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Finite Part of Spectrum and Isospectrality

Xianzhe Dai and Guofang Wei

Abstract. We study geometric conditions under which finitely many eigen-

values are sufficient to determine all spectral data. We also discuss briefly the

implication of this result to the local structure of moduli space of isopectral
metrics.

1. Introduction

For a compact (smooth) manifold Mn, a Riemannian metric gives rise to a
canonical differential operator, namely, the Laplacian ∆ (acting on smooth func-
tions). If ∂M 6= ∅, we put the Dirichlet boundary condition on the boundary. This
makes ∆ into a self-adjoint second order elliptic operator. Hence it has a discrete
spectrum all consisting of eigenvalues of finite multiplicity:

0 = λ0 < λ1 ≤ λ2 ≤ · · · → ∞.
Here the eigenvalues are repeated according to their multiplicity.

Two Riemannian manifolds (M, g) and (M ′, g′) are said to be isospectral if
their corresponding eigenvalues are identical:

λi(M, g) = λi(M ′, g′), i = 1, 2, · · · .
One of the main questions, popularized by Kac’s question “can one hear the shape
of the drum”, in the (inverse) spectral geometry is how the geometries of two
isospectral manifolds are related. The extensive work in this direction shows that
isospectral manifolds exist in abundance (see Carolyn Gordon’s survey lecture in
this volume). In particular Kac’s original question has been recently answered in
the negative by Gordon-Webb-Wolpert [GWW]. On the other hand the beautiful
work of Osgood-Phillips-Sarnak [OPS] exhibits the compactness of the isospectral
surface, which was subsequently generalized to dimension 3 (with certain geometric
assumptions) by [BPY, CY, BPP] and [A1].

The above question can be rephrased as how much geometric information can
be determined by the spectral information. In the works mentioned above this
spectral information consists of knowing all of the eigenvalues. But, in some sense,
a more practical one would be the knowledge of finitely many eigenvalues. This
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question has actually been studied by P. Li, A. Treibergs and S. T. Yau [LTY].
They studied convex domains in Rn and showed that the volume of the domain can
be determined to arbitrary accuracy from knowing sufficiently many eigenvalues.
This result has been generalized to domains in more general Riemannian manifold
by H. Donnelly and J. Lee (see [L]).

An interesting question relating this “finite inverse spectral geometry” and
inverse spectral geometry is then: when would “finitely isospectral” metrics be
actually isospectral? The following theorem of P. Buser and G. Courtois gives a
partial answer for Riemann surfaces.

Theorem 1.1. ([BC]) For a Riemann surface Σ of genus g ≥ 2, let Rg(Σ)
denote the moduli space of metrics of constant curvature −1 and Rg(Σ, i0) the
subset in which one also has an injectivity radius lower bound:

inj ≥ i0 > 0.

Then there exists an integer N = N(g, i0) such that any g, g′ ∈ Rg(Σ, i0) with

λi(g) = λi(g′) for i = 1, · · · , N

must be isospectral.

The purpose of this note is to consider higher dimensional generalizations of the
above result. Let’s first introduce a few notations. We denote by M1 the moduli
space of Riemannian metrics with volume = 1. M1 has a structure of real analytic
(infinite dimensional) manifold.1

Definition. A subset A ⊂ M1 is called thin if for every point of A there exists
a neighborhood U in M1, and a finite dimensional real analytic variety S2 of M1

such that
A ∩ U ⊂ S.

We can now state our result:

Theorem 1.2. For any compact, thin subset C ⊂ M1, there exists an integer
N = N(C) such that any g, g′ ∈ C with

λi(g) = λi(g′) for i = 1, · · · , N

must be isospectral.

As a corollary we have the following analog of Buser-Courtois’ Theorem.

Theorem 1.3. Let E(i0, D) be the (moduli) space of Einstein metrics (i.e. Ric
= λg for λ = 1, 0, or −1) with

inj ≥ i0 > 0 and diam ≤ D.

Then there exists an integer N = N(i0, D) such that any g, g′ ∈ E(i0, D) with

λi(g) = λi(g′) for i = 1, · · · , N

must be isospectral.

1Strictly speaking, as we will see in the next section, locally M1 is the quotient of a real

analytic manifold by a compact Lie group.
2Again, here S should be a quotient of a finite dimensional real analytic variety by a compact

Lie group
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Remarks.
1. If λ = 1, the upper bound for the diameter will follow from Myers’ theorem.
2.If dim = 2, λ = −1 (the case considered by Buser-Courtois), the upper

bound for the diameter will follow from the lower bound of the injectivity radius
and Gauss-Bonnet Theorem.

