT-1~TE<,(r)IU=o)+ 
I ([ 

tr J (D+(a))-%‘D+(u) 
JXIZ 

(3.20) 

For the first term we have 

LIh4 t1’2 tr(JT-l~TE,,(t)~,=o)= & tr(JT-‘frT)=i ‘” Det T, 

t-+0 2& DetT 
(3.21) 

where again we have made use of the observation that the leading asymptotic of 
tr(JT-‘ffTE,,(t)) is independent of the boundary condition. 

The second term is a little bit more complicated. We first note that 

and 

A erfc(XJ;)=2h2 
m 1 

J;; 
I 

J e-Sk2 dsc& e-t”-& 
t2.T I 

~sm312e-sA2 ds. 

Hence 

ms-3’2e-SA2 ds Jcpi@ J& , 

and 
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i - 

=4J;; t f 
s-3/2 Tr((D’(a))-‘~D+(a)e-SD2(‘))ds 

i ~0 -- 
I 8J;; t 

sm312 Tr((D*(a))-‘v(D2(a))emSD2(‘))ds. 

One finds 

LIM t”* 
1-O 

(D+(u))-’ vD+(a)-; ((D2(a))-‘~(D2(a))]E>,(t) 

=I LIM Tr((D+(a))-‘~Df(a)eVrD2@))+~ LUI 
2J;; t-r0 d-- 

rr f o &W(DfW)l 

xv~+(~)~-‘D’(a))- -!- LIM Tr((D2(a))-‘v(D2(a))e-‘D2(a)) 
4J;; t-0 

--$g yy & Tr((D2(a))-‘~(D2(a))e-‘D2(a)). 
-i 

(3.22) 

From (3.9) and the identity 

Tr,[(D(a))-‘~D(a)e-‘D2(“) - 
I-I, 

m TrS[(D(a))~D(a)e-“D2(a)]ds, (3.23) 

we find 

LIM Rio & TrS[(D(a))-‘~D(a)e-‘D2(“)]=0, 

or, equivalently, 

LIM t-to & Tr((D’(a))-1~Df(a)e-fD2(a))=~ Lm t-tO & Tr((D2(a))-1\)D2(a)e-rD2(a)). 

(3.24) 

Thus the right-hand side of (3.22) reduces to 

-!- LIM Tr((DC(n))-1~Df(a)e-‘D2(n))-~ 
2J;; t-+0 

4J;; k+y Tr((D2(a))-‘V(D2(a))e- tD*(a) 1. 

On the other hand, we have by (3.7) 

V Det T V” Det T 
Det T = Det T +LIM Tr((D+(a))-‘~D+(a)e-‘D2(n)) 

t-t0 
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+r’( l)LIM t-rO & Tr((Df(a))-1vD+(a)e-‘D2’a)) (3.25) 

and 

d(dm) 1 
Jm =z yy Tr((D2(a))-1~(D2(a))e-‘D2’u’) 

& Tr((D2(a))-1~D2(a)e-‘D2(n)). (3.26) 

We combine (3.20)-(3.26) to complete the proof. 

IV. THE GLUING FORMULA 

In this section we prove Theorem 2.20. We assume the notation of that theorem and of Sec. I. 
Fix a positive number a ’ $ spec( Dsx). Choose an isometry 

Then according to (1.7) and (2.16), the pair (a’ ,T’) induces a trivialization of Ldx. This trivial- 
ization is simply carried along in the computation below. Much more essential is the following. 
Choose a $ spec( D$) and denote 

K’=K;(u)=K:,(u). 

Now choose an isometry 

T:K+@K-+K+@K-. (4.1) 

Note that T has a numerical determinant det T EC. Now K&,-p K+ @K- and 
KFu,-r=K- @ K+ [note the swap in factors from the right-hand side of (4.1)], so there is an 
induced trivialization 

(-I)dimK+dimK-(Det T)-‘EL~,,-~. (4.2) 

Our first task is to compute the image of (4.2) under the sequence of maps (2.22), where we leave 
off the L, factor for convenience. Recall that (2.22) is the composition 

Tr,o(2.17)0(2.18). (4.3) 

Each of the three maps in (4.3) involves a factor, and these factors are computed in (2.9)-(2.11). 
The total factor [including the factor in (4.2)] is 

t-11 dimK+dimK-(-1) dimK++dimK-(_l)dimK+(_~)dimK+(dimKC+dimK-)=(_l)indexDy, 

from which it follows that the image of (4.2) is 

(- l)dimK+ dimK-(Det ~)-l(~z)(- l)indexDv(det q-1. (4.4) 

Thus Eq. (2.21) is equivalent to the following statement. 
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Proposition 4.5: Let X be a compact odd-dimensional spin manifold, Y-+X be a closed 
oriented hypersurface, and Xc”’ be the manifold obtained by cutting X along Y. We assume that the 
metric on Xcut is a product near 8X’“‘= dXUYU-- Y. Choose u,u’,T,T’ as above. Then 

Tpt(u’,T’;u,T)=( - l)hdexDy det T. T~(u’,T’). (4.6) 

Equation (4.6) is an equality of complex numbers. 
As a preliminary to proving Proposition 4.5 we compute directly the exponentiated &-invariant 

of the cylinder. This generalizes Ref. 17, Sec. 3. 
Proposition 4.7: Let Y be a closed even-dimensional spin manifold and C = [ - 1, l] X Y be the 

corresponding cylinder. Choose a, T as above to define boundary conditions for the Dirac operator 
on C. Then 

T& a, T) = det T. (4.8) 

This is compatible with (2.23), which we derived in Sec. II as a consequence of the gluing law. (Of 
course, that derivation was not a proof as the proof of the gluing law depends on Proposition 4.7.) 
Namely, the element of End( L,) corresponding to (4.8) is rc(u,Z’)(Det T)-‘-the l-factor in 
(2.19) cancels out for End(Lr)-and as in (4.4) we compute 

which agrees with the supertrace of idEEnd(Ly). 
Proof We first prove (4.8) assuming that a =E is less than the first positive eigenvalue of 0;. 

