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1 Introduction 

It seems a natural question to ask to what extent the results and tools for 
sectional curvature remain valid for Ricci curvature. There is rapid progress 
in both positive and negative directions. Toponogov Comparison Theorem has 
been the most powerful tool in the study of sectional curvature, underlying the 
proof of  the Soul Theorem, the diameter sphere theorem, the uniform estimate 
of  betti numbers and the finiteness theorems. Toponogov Comparison Theo- 
rem is also the characterizing property of lower (or upper) sectional curvature 
bounds, which led to generalizations of  the concept of  (sectional) curvature 
bounds to non-smooth space. Thus it could not possibly hold for Ricci curva- 
ture, which makes problems a lot harder for Ricci curvature (from a geometric 
point of  view). It also makes the Ricci curvature very different from the sec- 
tional curvature, as one gradually comes to realize. It is interesting then that 
we find a comparison estimate of Toponogov type for Ricci curvature. 

A hinge in a complete Riemannian manifold consists of  two geodesic 
segments Vi,Y2 such that "yI(II)= ~2(0) �9 We denote it by (~1,~2,~), where 

= Z(-) ,~( / l ) ,~(O)) .  We will be using the following modified version of  the 
conjugate radius function Pc(P): 

pc(p )  = sup{p > 01conj(q) ~ p, Vq ~ Bp(p)}. 
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(The reason being, unlike the case of sectional curvature bound, we need the 
control of the conjugate radius at nearby points as well.) 

Theorem 1.1 (Toponogov type comparison-estimate). Let M n be a complete 
manifoM with Ric ~ (n - 1)2 and (yl, y2, ~) a hinge such that 

L[yl],L[y2] < ro, 

where 4to = pc(y2(O)). (We call such a hinge small.) Let (~71,~2,g) be a hinge 
in the Euclidean plane with L[f,i] = L[Ti], i = 1, 2. Then 

d('~l(O),y2(12)) ~ eC(n'2'ro)ll/2d(Yl(O),~2(12)) , 

where C is an explicit uniform constant depending only on n, 2 and ro, and 
l = max(L[yl ], L[)'2]). 

So, within the conjugate radius, the distance can be bounded by the 
Euclidean one up to a uniform constant. In other words the exponential map 
can be bounded in terms of Ricci curvature. Thus stated, it is very closely 
related to [A-C]. 

We refer to [W] for an angle version of Toponogov comparison estimate 
and its applications. 

Theorem 1.1 follows from the following Rauch type comparison estimate�9 

Theorem 1.2 (Rauch type comparison-estimate). Let M n be a complete 
maniJold with Ric ~ (n - 1)2 and M~ the model space o f  constant sectional 
curvature 2, Po E M and Po E M~. Let 4ro = Pc(Po) and 

~: rpog -4 r:oM~ 

be a linear isometry. Then for any curve 

c : [0, l] --~ Bro(Po), 

we have 
L( c ) ~ eCCn' ~' r~ )tl/2 L( exp po o I o exP~01(c)). 

Remark 1. Note that expv o : B(ro) C TpoM ~ Bro(Po) is a local diffeomor- 
phism. Thus the right hand side of the estimate above should be interpreted 
as the infimum of the lengths of the images of all the lifts of c. Thus stated, 
Theorem 1.2 implies that for any curve ~:[0 ,  l] ~ Bro(/5o) and any linear 
isometry I :  TpoM ~ ~ TpoM, 

L(~) ~_ e -c(n' ~'r~ L(exp po o I o exP~01(~)). 

This is the direction that is used in the proof of Theorem 1.1. 

Remark 2. One can actually take R n as the comparison space. 
Theorem 1.2 again follows from a Rauch type comparison estimate for 

Jaeobi field. Namely it follows from the following. 
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Theorem 1.3. Let M" be a complete manifold with Ric => (n - 1)2 and M~ 
the model space o f  constant sectional curvature 2. Let 7, 70 : [0, l] ---* M, M~ be 
normal geodesics, and set T = 7 p, To = 7~o . Assume 7 has no conjugate point 
in [ - l ,  l] (with respect to 7(- I ) ) .  Let J(t) ,  Jo(t) be Jacobi fields along 7,70 
such that J(O), Jo(0) are tangent to 7, 70 and 

IlJ(O)ll = [IJo(0)ll, (T,J'(O)) = (To, Jg(O)), l lJ ' (0) l t  = I IJg(0) l l .  

