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CIRCLE BUNDLES AND THE KRECK-STOLZ INVARIANT 

XIANZHE DAI AND WEIPING ZHANG 

ABSTRACT. We present a direct analytic calculation of the s-invariant of Kreck- 
Stolz for circle bundles, by evaluating the adiabatic limits of I invariants. We 
believe that this method should have wider applications. 

1. INTRODUCTION 

Let M be a 4k - 1 dimensional closed spin manifold with vanishing real 
Pontrjagin classes and a metric of positive scalar curvature. In [KS] Kreck and 
Stolz introduced a very interesting invariant of -such manifold. This so-called 
s-invariant is an absolute version of a relative invariant introduced by Gromov- 
Lawson [GL], and plays a critical role in Kreck-Stolz's study of the moduli 
spaces of positive sectional curvature metrics. 

In particular, a calculation of the s-invariant. for circle bundles is very crucial 
for both of the main results in [KS]. This is achieved using cobordism theory 
in [KS]. In this note we present a direct analytic calculation by evaluating the 
adiabatic limits of '1 invariants as well as the characteristic forms appearing in 
the definition of the s-invariant. 

Acknowledgment. The first author would like to thank Stephan Stolz for inter- 
esting discussions. 

2. THE S-INVARIANT OF KRECK-STOLZ 

Let M be a closed 4k - 1 dimensional spin manifold with vanishing real 
Pontrjagin classes. Let g be a metric of positive scalar curvature on M. We 
recall the Q-valued invariant s(M, g) introduced in [KS]. This invariant is 
related to an integer valued invariant i(g1, g2) defined by Gromov and Law- 
son [GL] for a pair of positive scalar curvature metrics gi, g2 on M. More 
precisely, 

(2.1) i(gl, g2) = s(M, g1) - s(M, g2). 
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These invariants are closely related to the Dirac operator on manifolds with 
boundary and its index, which explains the integrality or rationality of these 
invariants. 

Remark. The definition of Gromov-Lawson invariant does not require the van- 
ishing of the real Pontryagin classes. 

As in [KS], if a, f are two exact forms on M, then we define 

(2.2) IMd-(a = IM aA,8 

where de = a. Since fi is also exact one verifies easily that the definition does 
not depend on the choice of a. 

Now if W is a compact manifold with boundary 9 W = M, we have the 
long exact sequence for the de Rham cohomologies: 

(2.3) H*(W,aW)4H*(W) -H*(M) 

Thus if a fi represent relative de Rham classes in H*(W, a W), then alow = 
d& (and similarly for f,). An immediate application of Stokes' Theorem yields 

(2.4) Jd1(a A f,) = J a Af- ([a] U [Ai], [W, aW]). 

Set 

(2.5) ak = 
22k+1(22k1I - 

Denote by B(M, g) (resp. D(M, g)) the signature (resp. Dirac) operator on 
M. We can now define the s-invariant [KS, Definition 2.12]. 
Definition. The s-invariant s(M, g) is defined as 

(2.6) 

s(M, g) =29(D(M, g)) - ak n(B(M, g)) + d1(A+ akL)(pi(M, g)), 

where t7(D(M, g)) (resp. tI(B(M, g))) is the ?I-invariant of D(M, g) (resp. 
B(M, g)) [APS], and pi(M, g) is the Pontrjagin form obtained via the Chern- 
Weil theory for the Levi-Civita connection of g. 

Remark. The choice of ak is precisely to cancel out the component in degree 
4k in (A + akL)(pi(M, g)) 'leaving us with a linear combination of products 
of exact forms. 

The usefulness of this invariant comes from the following basic properties of 
the invariant: 

Proposition 2.1 (Kreck-Stolz). Let M, M' be closed 4k - 1 dimensional spin 
manifolds with vanishing real Pontrjagin classes and let g, g' be positive scalar 
curvature metrics on M, M' respectively. 

(a) If there exists an isometry between (M, g) and (M', g') preserving the 
spin structures, then s(M, g) = s(M', g') . 