In other words, K= K+ @ K- is the kernel of D, . Then we use the variation formulas of Sec. III 
to derive the general formula. 

A spinor field on C is a sum of fields of the form 

~=fw:+d~M~ 9 (4.10) 

wheref,g:[- 1, I]-& and 6 EEL are eigenfunctions of 0;. If X>O, we choose K=D,&, 
and then 

D&=(-if’(t)+iXg(t))&+(-if(t)+ig’(t))D&:. 

In this case the involution 

anticommutes with DC and preserves the boundary conditions (1.2), which reduce to the equations 

f(l) 
g(l)+- 

Jj; 
=o, f(-l)+&g(-l)=O. 

Therefore, the part of the spectrum of DC coming from spinor fields (4.9) with 00 is symmetric 
about the origin, and so does not contribute to the ~invariant. An easy computation shows that 
Ker DC contains no nonzero spinor fields that are sums of fields of the form (4.10) subject to the 
boundary constraint (4.11). So there is no contribution to the &invariant. 

We am left to consider spinor fields 
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@=f(t)4++s(t)+-, +K+, ~J-EK-, 
subject to the boundary condition 

(f;(ltg!+) +,( ,:‘-‘;fJ =o. 

Now 

(4.12) 

DC@= -if’(t)+++ig’(t)qb-, 

and it is straightforward to see that DC+=& subject to (4.12) if and only if 

g= ,ipt++ +,-W+- 

with 

T( $:)=-e-2iP( ST). 
So each eigenvalue v of T contributes a set of the form pu+ TZ to the spectrum of DC, where 
OS&7r satisfies -e-2iP= V. A standard computation (e.g., Ref. 1) shows that the Tinvariant of 
the set ,u+rZ is 1-2/*j~ if p#O. Thus if p#O, the &invariant is f-d~, and exponentiating we 
obhn e2ri(1/2-$T)= -e-2ip, V. This is the correct value of the exponentiated &-invariant for 
p=O as well. Combining the contribution from all of the eigenvalues we obtain (4.8). 

Now for a>0 the boundary condition is a unitary map 

T:K:(a)~K;(a)~K:(a)~K;(a). (4.13) 

If T= T,, has the form TO = T’ G9 Dl m for D= Da,-( ~,a) and some isometry 
T’ : Kc ( E) @ K; ( E) -+ Ky’( E) @ K; ( E), then the desired result follows from the previous argument 
and (1.6). [Recall that (1.6) is a triviality.] Another isometry T (4.13) is connected to TO via a path 
of isometries T,, and by Theorem 3.3 and (3.2) we have 

1 d~c(a,l”,) 1 d(det TJ =- 
~c(a,Tr) dt det T1 dt ’ 

It follows that 7&u,T,) =det T, as desired. 
Proof of Proposition 4.5: Following Bunke’* we will first construct an isometry 

U:Hxcut(u’,T’;u,T)+Hx(u’,T’)C13Hc(u,ri;), (4.14) 

where the notation means the subspace of spinor fields which satisfy the appropriate boundary 
condition (1.2). Note the appearance of 

i=( l JT( -l l). (4.15) 

We then compute 

Q=U-‘(DxG3DC)U-DXeut, (4.16) 

which turns out to be a bundle endomorphism supported on the disjoint union of two cylinders. It 
follows that 
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FIG. 2. The cutoff functions fL and fR 

d _ e2rri.f(Dpur+uQ) 
du (4.17) 

may be computed locally, and we use a symmetry argument to prove that it vanishes. Equating the 
values at u =0 and u = 1 we see that 

~xc&z’,T’;u,T)=~X(u’,T’)~c(u,~), (4.18) 

which reduces to (4.6) using (4.8). 
To begin let fL JR :[- 1, l]+[O, l] be smooth cutoff functions which satisfy (Fig. 2) 

fd[-1, -tl,=fRc[t, 11)=1, 

f,([l& ll>=fR([- 1, -l/21)=0, 

fE+fi=L fd-x)=fRb). 

The functions fL ,fR lift to functions on C = [ - 1, 1 ] X Y. 

(4.19) 

FIG. 3. The map (I. 
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As in Fig. 3 we choose isometric embeddings C-+X’“’ near the boundary pieces Y and -Y. 
Denote the image cylinders by Ct and C2, respectively. Similarly, we choose an isometric em- 
bedding C-+X with image Cs so that we obtain Xc” from X by cutting along (0)X Y C C3 . If we 
cut Xc”’ along {0)X Y C C, and (0)X Y C C,, then two extra pieces fall out, and they reassemble to 
form an extra cylinder Cd. Define U as follows. Let $ be a spinor field on Xcut. Let U map its 
restriction to the complement of CtU C2 unchanged to the complement of C, in X. Then let I+$ ,e2 
be the restrictions of $ to C, , C2, and define 

u:( Ew-;R xi* (4.20) 

The right-hand side of (4.20) is an element of Hc, ‘83 Hc,, and it patches to @ on X - C3 to give a 
smooth spinor field on XU C4. Note the change in the boundary values on Car as indicated in 
(4.14) and (4.15). It is easy to check that U is unitary. 

Next we compute Q, which is defined in (4.16). Since U is the identity on the complement of 
C t t-l C2, the operator Q has support on C t U C, . An easy computation yields 

QW( “e oB)( k)~ 

where the one-form 

acts by Clifford multiplication. Notice that 0 is supported in the interior of C,uC, , 
Consider the map 

I: cc12 H 
i 

$1 

i ( 
dx- $22(--x) 

i dx. $,(-iv) ’ 

where “e ” denotes Clifford multiplication. This is the map on spinor fields induced by the orien- 
tation preserving diffeomorphism (x1 ,x2)-( - x2 ,x t ) of Ct U C2. We only apply I on the domain 
of Q, so we need only consider (#t ,&) with support in the interior of C,LJC, . It is easy to verify 

12=-l, ID= -DI, IQ= -QI, (4.21) 

where D = DC is the Dirac operator on C. For the second equation, note that any orientation- 
reversing isometry anticommutes with the Dirac operator. For the third, note that 

e( -x) = e(x) 

from Eqs. (4.19). 
Let & denote the &invariant of D, = Dxcut + uQ. As in Lemma 3.10 its variation is computed 

by the formula 

d-5, -1 
du =J;; lirir t1’2 Trx&Qe-‘“i). 