3. The injectivity radius lower bound prevents the degeneration (or collapsing
in the sense of Cheeger-Gromov) to a noncompact space where continuous spectrum
appears.

4. Same result holds for p-spectrum (i.e. the spectrum of the Hodge-Laplacian
acting on differential p-forms). In this regard we would like to mention the fol-
lowing interesting result of Patodi. A compact Riemannian manifold isospectral to
a compact Einstein manifold on functions, 1-forms and 2-forms must be Einstein
itself.

Acknowledgment: We thank Gilles Courtois and Lizheng Ji for very helpful
conversations.

2. Analytic structures of moduli spaces

Let M̃ denote the set of Riemannian metrics on M . In the compact open C∞-
topology M̃ is an open convex cone in the infinite dimensional affine space modelled
on the space of smooth symmetric 2-tensors on M . Clearly then M̃ inherits a real
analytic structure. Therefore the subset M̃1 of Riemannian metrics with total
volume 1 defines a real analytic variety in M̃ by the equation

vol(M, g) = 1.

Now the infinite dimensional group Diff(M) acts on M̃1 analytically. Thus one
expects the analytic structure persists when one passes to the quotient spaceM1 =
M̃1/Diff(M). Indeed this is the case by the Slice theorem of D. Ebin (see [Be]).

Theorem 2.1 (D. Ebin). For any [g] ∈ M1, there exsits a real analytic sub-
manifold Sg ⊂ M̃1 such that
a). Sg is invariant under the group I(M, g) of isometries of g.
b). If ϕ ∈ Diff(M) and ϕ∗Sg ∩ Sg 6= ∅, then ϕ ∈ I(M, g).
c). There is a local cross-section χ : Diff(M)/I(M, g)→ Diff(M) on a neighborhood
of the coset Ig such that the local mapping

Diff(M)/I(M, g)× Sg → M̃1

([ϕ], g̃) → χ([ϕ])∗g̃

is a diffeomorphism onto a neighborhood of g in M̃1. In particular, the induced
map Sg/I(M, g) → M1 is a homeomorphism onto a neighborhood of Riemannian
structures defined by g.

Thus, according to this theorem, locallyM1 looks like a real analytic subman-
ifold quotient out by a compact Lie group.
Remark. For a generic metric g, I(M, g) is trivial.

We now turn to the moduli space E of Einstein structures. By definition, the
moduli space of Einstein structures on M is the subset of M1 consisting of all [g]
satisfying the Einstein equation

Ricg = λg
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for some constant λ. It turns out that the linearized operator for the Einstein
equation is Fredholm and therefore one has (see [Be])

Theorem 2.2 (N. Koiso). Let [g] ∈ E be an Einstein metric on M . Then there
exsits a finite dimensional real analytic submanifold Z in the slice Sg such that Z
contains all Einstein metrics in the slice Sg.

As an immediate corollary we have

Corollary 2.1. E ⊂M1 is a thin subset.

When M = G/H is a homogenous space, where G is a Lie group and H ⊂ G a
closed subgroup, we have another interesting example of thin subset inM1. Namely
the space Ml.i.

1 of left invariant metrics on M . Since Ml.i.
1 can be identified with

the space of inner products on the vector space g/h satisfying certain (analytic)
equation, Ml.i.

1 is clearly thin.
Let S be a finite dimensional real analytic manifold contained in M̃. Then

S 3 g → ∆g defines an analytic family of self-adjoint operators. Applying the
analytic perturbation theory gives us (see [K])

Proposition 2.1. 1). If L is not an eigenvalue of ∆g then there exists a ε > 0
such that (L− ε, L+ ε) contains no eigenvalues of ∆ḡ for ḡ in a small neighborhood
U of g in S.

2). In U × (L − ε, L + ε), the resolvent (∆ḡ − λ)−1 defines an analytic family
of bounded linear operators.

3). Let λn(g) be an eigenvalue of ∆g such that

λn(g) < L < λn+1(g).

Then for all ḡ ∈ U
λn(ḡ) < L < λn+1(ḡ),

and for every symmetric function f of n variables the function ḡ → f(λ1(ḡ), · · · , λn(ḡ))
is real analytic on U .