Then for  all t ~ [0, 1 iI], 

IlJ(t)ll < e c~" a, t)t l/z IlJo(t)ll �9 

The passage from Theorem 1.3 to Theorem 1.2 and then to Theorem 1.1 
is standard. It is the same as in the sectional curvature case (see [C-E] for 
detail). The proof of Theorem 1.3 is based on the recent work of R. Brocks 
[B1] and will be given in Sect. 3. 

As an application of Theorem 1.1 we show that the sectional curvature 
lower bound in Abresch--Gromoll's theorem [A-G] can be replaced by a lower 
bound for the conjugate radius, i.e. 

Theorem 1.4. Let M n be a complete manifoM with Ric > 0 outside a compact 
set and its conjugate radius ro > O. I f  Ji~rther the diameter growth = o(r l/n) 
then M is o f  finite topological type. 

This technique applies to other forms of finite topological type results 
[A-G, S, S-W]. In particular when we apply it to a result in [S-W, Corol- 
lary 1.2] we have the following result. 

Theorem 1.5. Let M" be a complete maniJoM with Rie ~_ 0 outside a compact 
set and inj >= io > O. l f  further vol(B(p,r))  = o(rl+l/n) for some p E M then 
M is o f  finite topological type. 

Remark 1. There are examples of complete manifolds with Ric > 0 and 
injeetivity radius bounded from below uniformly but having infinite topological 
type (see IS-Y] for example). So the growth condition is necessary here. But 
the question of finding the optimal growth condition remains. 

Remark 2. Recently Perelman has announced an example of a complete mani- 
fold with positive Ricci curvature and constant diameter growth, but of infinite 
topological type. This shows that one can not simply do away with the sectional 
curvature lower bound in Abresch-Gromoll's theorem. 

The main point in the proof of Theorem 1.4 or Theorem 1.5 is a uniform 
positive lower bound for the excess function at critical points, see Sect. 3. 

We refer to [132] for similar estimate for Jaeobi fields. 
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2 Jacobi fields and geodesic spheres 

Let P0 E M be a fixed point, and r(p) = d(po, p) the distance function from 
P0. Away from the cut locus the Hessian of r is also the second fundamen- 
tal form of its level surfaces, i.e. the geodesic spheres (with respect to the 
inward normal). We denote A = Hessr. Now let c(t) (0 ~ t < l) be a min- 
imal geodesic starting at po and T = c~(t). If J(t)  is a Jacobi field along c 
such that J (0)  = 0 and J'(O)_LT, then 

J(t)  = ~s s=0 expvt~ (2.i) 

where ~(s) is a smooth curve in TpM such that ~(0) = T, a '(0) = J ' (0 )  and 
II~(s)ll = 1. From here one derives 

J'( t )  = A(t)J( t )  , (2.2) 

where A(t) = A(c(t)), i.e. AJ = W j T .  
The Jacobi equation for J translates into a Riccati equation for A: 

A' + A  2 + R  = 0 ,  (2.3) 

where R( .  ) =  R ( . ,  T)T. It should also be pointed out that A(t) has a sin- 
gularity at t = O. In fact a straightforward computation in normal coordinates 
shows 

A(t) = l I + B(t) (2.4) 
t 

with B(t) smooth at t = 0. 
The above discussion can actually be extended to the case when c is only 

assumed to have no conjugate point in [0, I] (i.e. c is only locally minimizing). 
In this case A(t) has to be interpreted as the second fundamental form of the 
immersed hypersurface St = expp(Bt(0)). But the relationship of A(t) with the 
distance function is no longer valid. The trick here is to pull everything back 
to the tangent space. 

Thus, consider the exponential map expp : Tf~/--* M. The collection of 
line segments tT(O < t < l) in TpM such that expptT has no conjugate points 

in [0, l] form an open starshaped set in TpM. We denote it by 0 C TeM. Then 

expp : 0 ~ M 

is a local diffeomorphism onto its image. 
Consider Mc = 0 with the pull-back metric ~ = exp~g. The geodesic c(t) 

lifts to a geodesic 6(0 = tT(O < t < l) in Me. Now the main observation is 
that, on Mc the geodesic ~ t )  is indeed minimal. Thus our previous discus- 
sion on J(t), A(t) and the geodesic spheres continues to hold provided we do 
everything on (~ ,~ ) .  
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3 A Rauch type comparison estimate for Jacobi fields 

Our starting point is a very sharp lower bound estimate of the Laplacian of 
the distance function, due to R. Brocks. 