Now the right-hand side is the integral over Xc”’ of a locally computed quantity, and since Q has 
support in C,UC, the integral may be computed there. However, from (4.21) we have 

Tr(Qe-$= -Tr(Z2Qe-fD~)=Tr(ZQZe-fD’ - u)-Tr(ZQe-‘D:Z)=Tr(Z2Qe-‘DZ)= -Tr(QeerD:). 
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This proves that (4.17) vanishes, from which (4.18) and then (4.6) follow. 
As a corollary of Proposition 4.5 we derive (1.5), which is a generalization of Ref. 17, 

Theorem 3.1. 
Corollary 4.22: Let X be a compact odd-dimensional spin manifold with boundary. Choose a 

positive number u $ spec( D&) and isometries T, , T2 : K&( a) -+ K$( a). Then 

rx(u,T2)=det(T;‘T2)Tx(u,T1). (4.23) 

Proof: Let C= [ - 1, 1 ] X dX-+X be an isometric embedding mapping { l}XaX onto dX, and 
let Y be the image of {O}XaX. Cutting along Y we obtain XCUt which is (spin) isometric to XUC. 
Consider the boundary conditions defined by T, on 3X. On YU - Y we use the boundary condi- 
tions 

Note that 

det T=(-l)tiKd~(a) det(T11T2). 

The induced boundary conditions on C are 

and 

&t f= (- l)dim Kix(a)a 

Now (4.6) and (4.8) imply the desired result (4.23). 

V. ADIABATIC LIMITS AND HOLONOMY 

In this section we reprove the main result in Ref. 3 that computes the holonomy of the natural 
connection V on the (inverse) determinant line bundle as the adiabatic limit of exponentiated 
&invariants (on a closed manifold). Our proof here uses the curvature formula proved in Refs. 2 
and 3, the variation formula (l.lO), and the gluing law (2.21). (In fact, it suffices to consider the 
case where the base Z is a circle, and then the curvature obviously vanishes. So the curvature 
formula is not really needed.) We define a new connection V’ by specifying its parallel transport 
as the adiabatic limit of exponentiated &invariants, now defined on manifolds with boundary. We 
then show that V’ =V. 

Let rr:Y-+Z be a spin map whose typical fiber is a closed even-dimensional manifold, and let 
L-+Z denote the inverse determinant line bundle. According to Ref. 2 it comes equipped with a 
(Quillen) metric and a natural unitary connection V. The curvature of V is (see Ref. 3, Theorem 
1.21) 

ilL= -Z,i[ ~y,$(fly’z)]C2j. (5.1) 

[Since we use the inverse determinant line bundle the sign in (5.1) differs from that in Ref. 3.1 
We now define V’. Let 9% denote the space of smooth parametrized paths y :[0, 11-Z with 

&I, 0.11 ad 740.9. 11 constant. For y&?Z let Y,= y*Y denote the pullback of rr:Y--+Z via y ; then 
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rry:Y,+[O, l] is a spin map. Let gIo, tI denote an arbitrary metric on [0, 1] and g y,z the metric on 
the relative tangent bundle T( Y/Z). Define a family of metrics on Y y by the formula 

ao, 11 
gr=-p- QgYlZr e#O. (5.2) 

The metric g, on Y, is determined by requiring that n; be a Riemannian submersion. Physicists 
term ‘lim’ e+o the udiubutic limit. The spin structure on T( YJZ) induces one on TY, since 

TY,=$T([O, l])@T(YIZ) (5.3) 

and T[ 0, 1 ] is trivial. Now the exponentiated &invariant is a map 

~Yyw:~y(o)+~y(l) * 

Here we use the isomorphisms (2.17) and (2.18). 
Lemma 5.4: The adiabatic limit ry = lim ,+O~y~( E) exists and is independent of the choice of 

mm-k q0. I]. 
Proof: As a preliminary we state without proof a simple result about the Riemannian geom- 

etry of adiabatic limits. Let V ‘Y( E) denote the Levi-Civita connection on Y, with the metric (5.2) 
and RYr( E) its curvature. Then lim,,, VYr( E) exists and is torsionfree. Furthermore, the curva- 
ture of this limiting connection is the limit of the curvatures of V ‘Y( E) and has the form 

lim lw=(: ny;o, ,]) 
C-+0 

(5.5) 

relative to the decomposition (5.3). We will apply this result in families, where it also holds. 
Consider the spin map p: Y,,X(W-{O})-+R-{0}, w h ere the metric on the fiber at E is (5.2). 

According to Theorem 1.9 we have 

d - 
de ry y( e) = 2 rri 

Now (5.5) immediately implies that the component of the integrand in the [0, l] direction ap- 
proaches zero as e-+0. In other words, if I is the coordinate in the [0, I] direction, then any term 
in the integrand involving dt approaches zero as e-0. Hence lim,, $ 7yy( E) =0 and so 
lb,0 ryT( E) exists. 

A sirmlar argument proves that Q-,, is independent of glo, ,I. Let .k& denote the space of metrics 
on [0, l] and consider the spin map 

where the metric on the fiber over (c,gIo, tI> is (5.2). As in the previous argument we see that the 
differential of Tyy( E,glo, tI) with respect to gIo, tI vanishes as c-+0. The desired conclusion fol- 
lows immediately. 

An immediate corollary is that T,, is invariant under reparametrization of paths. Also, if yt, 
~~ES?Z with yt(l)=x(O), and y2oyl denotes the composed path, then Q-~~~~, = ry2 0 TV,. This 
follows from the gluing law (Theorem 2.20). Now a general theorem (Ref. 25, Appendix B) 
applies to construct a connection V’ on L whose parallel transport is 7. 