3. Proof of the theorem

The basic idea here, due to [BC] and [B], is as follows. First of all the compact-
ness assumption reduces the consideration to a local one where by the thinness of
C, we can, without the loss of generality, assume C to be a finite dimensional real
analytic submanifold. Now by the analytic perturbation theory [K], the eigenval-
ues λi(g) will then depend “analytically” in g. (This is not exactly true due to the
change of multiplicity.) Assuming this, the equations

λ1(g) = λ1(g′), · · · , λn(g) = λn(g′)

for n = 1, 2, · · · , will then cut out a nesting sequence of real analytic varieties, which,
by the Noetherian property, must stabilize at finite stage, proving the theorem.

But of course, the problem with the change of multiplicity is a nontrivial one.
Roughly speaking one has to set up an infinite sequence of “barriers” to prevent
(locally) such a change of multiplicity. As a consequence one obtains the desired
result only at the level of germs. To overcome this we then invoke a theorem of
Bruhat-Cartan and the analyticity takes over the rest of the argument.
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Proof of Theorem 1.2. We consider C ×C ⊂M1×M1. By the compact-
ness we just have to produce a neighborhood for each (g, g′) ∈ C×C such that our
claim holds. Since C is thin, we might as well assume that (near g and g′) C is a
finite dimensional real analytic submanifold. And the rest of our argument will be
carried out in (the product of) this real analytic submanifold.

Now if g and g′ are not isospectral, then

λn(g) 6= λn(g′)

for some n. By the continuity of eigenvalues we can find a neighborhood U of (g, g′)
such that

λn(ḡ) 6= λn(ḡ′) ∀(ḡ, ḡ′) ∈ U.
Therefore, if we take this U and N = n, our claim is trivially satisfied. Thus we
can assume that g and g′ are actualy isospectral.

Choose an infinite sequence of positive numbers

0 < L1 < L2 < · · · → ∞
converging to +∞ and none of them are eigenvalues of g (and g′). (This is our
infinite sequence of “barriers”.) Again the continuity of eigenvalues implies that we
can find a nesting sequence of neighborhoods (with real analytic boundary)

U1 ⊃ U2 ⊃ · · ·
such that L1, · · · , Ln are not eigenvalues of either ḡ or ḡ′ for any (ḡ, ḡ′) ∈ Un.

Let λm(n) be the largest eigenvalue less than Ln. By Proposition 2.1, for any
symmetric polynomial f of λ1, · · · , λm(n), the function

Un → R
(ḡ, ḡ′) → F (ḡ, ḡ′) = f(λ1(ḡ), · · · , λm(n)(ḡ))− f(λ1(ḡ′), · · · , λm(n)(ḡ′))

is real analytic. On the other hand the set

An = {(ḡ, ḡ′)|λ1(ḡ) = λ1(ḡ′), · · · , λm(n)(ḡ) = λm(n)(ḡ′)}

coincides with the level set {Ff (ḡ, ḡ′) = 0 for all symmetric polynomials f}3 and
thus is a real analytic variety in Un. Now

A1 ∩ U1 ⊃ A2 ∩ U2 ⊃ · · ·
is a nesting sequence of real analytic variety. Since the germ of analytic functions
is Notherian we can found a large integer K such that n ≥ K implies

An ∩ Un = (AK ∩ UK) ∩ Un.
What this equation is saying is that when the first (K + 1) eigenvalues agree, the
first (n+ 1) eigenvalues will also agree, provided we restrict to (a probably smaller
neighborhood) Un. This is not our theorem yet, but we note that (g, g′) ∈ An ∩Un
for all n.

We now take U0 to be the component of UK that contains (g, g′) and we show
that for any (ḡ, ḡ′) ∈ U0,

λi(ḡ) = λ(ḡ′) for i = 1, · · · ,K
implies equality for the rest of eigenvalues.

3Since
∏n

i=1
(λ− λi) =

∑n

k=0
σk(λ1, · · · , λn)λn−k, with σk(λ1, · · · , λn) elementary sym-

metric functions of λ1, · · · , λn.
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By a theorem of Bruhat-Cartan [BCa] we can connect (ḡ, ḡ′) to (g, g′) by a real
analytic path, (g(t), g(t)′), with

(g(0), g(0)′) = (g, g′), (g(1), g(1)′) = (ḡ, ḡ′).

The idea here is that for any n,

λi(g(t)) = λi(g(t)′), i = 1, · · · , n

for all t sufficiently small. By the analyticity, this should then hold for all t ∈ [0, 1].
But once again we have to deal with the multiplicity problem.