As in the previous section we let P0 E M be a fixed point, and r(p)  = 
d(po, p )  the distance function from P0. Also let c(t) (0 < t < l) be a minimal 
geodesic starting at P0 and A(t) = A(c(t)). Define functions ch(t), snx(t) by { ?i:os t 

ct~(t) = t 2 = 0 

v ~  cosh v~t  
sinh v / N t  2 < 0 

{ -~2sinx/2t 2 > 0 

sna( t )=  t 2 = 0  
1 . 

- ~ s l n h v ~ t  2 < 0 

The following is a recent result of R. Brocks [B1]. 

Theorem 3.1 (R. Brocks). Let M n be a complete maniJbld with Ric > 
( n -  1)2. Assume that c is actually minimal over - I  <- t <- l. Then there 
exists a constant Co(n, ,~, l) depending continuously on 1 and decreasing with 
I such that 

l (3.1) 0 < c t~ ( t ) -  trA(t) < Co(n,2, l) .['or 0 < t < ~ ,  
= n _ l  = - _ 

where ctx(t) is defined above. 

Remark. The left hand side of (3.1) is the well-known upper bound estimate for 
the Laplacian of the distance function [C-G]. It holds without any restriction. 
For previous lower bound estimate we refer to Anderson-Cheeger [A-C]. 

Proof. We refer to [B1, Satz 5.6] for detail. For our purpose we would like 
to mention the main idea. The minimality of the geodesic c gives rise to the 
convexity of the associated excess functions at c. This enables one to convert 
upper bounds for the Laplacian of distance function to lower bounds for the 
Laplacian of distance function (with different base point). However, to obtain 
the optimal lower bound, one has to play with several excess functions and, is 
much more subtle. [] 

From (3.1) we derive the following estimate for Jacobi fields (see [D-S-W, 
Lemma 5.2] for a similar kind of estimate). 
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Proposition 3.2. Let  M n be a complete mani]bld with Ric ~_ ( n -  1 )2 and 
c : [ - l ,  l] ~ M a geodesic without conjugate point (with respect to c ( - l ) ) .  
Let  J ( t )  be a Jacobi field along c such that J(O) = O, (J'(O), T) = O, where 
T = c'(t). Then we have 

l 
IIJ(t)ll ~ eCtn:'l)"/2sna(t)llJ'(O)ll, for  0 < t <_ -~ , (3.2) 

where C(n, 2, l) is a constant depending only on n, 2, I. 

Remark. Note that it follows from (the proof of) Myers' Theorem that 21 < 
n / v ~  if 2 > 0. 

Proo]: First we assume c has no cut point in [ - l ,  l]. For this type of Jacobi 
fields we have equation (2.2). Write J ( t ) =  sna(t)U(t) and A ( t ) =  Ba( t )+  
cta(t)l. From (2.2) (and (2.4)) we obtain 

U'(t)  = Ba(t)U(t)  

u(o)  = J'(O). 

IIu(t)ll' 6 IIU'(t)ll 6 Ilna(t)ll IIU(t)ll, 

and so 
IIJ(t)ll = sn~(t)ll u(t)ll _-< ef~~ 

Thus estimate (3.2) follows if we show that 

t 

fllBa(s)llds <= C(n, 2, l ) t  x/2 . (3.3) 
0 

The Riccati equation (2.3) for A gives 

B'~(s) + B2a(s) + 2ct~(s)Ba(s) + R - M = O, 

which, after taking trace, yields 

trB~ + IIBall z + 2eta(s)tr Ba + ( R i o ( T )  - (n  - 1 ) 2 )  = 0 .  ( 3 .4 )  

Multiply (3.4) by s 1/2 and integrate along c(t): 

t t 

f st/211Ba(s)ll2ds = -t l /2tr  Ba( t) + f (�89 -1/2 - 2s~/2eta(s) )tr Ba(s)ds 
0 0 

t 

- fst /2(Ric(T) - (n - 1)2)ds 
0 

< C(n, a, t ) ,  

where the last inequality comes from using Theorem 3.1, i.e. -Co(n ,~ , l )  
trB~(t) ~ O. 

Therefore 
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Hence 

(! fllga(s)llds Z s l /=ds  s-I/211n(s)ll=ds 
o 

< C(n,2, l)t  1/2 , 

which is (3.3). 
In the general case, we consider the Riemannian manifold (A~r ~) intro- 

duced in the previous section, with p = c ( - l ) .  Let 3(t)  be the Jacobi field 
along ~(t) such that 

(expp).,](t) = J( t )  . 