Now we compute the holonomy of V’. Let +‘-PZ be a loop in Z and YpS’ the corre- 
sponding fibered manifold. Realize y as the gluing of a path y[O, I]--+Z; then Yr is obtained by 
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identifying the ends of Y ,,-+[O, 11. This identification induces the spin structure on Y 7 obtained by 
lifting the nonbounding spin structure on 5’. The gluing law Theorem 2.20 implies [compare 
0.24)1 

:?a 7r-J E) = Tr#+li T~T( 4)) = Trr( parallel transport along r) 

= ( _ 1 )index Dy . (holonomy around 7). (5.6) 

If L = L tiul then the parallel transport is an element of L 6 L* . The sign comes since the compo- 
sitionL&L*-bL*&L+Cis ( - l)lLl = ( - l)index D r times the usual contraction. Let Y!y denote 
Y r with spin structure induced by lifting the bounding spin structure on S’. If we substitute Y$ for 
Yr in (5.6). then the resulting equation has no factor ( - l)index Dr. This follows as in (2.25). 
(Compare Ref. 28, Theorem 1.3 1.) 

Our main result in this section is the following. 
Proposition 5.7: V’ =V. 
To prove Proposition 5.7 we compare the covariant derivative of their parallel transports using 

the following general lemma. 
Lemma 5.8: Let L-+Z be an arbitrary line bundle with connection V and curvature a’. 

Denote the parallel transport of V along a path y by pr. Then 

vp= - 
(1 1 

ev*fiL . p, (5.9) 
P2 

where ev and p2 are the maps 

ev 
[O,l]X.EZ + z 

PA 

L%?T 

To interpret (5.9) view p as a section of the line bundle (ev$(L))* @ (ev:(L))-tB with its 
connection induced from V. Here evl( y) = r(t). The proof is elementary. 

Corollary 5.10: If V,V’ are connections on L-iZ with parallel transports p,~, and if Vplp 
=Vn%, then V’=V. 

For if V’ =V+ a for a one-form a on Z, then 

y-y =-( d/pzv*a). 
and if a#O, then the right-hand side is nonzero. 

We now verify the hypotheses of Corollary 5.10 for the natural connection V and the new 
connection V’ on the inverse determinant line bundle. We use the diagram 

ev*Y + Y 

m’l 1m 
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We compute Vr using the variation formula (1.10). Namely, rr is the adiabatic limit of ry , and Y y 
is the fiber (p20~‘)-t(y). So by the variation formula 

’ Vr=2Ti 
1, P24 

a-lim A(np2a~f)]~~i.i=2~if~~ /v,A(Ckw’)] a7 
(2) 

= fpev*[ 27ri//(fiT)]c2J- 7, 

where we use (5.5) to pass from the first equation to the second. (Of course, “a-1im” is the 
adiabatic limit.) But by (5.9) and the curvature formula (5.1) this latter expression is the covariant 
derivative of the parallel transport of V. This concludes the proof of Proposition 5.7. 

Therefore, (5.6) also computes the holonomy of the canonical connection V on the inverse 
determinant line bundle as the adiabatic limit of exponentiated einvariants. This is exactly the 
content of Theorem 3.16 in Ref. 3. [Again, since we use the inverse determinant line bundle the 
sign in (5.12) differs from Ref. 3.1 

Corollary 5.11: Let y:S’-+Z be a loop and Y ~S~onbounding the corresponding fibered mani- 
fold. Then the holonomy around 7 of the natural connection V on the inverse determinant line 
bundle L+Z is 

C-1) index D~~-li~(~2rri~Y-,). (5.12) 

VI. REMARKS ON THE FAMILIES’ INDEX THEOREM 

Let rX-+Z be a spin map whose typical fiber is a compact even-dimensional manifold with 
boundary. When ker Dax has constant rank, there is a well-defined index bundle 
Ind D,,, E K’(Z). The fan&es’ index theorem of Bismut-Cheeger states that its Chern character 
ch(Ind D,,,) is represented in de Rham cohomology by (cf. Refs. 32, 35, and 36; a more general 
version has been proved in Ref. 37) 

I 
&clx’z) - Gj, 

x/z 
(6.1) 

where 5 is a differential form on the base Z, defined as follows. 
Consider a spin map n?Y+Z whose typical fiber is a closed manifold. (Our application takes 

Y = 8X.) The associated Bismut superconnection A, is 

A =v+t”2D t y/z-C( T)/4t”‘, 

where c(T)=EaGP dz” dzB Tcf, ,f,) with T the curvature form of the fibration, f, a local 
orthonormal basis on Z, and dza the one-form dual to f,. The asymptotics of heat kernels 
associated to the Bismut superconnection exhibit some remarkable cancellations. The first one is 
expressed in the local index theorem for families.3.38 More essential to our discussion are two 
other cancellation results:39 

tr,[(D,z+c(T)/4t)e-A:]=O(r”2) as t-+0, if dim Y/Z is even; (6.2) 

tre’e”[(Dy,z+c(T)/4t)e-Af]=O(t1’2) as t-+0, if dim Y/Z is odd. (6.3) 

where treve” indicates the even form part of tr. When ker Dr,, has constant rank, the expressions 
on the left-hand sides of (6.2), (6.3) are also well behaved for the large time. In fact, it is shown 
in Ref. 40 (in a more general setting) that 
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rr,[(Dr,z+c(T)/41)e-A:]=O(t-1) as t--tm, if dim Y/Z is even; (6.4) 

rre’e”[(D~,z+c(T)/4t)e-A~]=O(t-‘) as t-+w, if dim Y/Z is odd. (6.5) 

By virtue of (6.2)-(6.5) we now define a differential form on Z, the ij form: 

~ $ frtrS[ (Dy,z+F)e-*f] -$ , if dim Y/Z is even; 

‘= $ l,“ireven[ ( Dylz+~)eeAf] $ , 
I 

if dim Y/Z is odd. 

