HW # 3 Solutions
\{ 11.4, 11.6, 11.7, 11.10, 11.11 \(6)(c) \} \\

11.4 We prove by contradiction.
Suppose \(x > 0 \), \(x < \varepsilon \) \(\forall \varepsilon > 0 \) and \(x \neq 0 \).
Then \(x > 0 \) and \(x < \varepsilon \) \(\Rightarrow x > 0 \).
Choose \(\varepsilon = \frac{x}{2} \).
Then \(\varepsilon > 0 \), but \(x \notin \varepsilon \). Contradiction.
\[\therefore x = 0. \]

11.6 Prove a) \(|x-1| - |y-1| \leq |x-y| \) \(\left[\text{or} \right. \]
\[-|x-y| \leq |x-1-1| \leq |x-y| \ (\text{eq}) \]
\[\text{Useful Trick:} \quad |x| = |x-y+y| \leq |x-y| + |y| \]
Here \(|x-1-1| \leq |x-y| \), which is the RHS of (\#).
Similarly \(|y| \leq |y-x| + |x| \).
So \(|y| - |x| \leq |y-x| \Rightarrow |x-1-y| > |x-y| \), which is LHS of (\#).
This proves part a).

b) If \(|x-y| < \varepsilon \), then \(|x| < |y| + \varepsilon \).
\[|x| \leq |x-y| + |y| < \varepsilon + |y| \]

c) If \(|x-y| < \varepsilon \), \(\forall \varepsilon > 0 \), then \(x = y \).
\[\text{Proof by contradiction.} \]
Suppose \(|x-y| < \varepsilon \) \(\forall \varepsilon > 0 \) and \(x \neq y \).
Since \(x \neq y \), \(|x-y| > 0 \). Say \(k = |x-y| > 0 \).
Then take \(\varepsilon = \frac{k}{2} > 0 \) making \(|x-y| > \varepsilon \). Contradiction.
\[\therefore x = y. \]
We prove this by induction.

Clearly \(|x_1| \leq |x_1| \) and by the triangle inequality \(|x_1-x_2| \leq |x_1|+|x_2| \)

This takes care of cases \(n=1 \) and \(2 \). Suppose we have the inequality for \(n<k \). Then for \(n=k \)

\[
| x_1, \ldots , x_{k-1}, x_k | \leq | x_1, \ldots , x_{k-1}, + x_k | \quad \text{by triangle inequality} \\
\leq | x_1, \ldots , | x_{k-1}, + |x_k | \quad \text{by induction hypothesis}
\]

This completes the induction.

Case 1: \(a = 0 \)

Then \(a^2 + 1 = 1 \)

Claim: \(1 > 0 \)

\(\iff \) Suppose \(1 < 0 \), then

\[
| 1 | > 0 \quad \text{[since negative \(\leq \) is reverse inequality when multiplied]}
\]

Hence \(1 > 0 \) contradiction!

\[
\therefore 1 > 0 \\
\therefore a^2 + 1 > 0
\]

Case 2: \(a > 0 \)

Then \(a^2 > 0 \) by same reasoning as before

Hence \(a^2 + 1 > 0 \) so \(a^2 + 1 > 0 \)

Case 3: \(a < 0 \)

Then \(a^2 > 0 \) so \(a^2 + 1 > 1 \).

b) \(\{ -\frac{1}{2}, 3, \frac{5}{2}, -x, x^2 \} \) (smallest \(\rightarrow \) biggest)

since for instance \(-x^2 > 3-x \) since \(-x^2 - 3 + x = -1 < 0 \)

c) \(\{ \frac{x+1}{x-2}, \frac{x+2}{x-1}, \frac{x^2-2}{x-1}, \frac{x^2+2}{x-1} \} \) (smallest \(\rightarrow \) biggest)

since for instance

\[
\frac{x+1}{x-2} - \frac{x+2}{x-1} = \frac{(x^2-1)(x+1) - (x+2)(x^2-2)}{(x^2-2)(x^2-1)} = \frac{-x^2 + x + 5}{x^4 - 3x^2 + 2} = -1 < 0
\]