(b) s(M, g) depends only on the connected component of g in the space of 
metrics of positive scalar curvature on M. 
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(c) If M bounds a spin manifold W with the metric gw extending g and 
being the product metric near the boundary, then 

s(M, g) = indD+(W, gw) + t(W), 

where ind D+ (W, gw) denote the index of the Dirac operator on W with the 
Atiyah-Patodi-Singer boundary condition [APS], and t(W) is a topological in- 
variant defined as 

(2.7) t(W) = -((A + akL)(j 'pi(W)), [W, 9W]) + aksign(W). 

Here j is the natural map j H* (W, OW) -* H* (W) from the long exact 
sequence. 

(d) The s-invariant is additive under connected sum: 

s(M#M', g#g') = s(M, g) + s(M', g'). 

In the next section, we will give a direct computation of s(M, g) where M 
is a circle bundle and g is SI-equivariant. 

3. THE S-INVARIANT OF CIRCLE BUNDLES: A COMPUTATION 

VIA ADIABATIC LIMIT 

Let B be a 4k - 2 dimensional closed spin manifold and gTB a metric of 
positive scalar curvature on B. Let 7r: N -- B be an oriented two dimensional 
real vector bundle over B and gN a fiber metric on N with VN a compatible 
connection. Thus if we denote RN = (VN)2 the curvature and T = Pf(RN) 
the Pfaffian, then T represents the Euler class e of N. 

The connection VN determines a horizontal subbundle THN of TN. Let 
gTN = gN E *(gTB) . Let M be the unit sphere bundle of N with the induced 
metric gTM. Then M is a circle bundle over B with the holonomy group 
U(1) acting by isometries and carries an induced spin structure. (This is the 
spin structure 0 if we adopt the notation of [KS].) 

Since gTB has positive scalar curvature, a standard formula (cf. [KS, (4.4)]) 
shows that gTM also has positive scalar curvature (this may require shrinking 
the fiber metric; note that this is compatible with the rescaling in the adiabatic 
limit defined below). Assume now that all the real Pontrjagin classes of M 
vanish. The following formula for the s-invariant of M is the key for all the 
applications in [KS]. 

Theorem 3.1 (Kreck and Stolz). The s-invariant of M is given in terms of the 
Euler class of N and the characteristic classes of B as follows. 

s(M, gTM) =-(A(TB) e+akL(TB) , [B]) +aksign(Be), 2 tanh e tanh e 

where sign(Be) is the signature of the bilinear form 

Be : H2k2 (B) 0 H2k2 (B) -R 

Be(x?y) = (xye, [B]). 

This is proved in [KS] by using indirect cobordism techniques. 
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Since s(M, g, gTM) is defined in terms of intrinsic analytic invariants, it 
would be more natural and helpful to provide a direct geometric proof of The- 
orem 3.1. Using adiabatic limit we present such a proof. 

For e > 0, let 

(3.1) ge =gEM = gN 71*(-g ) 

Clearly (M, g,,) still satisfies the requirement in Definition 1.1, so the s-invar- 
iant s(M, g,) is still defined. Furthermore, (M, gE) represents a continuous 
family of metrics of positive scalar curvature. Hence, from (2.1) s(M, g ) does 
not depend on e . 

We now take e 0. This procedure is referred to as taking the adiabatic 
limit. 

Theorem 3.2. We have 

(3.2) lim 2e(D(M,Tm)) -(A(TB)(- -2t h [B]), 

and 

(3.3) lim?I(B(M, gTM))= (L(TB)( - -),[B]) -sign(Be). 
c--+O ~~~~tanh e e 

Proof. The first result is proved in [Z2, Theorem 2.5], by using the results and 
methods of Bismut-Cheeger [BC 1] and Dai [Dl]. The minus sign appears be- 
cause of the choice of orientation, compare [Z1, Theorem 1]. The other terms 
disappear because gTB is of positive scalar curvature. Dai [D2] had also inde- 
pendently computed the adiabatic limits of I-invariants of Dirac operators on 
circle bundles. The novelty of [Z1, Z2] is that Zhang found an application of 
this result to the Rokhlin type congruences. 

For the second formula, let N1 = {u E NIIIUIIgN < I} be the disc bundle 
with fibre D over B. Clearly M = aN1 . It is easy to construct a metric gTD 

on TD such that for any e > 0, gfTN = gTD + ,r*(,gTB) is a product near 
aN1= M and gET I-TM = g 

Applying the Atiyah-Patodi-Singer index theorem for manifolds with bound- 
ary [APS] yields, for any e > 0, 

(3.4) L sign(N1) = J L(P1(N, gTN,)) -? (B(M, gTM)). 