For example, the first integral is convergent at 0 because of (6.2), and convergent at co because of 
(6.4). We normalize ;I by defining 

1 
x oj m(zj-1)9 if dim Y/Z is even; 

+ 

=m ’ EG1(2j)* if dim YIZ is odd. 

Here we decompose the odd (resp. even) form e into its homogeneous components [$]c2j- r) 
(resp. [+](2j)). The 6 form satisfies a transgression formula. If dim Y/Z is odd, then32.33 

d+ - I &nr’z). (6.6) 
rtz 

If dim Y/Z is even and ker D, has constant rank, then33 

dij=ch(Ind Dy,z)- 
I 

A(nr’z). 
ax/z (6.7) 

Return now to a spin map mX+Z whose typical fiber is a compact manifold with boundary. 
If dimX/Z is even, which is the case considered by Bismut-Cheeger, then (6.6) immediately 
implies that the differential form (6.1) is closed. We are interested in the case where dim X/Z is 
odd, and then (6.7) implies that unless D,,, is invertible, the differential form (6.1) is nor closed. 
Thus in the odd-dimensional case one expects a correction term in the Bismut-Cheeger index 
formula from ker D,,, . 

Theorem 3.3 suggests what the correction term should be, assuming that ker D,,, has con- 
stant rank. To define the odd index bundle we need self-adjoint operators. In our case this amounts 
to a choice of a (smooth) family of isometries 

T: ker Ddx,z+ ker Dixlz. 

The resulting family of self-adjoint operators D xlz(T) gives rise to a well-defined index bundle 
Ind Dxlz( T) E K’(Z). On the other hand, ch(Ind DdxIz) = TrS(e-‘v”‘2), where a is chosen to be 
smaller than the smallest eigenvalue of Da,,, . Consider the superconnection Va + ,/tV on 
ker D d~~~ t with V the symmetric endomorphism 

V= 
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One has the following transgression formula: 

which, by the invertibility of V, yields 

d%-= ch(Ind Daxjzh 

with Gr defined by 

- Tr,( Ve-‘Va+Jiv)2)dt. 

Conjecture 6.8: The (odd) Chem character of Ind D,,,( T) is represented in the de Rham 
cohomology by 

f 
x,z&tix’z)- ;i- ijT. 

We have the following evidence for this conjecture. 
Theorem 6.9: The degree-one component of the odd Chem character of the index bundle 

ch,(Ind Dxlz( T)) E&(Z) is represented by 

Proof By the Duhamel principle 

[Trs( Ve-(v=+fiv)2 )I(,,= - & TrS(V(V”V)e-‘v2). 

Therefore, 

[+TI(l)= - jam ; TrS(V(V”V)e-‘v2)dt= - 4 Tr,( V-‘VaV)= -Tr(T-‘V”T). (6.10) 

Similarly, we have 

[ +jtl)= -f 1; Trs(D,,z~Dax,ze-‘D~~~z)dr. (6.11) 

On the other hand, the degree-one comuonent of ch(Ind D,,(T)) is given by dt,(a,T), 
which, according to Theorem (3.3), gives 

1 1 
+= u-‘vu. 

(1) 

From (3.24)-(3.26) and our choice of a we have 

u-‘Vu=(Det T)-‘Va(Det T)+LJLJ Tr((Df)-‘~D+eetD ‘)- f I;IIf Tr((D2)-‘~(D2)eetD2), --) 

(6.12) 
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and the first term in (6.12) is exactly -[ jjr](r) by (6.10). For the remaining terms we note from 
(6.11) and (3.23) 

[G](r)= - f U!y Tr,[D-‘VDe-‘D2] 

= -; LUI Tx~(D+)-‘~D+~-‘~~]+ $ LIM T$(D-)-1qD-e-‘D2] 
t-+0 t-+0 

= -LIM TIC-‘qD+CtD2]+ f LIM TI~(D~)-‘~(D~)~-‘~~]. 
t-0 t-0 

This finishes the proof. 

APPENDIX A: GENERALIZED APS BOUNDARY CONDITIONS 

In this Appendix we discuss the analytical aspects of the generalized APS boundary condi- 
tions. For simplicity of notation we restrict ourself to the case of Dirac operators, although our 
discussion extends easily to the more general situation of Dirac-type operators. 

Let X be an odd-dimensional compact oriented spin manifold with smooth boundary JX= Y. 
We shall always assume that the Riemannian metric on X is a product near the boundary. Let 

D: C”(X,S)+C”(X,S) 

be the formally self-adjoint Dirac operator acting on the spinor bundle S-+X. Then in a collar 
neighborhood [0, 1)XdX of the boundary, D takes the form 

D=J@,+D,x), 

where J=c(du) and 

is the self-adjoint Dirac operator on JX under the identification S],=S(~X). 
As an unbounded operator in L’(X,S) with domain Cr(X,S), D is symmetric. (In other 

words, D is formally self-adjoint.) To obtain self-adjoint extensions of D, one has to’impose 
boundary conditions. For our purpose, we would like to restrict our attention to boundary condi- 
tions of elliptic type. Appropriate boundary conditions that are of elliptic type are considered by 
Atiyah-Patodi-Singer.’ Namely if we denote by II, the orthogonal projection of L2(dX,SIax) 
onto the subspace spanned by the eigensections of D, with non-negative eigenvalues, then 
D + = D with domain 

is an elliptic boundary value problem (in the generalized sense, see Refs. 1 and 41). Here D, is a 
closed symmetric extension of D, although, in general, D, is not self-adjoint. However, one can 
obtain elliptic self-adjoint boundary value problems by considering further self-adjoint extensions 
ofD+. 

More generally, let a @specD;x be a positive number and II-, (resp. III,) denote the orthogo- 
nal projection of L2( dX,SI,) onto the subspace spanned by eigensections of D, with eigenval- 
ues >-$2 (resp. B&z). Consider the operator Da= D with domain given by 
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Lemma Al: D, is a closed symmetric extension of D, and its adjoint D,* is given by D with 
domain 

dom(D,*)={cpEH1(X,S)ln,((PldX)=O}. 
Proof: Proceeding in the same way as in Atiyah, Patodi, and Singer, Paper I,’ (APSl), we can 

construct a two-sided parametrix 

R: Cm(X,S)+Cm(X,S;l-I-,) 

such that DR-Id and RD-Id are smoothing operators and 

R: H’(X,S)-+H’+‘(X,S) (ZaO). 