Then 3(0) = 0, and JZ~ ' ( t ) .  More importantly, ?(t) is now a minimal geodesic. 
Therefore (3.2) holds for J ( t )  since expp is a local isometry. Consequently 
(3.2) holds for 3(t)  as well. [] 

It should be pointed out that there is some subtlety in the last part of the 
proof since our manifold ACe is not complete. However, in applying Brocks' 
estimate, all we need is that any two points can be connected by a smooth 
geodesic, and we need this only for points in a small neighborhood of F(t). It 
is not hard to see that such a neighborhood can be chosen so that any pair of 
points in it can be connected by a smooth geodesic lying in ~ r .  

Now we are ready to proof Theorem 1.3. 

Proof" of" Theorem 1.3. We first assume that J,,l o are perpendicular to T, To 
and J(0)  = J0(0) = 0. Since R0 = 2I  for M~, it is easy to see that 

Jo(t) = sn~(t)J~(0). 

Therefore, by Proposition 3.2 

IIJ(t)[[ -<_ eC~n,~,l):/2sn~(t)[[J'(O)l[ 

= e cr  IIJ0(t)ll �9 

In the general case let 

J( t )  = JT(t) + J l ( t )  , 

where (J-L(t), T) = 0 and J •  = 0, j r ( t )  = ((J(O), T) + (J'(0), r) t )T .  
Decompose Jo(t) similarly. Then 

UJ• ~ eC~ n,~,t):/211Jox ( t )ll 

as above and I l l r ( t ) l l  = IlJ0r(t)ll .  Hence 

IIJ(t)ll ~ er �9 [] 
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4 A uniform lower bound for the excess function at critical points 

For P0, Pl E M, the excess function epo, p 1 : M n ---, R is defined by 

epo, pl(p) = d(po, p) + d(pl, p)  - d(po, pl ) �9 

It measures the "excess" in the triangle inequality. In [A-G] Abresch-Gromoll 
proved a beautiful and very important inequality for this function. 

Theorem 4.1 (Ahresch-Gromoll). Let M n be a complete manifold with 
Ric ~_ O. Then 

epo,p,(p) < 4 ( ~ )  '/(n-l) 

where s = min(d(p0, p), d(pl, p))  and h =minr, td(p, ?(t)), where ? is a min- 
imal segment fi'om Po to Pl. 

Remark. The more general version of Abresch-Gromoll's inequality assumes 
only a Ricci lower bound. 

Corollary 4.2. Assume further that the diameter growth of  M = o(rl/~). Then 

epo,~(p ) --~ 0 as p --+ c~ . 

Note that the excess function is "monotonic" in the following sense. If 
? I P0, Pl are any two points lying on a minimal geodesic connecting P0, P and 

Pl, P respectively, then 

et, o,pl(p ) ~_ efo, p~(p). (4.1) 

This is an easy consequence of the triangle inequality. 
We now have 

Lemma 4.3. Let M n be a complete manifoM with Ric > (n - 1)2. For any 
Po E M if p is a critical point for the distqnce function d(po, p)  and 4ro = 
Pc(P), then for any pl E M and 0 < p ~ mifi{d(po, p),d(pl,  p),ro}, 

epo,pl(p) ~ [2 - v/2eC(n'~'r~ 

In particular, if the conjugate radius o f  M ~_ 2to > O, then there exists eo = 
eo(n, 2, ro) > 0 such that 

e~;pl(p) ~_ eo (4.2) 

whenever p is a critical point o f  po and d(pl,  p) > ro. 

Proof Let TI be a minimal g~odesic from p to pl .  Since p is a critical point of 
Po, there exists a minimal geodesic ?2 from p to Po such that Z(?~(O), ?~(0)) 

2" Take p as in the Lemma and let P~o = ?2(p),p~ = ?l(p). Then by the 
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monotonicity (4.1) 

2p - d(Po, Pl)" epo,pl(p ) >= ep,o,p~(p)= , t 

On the other hand by Theorem 1.1, 

d(p'o, P', ) <= eC(n'Lr~ ffl ) 

= eC(n, ~,ro)pl/2 x / ~ p .  

(4.3) 

(4.4) 

Combining (4.3) and (4.4) we have 

epo,pl(p) >= [ 2 -  v~eC(n'Lr~ (4.5) 

In particular, i f  we take p such that eC(n,X,ro)pl/2=V/~(i.e.p= 
\ 

1 ) 
(�89 In 3)2C(n,  ~, r0)2 in (4.5), (4.5) gives (4.2). [] 

Theorem 1.4 now follows from Corollary 4.2 and Lemma 4.3 (Cf. [A-G] 
for assuming Ric __> 0 only outside a compact set). 

After hearing our result, S. Zhu has found a different proof of Lemma 4.3 
using the rescaling argument in [A-C] under a lower injectivity radius bound. 
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