Or 

lim iq(B(M, geT)) =-sign(NI) + lim | L (Pi(N, gTi ) )T 
f--+0 f--+~~~~~& 0 JN 

But (cf. [BC I]) 

limL(Pi(Nl, g NI)) = L(Pi(B, gTB))L(Pi(D, gTD)). 

Since gTD is a product metric near the boundary, its curvature vanishes near 
the boundary, and therefore, represents (up to a constant) the Thom class of 
the vector bundle. Using the Thom isomorphism theorem, a straightforward 
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computation shows 

lim I L(Pi(NI g, - (L(TB)(& - e), [B]) 
E-~~~O JN1 ~~tanh e e 

(compare [Z2, Lemma 3.5]). Also using the Thom isomorphism theorem we 
have sign(NI) = sign(Be), proving (3.3). o 

Proof of Theorem 3.1. For this purpose it suffices to compute the last term in 
Definition 1.1, that is 

limf d1 (A + akL)(pi(M, gTM))- 

Formula (2.4) gives 

(3.5) Mdl (A + akL)(pi(M, gETM)) 

= IN| (A + akL)(pi(Nl, gfNi)) - ((A + akL)(pi(Nl)), [N1, M]). 

Proceeding as above we have 

(3.6) lim I(N + akL)(pi(Nj, gENi)) 

=(A(TB)(2 i - ) +akL(TB)(tah - e)[B]). 

The second term in the right-hand side of (3.5) can be evaluated as in [KS, p. 
840], using the bundle splitting TN1 = lr*(TB) ? TD and the Thom isomor- 
phism theorem 

(3.7) 

(j-y(A+akL)(pi(Nl)), [N1, M]) = (A'(TB)2 sinh akL( tanhe [B]) 

Combining (3.2), (3.3), and (3.5)-(3.7), we have 

lim[-1(D(MX g, &M)) + ak r/(B(M a gfTM)) - d- (A + akL)(pi(M, gfM))] 
E-o 2M 

=(A(TB) 2 tanh e + akL(TB) tanhe, [B]) - aksign(Be). 

This completes the proof of Theorem 3.1. o 

4. REMARKS 

There is extensive work on the adiabatic limit of eta invariant (and other 
geometric invariants). In general if M is an oriented manifold that has a 
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fibration structure 

(4.1) Y M ffM B 

and gm a submersion metric, 

gM = 7(*gB + gy, 

then blowing up the metric in the horizontal direction by a factor x-2 gives us 
a family of metrics gx , 

gx = X-27 
* 

+ gy 

A general formula for limx,o I(B(M, gx)) is given in [DI], which, in fact, 
comes from a more general formula for Dirac operators (cf. [Dl]), namely, 

R RB 
(4.2) lim i(Ax) = 2 ) A RB + (AB okerAy) + 2T 

x-O 1B 27( 

where i is the the i-form of Bismut-Cheeger [BC 1], RB is the curvature tensor 
of gB and AB denotes the signature operator on B and Ay the family of 
signature operators along Y. The integer T is a topological invariant computable 
from the Leray spectral sequence. 

More specifically, let (Er, dr) (r > 2) be the Er-term of the Leray spectral 
sequence of the fibration Y , Mn- B. The orientation gives a natural basis 
g2 on E2n which then induces a basis Xr on Ern for each r > 2. Consider the 
pairing 

(4.3) (,)r:Erp g)Erq yR ,i oV f((PdrVI9 r)- 

If n = 4k - 1 (otherwise we set T = 0) it can be verified that <, >r is sym- 
metric when restricted to Erk1 . Therefore it gives rise to a symmetric matrix 
whose signature we will denote by Tr. Define T = Er>2 Tr. 

In the case of circle bundles the terms on the right-hand side of (4.2) can be 
computed explicitly. For example 

-1 1 
r=2(2 tanh e-e)' 

and 
T = sign(Be). 

Taking into account of the definition of Y we obtain the same formula as (3.3) 
There are other cases where these invariants are quite computable, for ex- 

ample [BC2]. We believe that the method we present above should have wider 
applications. 
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