Thus if ‘pn Edom(D,) such that (pn-+++ Dcp,,+t+b in L*, the existence of the paramatrix R shows 
that, in fact, (~EH’(X,S) and (pn+(p in H’(X,S). By the continuity of the restriction map 

r: H’(X,S)~H”*(dX,SI,)~L*(dX,Sl,x), 

(PEdom(D,) and D,cp= t,b. This shows that D, is closed. 
To show D, is symmetric, it suffices to prove the statement about D,* . Integration by parts 

gives, for all ~,$zCm(X,S), 

Again, the continuity of the restriction map r shows that (A2) actually holds for all (P,$E H’(X,S) . 
Let D-, denote D with domain 

dom(D-,)={cpEH1(X,S)I~I,(cpl,)=O}. 

Then, for all qodom(D,), r,kdom(D-,), 

J((PldX)=J(Id-rZ-n)((PIdX)=~nJ((PldX), cCIIax=Ud-KS/%x). 

Thus (J(~pl,),~l~~)~~=O and (A2) shows that D-,CD,*. 
The equality Df = D-, requires considerably more effort. Let 

LfJx,S)={cp~ L*(X,S)ldist(supp q,aX)st} 

and 

L~,(x,S)={cpEL*(x,s)~supp cpC[O, $-WX}. 

Then L2(X,S)=Lfn,(X,S)+Li,(X,S) and we just have to specify 0: restricted to each of the 
subspaces. 

Clearly for # E Lfn,(X,S) fldom(D,*), we have D,* 9 = D# and 

LT,JX,S)ndom(D,*)=L&,(X,S)nH’(X,S). 

The subspace Lid(X,S) splits further: 
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where KdX( a), H&a) are defined in (1.1). Moreover, D, is diagonal with respect to this splitting. 
Now restricted to L*([O, 2/3],K,(a)), D,=J( a,+ A), with A a symmetric endomorphism of 
Kax(a) which anticommutes with J, and the boundary condition at u =0 is ‘plU=a=O. Clearly then, 
D,* = D-, on L*([O, 2/3],K,(a)). 

On the other hand, for D, restricted to L*([O, 2/3],H,(u)), the construction in APS 1’ actually 
gives bounded inverse R, for D, and R-a for DFa. From 

for q~dorn( D,), +E dom(D-,), we obtain, by continuity, R,* = R-, . Since adjoints commute 
with inverses, the lemma is established, for the discussion above shows that DZC D-, . 

From the lemma it is clear that D, is, in general, not self-adjoint, so we need to consider 
self-adjoint extensions of D, . Suppose D, is such a self-adjoint extension, then D,CD,CD,* , 
i.e., D,= D with 

dom(D,)Cdom(D,)Cdom(D,*). C-43) 

Recall our notation from Sec. I. We have K,(u) =Im(II -a - II,) splits into the (+i)- 
eigenspace of J [cf. (1. l)]: 

Lemma A4: We have dim K&(u) =dim K&(u). 
Proof: This is a consequence of the cobordism invariance of index. Alternatively, it follows 

from the Atiyah-Patodi-Singer index formula, as follows. First of all, by the symmetry of 
spec Dax, we just need to show that for a less than the smallest nonzero eigenvalue of D&. 
Namely, dim K&-= dim K& where K& are the +i-eigenspace of J restricted to ker Dax. Apply- 
ing the APS index formula to D, yields 

dim ker D, 
dim L= 2 , (A% 

where LCker D, is the subspace of limiting values of the extended L*-solutions of D (see 
APSI’). Alternatively, L = IIr(ker D,*) = IIr(ker D-,), where II is the orthogonal projection 
onto ker D,. From (A2), together with (A$, we see that L is a “Lagrangian” subspace of 
(kerD,,(.,.),,J):(Jcu,/?),x=O for all (Y,PEL. This shows that the (+i)-eigenspace of J has 
the same dimension as the (-i)-eigenspace. 

We now denote h+(u)=dim K&(u). 
Proposition A6: There is a one-one correspondence 

{self-adjoint extensions of D,}+-+{unitary maps T: K,&(u)+K&(u)}. 

For a unitary map T, its corresponding self-adjoint extension D(u, T) is given by D with 

dom(D(u,T))={cp~H1(X,S)I(~,+~,>(cPl~x)=O}, 

where II, is the orthogonal projection onto the graph of T in K&u). 
Proof Any self-adjoint extension of D, is given by D,= D with domain satisfying (A3). Thus 

r(dom(D,))Cr(dom(D,))Cr(dom(Dd)) 

or 

r(dom(D,))Cr(dom(D,))Cr(dom(D,))@Kax(u). 
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From (A2), 

u(cpl,)~~lax)ax=o (A7) 

for all 9,g.E dom( D,), or, equivalently, for all 91 ax, $1 ax E r(dom(D,)). Since D, is symmetric, 
(A7) is automatically satisfied on r(dom(D,)). Let L=r(dom(D),))r3Kax(u) be a subspace of 
K,(a). Then (A7) shows that L is an “isotropic” subspace of (K&u),J). Since D, is self- 
adjoint, L must be maximal isotropic, hence “Lagrangian.” Now it is a little linear algebra to show 
that there is a one-one corrtspondence 

{Lagrangian subspace L of (K,&u),J)+-+{unitary map T: K,&(u)+Kax(u)} 

given by L=the graph of T. This shows one way of the correspondence. However, the other 
direction is completely similar to the proof of Lemma Al. 

Remark: This is very similar to von Neumann’s theory of deficiency indexes, which com- 
pletely characterizes self-adjoint extensions of a closed symmetric operator. 

Remark: Formally, for D with domain Cr(X,S), there is also a one-one correspondence 

{ self-adjoint extensions of D}H{ unitary maps: H&-+Z-&} 

*{Lagrangian subspaces of Hax= L2(dX,Sl,x)}. 