For this purpose, we are going to rearrange the order of the eigenvalues. we
start at (g, g′). By the analytic perturbation theory we can arrange the eigen-
values of g(t), g(t)′ near t = 0 into analytic functions λα(g(t)), λα(g(t)′). (Here
the self-adjointness of Laplacian is essential.) Near t = 0, the index α can be ar-
ranged so that it actually represents the increasing order for the eigenvalues. But
then we use the analytic perturbation theory to analytic continue these functions
λα(g(t)), λα(g(t)′) to all of [0, 1]. (Note that when we pass a point where the
change of multiplicity occurs the index α may no longer represent the increasing
order of the eigenvalues.) In this way we can arrange the eigenvalues of the fam-
ilies g(t), g(t)′ into analytic functions λα(g(t)), λα(g(t)′). Therefore the above
argument applies and the theorem is proved. �

Theorem 1.3 is an immediate consequence of Theorem 1.2, Corollary 2.1 and
the following compactness theorem of M. Anderson [A2].

Theorem 3.1 (M. Anderson). The space M(λ, i0, D) of metrics with

|Ric| ≤ λ, inj ≥ i0(> 0) and diam ≤ D

is compact in C1,α-topology. Moreover the space E(λ, i0, D) of Einstein metrics is
compact in C∞-topology.

4. Final remarks

A very interesting result on the finite part of spectrum of Laplacian is a result of
Colin de Verdiere [C], which says that the finite part can be arbitrarily prescribed.

Theorem 4.1 (Colin de Verdiere). Let Mn be compact and connected, n ≥ 3.
Then any finite sequence

0 = a0 < a1 ≤ a2 ≤ · · · ≤ aN
can be realized as the first N + 1 eigenvalues of (M, g) for some g.

Thus if one defines, for each N ≥ 1,

SN :M → RN

g → (λ1(g), · · · , λN (g)),

then the image of SN is precisely the cone in RN defined by

{0 < x1 ≤ x2 ≤ · · · ≤ xN}.

The level set S−1
N (a), a = (a1, · · · , aN ) can be thought of as the moduli space of

“N -isospectral” metrics:

S−1
N (a) = {[g]| λi(g) = ai, i = 1, · · · , N}.
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One can define similarly
S∞ :M→ R∞

and the level sets of S∞ can be thought of as the moduli spaces of isospectral
metrics. Note that S−1

∞ (a) = ∩∞N=1S
−1
N (a). In general, one expects the inclusion

S−1
∞ (a) ⊂ S−1

N (a)

to be strict for any N . The reason is that S−1
N (a) should be infinite dimensional

while S−1
∞ (a) is conjectured to be compact.

However our result indicates that when restricting to a finite dimensional fam-
ily of metrics, such as those of Einstein metrics or homogenous metrics (satisfying
additional geometric restrictions) the moduli space of isospectral metrics will actu-
ally coincide with the moduli space of N -isospectral metrics for N sufficiently large.
Whether or not this helps understand the (local) structure of the moduli space of
isospectral metrics is not clear to us. However we note the following

Proposition 4.1. For any a ∈ R∞ the intersection of S−1
∞ (a) with any finite

dimensional real analytic family of metrics is locally a real analytic manifold.

Proof. Since this is a local problem, when restrcited to a finite dimensional
family, we clearly have compactness. Therefore by Theorem 1.2 we only have to
consider S−1

N (a) for N sufficiently large. Now for suitable N we can make sure that
λN < λN+1. Therefore the same argument as in the proof of Theorem 1.2 shows
that S−1

N (a) is locally a real analytic manifold. �

We would also like to make a few remarks about these additional geometric
restrictions. It should be possible to eliminate some of these restriction by enlarging
the class of “admissble” metrics, as is often required in compactifying these spaces
of special metrics. For example in dimension 4, the space

E+1 = {[g] ∈M| Ric = g}
can be compactified by adding orbifold singular Einstein metrics [A3]. Thus if we
consider our question in the larger space of orbifold singular metrics we would prove
the same result without the restriction on the injectivity radius.

If one is mainly conserned with the moduli space of N -isospectral metrics,
more can be said about the additional geometric restrictions. In fact a theorem of
S. Y. Cheng states that the diameter can be estimated in terms of the lower bound
on the Ricci, say Ric ≥ −1, and the number of eigenvalues lying in the interval
[0, (n−1)2

4 + ε). Thus for appropriate N and a ∈ RN the metrics in S−1
N (a) with Ric

≥ −1 will also be bounded in diameter. Similarly, in dimension 2, the injectivity
radius of hyperbolic metrics can be estimated by the number of eigenvalues lying
in [1/4, 1].
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