However, one loses the ellipticity in this generality. 
Thus, given a $ spec D& positive and T: K&(u)+K&u) an isometry (unitary), the operator 

D(u,T) is self-adjoint, and, as we mentioned earlier, elliptic in a generalized sense. We will not, 
however, go into the discussion of the ellipticity of D(u, T), but, instead, derive some of its 
consequences from the study of the heat kernel, e-tD2(aVT). 

For this purpose, we first consider the situation on the infinite half-cylinder R, X dX. In this 
case, D = J( a,, + Dax) and we have a global decomposition. 

L*(R+XdX,S)=L*(R+ ,L*(c%Sl,))=L*(R+ ,Kax(u))C13L2(R+ ,H&u)). 

Since both D and the boundary condition are diagonal with respect to this decomposition, 
e -‘D2(a,T) = E,,(t) + E,,(t) splits into two pieces as well. As the boundary condition on 
L*(R+ ,H,(u)) is completely analogous to the APS boundary condition, E,,(t) can be given an 
explicit formula. Let {v~ ;X E spec D, ,X>Ju} be an orthonormal basis for Im II, consisting of 
eigensections of Dax. Then the’same construction in Ref. 1 gives 

-X&U+V) erfc( $ +*J)]JW*@JV:. 

On the other hand, there is no explicit formula for E,,(t). However, it is reduced to a heat kernel 
on the half-line R, , with L* boundary condition at ~0 and local elliptic condition at 0: 

(~t-d~+A2)E<,(t,u,v)=0, 

E<,I,=o=Id, I’ITE<alu=O=O, Jl-I~J(d,+A)E<,~,,O=O, 

witi A = k&+) a finite-dimensional symmetric endomorphism. 
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To discuss the heat kernel on X, we use the patching construction of APSl.’ More precisely, 
let p(u,b) be an increasing C” function on R such that p=O for usu and p= 1 for u 2 b. Define 

h=PM. ~1=pG.% 42=1-pw, $*=I-$1. 

These extend to smooth functions on X in an obvious way. Let fi be the Dirac operator on the 
double of X. Then 

e= f$,e -‘“2~1+cp2(E<att)+E>,tt))~2 

is a parametrix for the heat operator a, + D2( a, T) , and 

ca 
e -tD2(4=,+ 2 (- lycm*e, 

m=l 
(A@ 

where * denotes the convolution of kernels. c,=(d,+D’(u,T))e, and c, = c,-r*cr, m32. It 
follows that for t>O, e-to2(ayr) * ts a C” kernel which differs from e by an exponentially small term 
as t-+0. 

Lemma A9: (i) Both e-‘D2(aVn and D(u,T)~-‘~~(~*~ are trace class for t>O. 
(ii) As t+O, 

Tr(e- rD2kT))- 5 uj(D(u,J))p”)‘2, 
j=O 

and 

Tr(D(u,T)e -rD2W+ 5 bj(D(a,T))t(j-R-‘)‘*, 
j=O 

with Uj , bj given by integral of local densities computable from the (total) symbol of D and 
boundary conditions. 

Proof: (i) Since for t>O, e-tD2(a*T) is smooth, it is Hilbert-Schmidt. Now the semigroup 
properties show hat e-‘D’(avT) = ,9-(tl*tD2(avr) 0 e-frl*)D2(a,r) is a product of Hilbert-Schmidt op- 
erators, hence trace class. Similarly for D(u,T)~-‘~~@*~. 

(ii) From (i) and Lid&ii’s theorem 

Tr(t?- rD2(a+ I, tr(e-rD2(a.T))(x,x)d. 

For the asymptotic expansion we may replace e -rD2(a*T) by its parametrix e. The asymptotic 
expansion for e follows from its explicit construction, as in APS 1 .l 

Corollary AlO: The spectrum of D(u, r) consists of eigenvalues of finite multiplicities sat- 
isfying Weyl’s asymptotic law: 

N(~)=#{hjllhjl”~}=(4n)~~~~~2+ 1) hn+o(h”) as X+03. 

Thus, the eta function 
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~.s,D(u,T))= 2 sign “jlhjl-” 
Aj#O 

is well defined for Re s > it. Further, by Mellin transform, 

1 
ds,Dta,T))= 

m+ 1W) I 
mt(4/* Tr(D(u,T)e-‘D2(a.T))~~. 

0 (All) 

Lemma A9 shows that ds.D(u,T)) admits a meromorphic continuation to the complex plane 
with only simple poles. 

Proposition A12: &,D(u,T)) is actually holomorphic in Re s> - f. Therefore the eta in- 
variant rl(a, 7’) = dO,D (a, 2’)) is well defined. Moreover, 

v(u,T)=l J;; 
I 

omr-1’2 Tr(D(u,T)e-fD2fu*T))dt. 

Proof: It suffices to show that 

Tr(D(u,T)e-‘D2’“~n)=O( 1) as t-+0. 

The same argument as in the proof of Lemma A9 shows that 

Tr(D(u,T)e-‘D2(a’T) )=lx tr(D,e(f,x,x’)I,,,,)dx+O(e-“‘) 

= 
I 

tr(D,e-‘02 (W’)l,=,~M~)~~ 
X 

+ I tr(D,(E<,tt)+E,,(r))l,=,~)~21,(x)~x+O(=-C”). 
R+XJX 

6413) 

The local cancellation result for closed manifold gives 

tr(Dxe-r’2(X,X’)I,=,,)=O(r1’2) 

uniformly in X. Therefore the first term in (A13) is O( tl’*). 
For the second term, a straightforward calculation shows that 

I WW,&)l,=,+=O. 
JX 

Also tr(JAE,,(t))=O since JA= -AJ. Thus 

Tr(D(u,T)e -fD2W))= I,,, Jx ~J~,E<,(C)I,=,I~~(U)~U~Y + O(f”*). 

Since E,,(t) is the heat kernel of an elliptic local boundary value problem on R, , we have 

e-(u-“)214t 

E<a(t,U,U)= 
&z 

(1 +b,(T,u,u)t”*+O(t)) 
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uniformly in u, u . Therefore 

JW<,Wl,=,=- Jdub1(T,u,u)l,=,+O(t”*), 

and our claim follows. 
We now turn to the variation of eta invariants. For our purpose we are going to work in 

complete generality. So let P(z) be a family of operators satisfying: 
(Ha) P(z) is a smooth family of (unbounded) self-adjoint operators on L*(X,S) with dom 

(P(z)) independent of the parameter z; 
(Hb) the heat semigroup ebfF2cL) (t>O) is a smooth family of smoothing operators, i.e., the 

heat kernel is given by smooth functions on X depending smoothing on z. 
Lemma A14: For a family satisfying (Ha) and (Hb), we have 

i Tr(P(z)e-‘p2(z))= ( 1+2t -$Tr(P(z)e-tp”“). 

Proof: First of all, 

f Tr(P(z)=- tp2tz))=Tr(P(z)e- tp2(z))+Tr( P(z) f eetP21r)). 

To compute (31dz)e-‘p2(z), we apply the heat operator: 

( f + p2(z)) f e-tp2(z)= [ P*(Z), ~]~-‘p2iz’~ 

Now, with the initial condition of the heat equation and dom(P(z)) independent of z, Duhamel’s 
principle gives 

d -tP2(z)= -Sp2(Z) ds. 

Consequently, 

Tr = -2f Tr(P(z)P*(z)e- tp2(d)=2t $ Tr(@(z)e-tP2(z)). 

This finishes the proof. 
We now consider the variation of eta function rl(s,P(z)) defined by (All). For it to be well 

defined we make the following additional assumption. 
(Hc) There is a uniform asymptotic expansion of Tr(P(z)e-‘p2(‘)) at t=O: 

Tr(P(z)e- tp2(z’)-j~N Uj(P(Z))f"d, 

and aj(P(z)) are smooth in z. 
Lemma A15 Let P(z) be a family of operators satisfying (Ha), (Hb), and (Hc). Furthermore, 

assume that dim ker P(z) is constant. Then for Re s>N, we have 
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; .rl(s,p(z))= -r&,2) omf(s-1)12 Tr(P(z)e-‘p2’2))dr. 
I 

Proofi By (Hb), P(z) all have discrete spectrum. It follows from the assumption on dim 
ker P(z) that T~(P(z)~-‘~*(‘)) is exponentially decaying, uniformly in z, as I+=. (Hc) implies 
that rl(s.P(z)) analytically continues to a meromorphic function smooth in z. 

Let T>O and Re s>N. By Lemma A14, 

d, T 
zo I t(S-1)‘2 Tr(P(z)e -If2(z))&,2fis+1)/2 ~~(jj(~)@p*(Z)) 

&S-l)/* Tr(~(z)e-‘P2’z))&. 6416) 

Denote by H(z) the orthogonal projection of L*(X,S) onto ker P(z). Since dim ker P(z) is 
constant, H(z) depends smoothly on z. Furthermore, the self-adjointness of P(z) implies that 

P(z)H(z)=H(z)P(z)=O. 

Therefore 

P(z)=(Id-H(z))P(z)(Id-H(z)), 

and hence 

P(z)= -I;l(z)P(z)(Id-H(z))+(Id-H(z))P(z)(Id-H(z))-(Id-H(z))P(z)N(z). 

Since (Id - H(z))~-‘~*(~) is given by a smooth kernel decaying exponentially in t as t+m, it 
follows that the right-hand side of (A16) is absolutely convergent so we can take the limit of 
(A16) as T-m and exchange the limit with the differentiation. The same discussion applies to the 
left-hand side of (A16) and we obtain the lemma. 

An immediate consequence of the lemma is that when ds, P(z)) are all regular at s=O, 

f ?;I(P(z))= -$ 4y f”* Tr(P(z)e-‘P2(z)), 
d--+ 

where LIM,,u means taking the constant term in the asymptotic expansion at t=O. 
Now define 

W(z))= 
v(P(z))+dim ker P(z) 

2 

Proposition A17: Let (Ha), (Hb), and (Hc) hold for P(z). Then tip(z)) (mod 1) defines a 
smooth function and 

f ~(p(~))= --!- LIM t1’2 Tr(P(z)e-‘P2cz)). 
d- 7r t-0 

Proof: Choose a c>O such that c is not in the spectrum of P(z) for all z in a small neigh- 
borhood. Let III,(z) be the orthogonal projection onto the space spanned by all eigensections with 
eigenvalues X satisfying 1X1-G. Define a new family 
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P’(z) = P(z)(Id- II,(z))+ II,(z). 

Namely one replaces by 1 all eigenvalues X of P,(z) satisfying IXl<c and leaves the rest un- 
changed. Therefore P”(z) is clearly invertible, &P’(z)) =hrl(P’(z)) is smooth, and 

f ((P’(z))= -L LA4 t”* Tr(lbc(z)e-‘(pC(z))2). 
d-- T t-to 

Now 

here 

Clearly then 

m(z))= tw(z))+ 
hEspec P(z),lAldsign A-- 1) 

2 

sign A= 
i 

1, if h>O; 
-1, if h<O. 

[(Pdz))~ S(P%z))mod Z. 

On the other hand, 

e -t(pc(Z))* = e -tp*(Z) + finite rank 

and 

pc(z)=j(z)+finite rank, 

which implies that 

Tr(~c(z)e-‘(PC(Z)~2)=Tr(P(z)~-fP2(Z))+O( 1). 

Therefore 

J-m tl’* Tr(~c(z)~-‘(pc(~))2)=LIM *I’* Tr(~(z)e-‘p*(Z)). 
t-0 t-+0 

Finally, we point out that although the L*-norm on L*(X,S) depends on the metric, a smooth 
family of metrics gives rise to a smooth family of equivalent norms. Therefore the resulting trace 
functional on L*(X,S) is independent of the metric change. 
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