18.2
a) False.

b) False.

c) False. A sequence of rationals approaching an irrational will not converge in \mathbb{Q}, however the points will be getting close to each other.

18.3
a) $s_n = 1$, $s_m = \frac{1}{4}(2s_n + 5)$ for n

$b_n = \frac{1}{4}(7) = 7/4 > 1$ so sequence seems to be increasing

Assume $s_k > s_{k-1}$ for some $k \in \mathbb{N}$, then

$s_{k+1} = \frac{1}{4}(2s_k + 5) > \frac{1}{4}(2s_{k-1} + 5) = s_k$

Hence by induction $\{s_k\}$ is monotonically inc.

Suppose $s_k < 100$ for some $k \in \mathbb{N}$, then

$s_m = \frac{1}{4}(2\cdot 100 + 5) = \frac{205}{4} < 100$

Hence s_k is bounded by induction.

To find the limit, we solve

$s = \frac{1}{4}(2s + 5) \Rightarrow s = \frac{1}{4}s + \frac{5}{4} \Rightarrow \frac{1}{4}s = \frac{5}{4} \Rightarrow s = 10/4$

so $\lim_{n \to \infty} s_n = 5/4$

18.5
a) Counterexample: $a_n = x^2$, $b_n = -x$. Then $a_n + b_n = x^2 - x = x(x-1)$, see below.

b) Counterexample: $a_n = x$, $b_n = x - 1$, see above.
(18.7) \(s_1 = \sqrt{6}, \ s_{n+1} = \sqrt{6 + s_n} \)

To show \(\{s_n^2\} \) converges we show it is monotone and bounded.

For \(s_1 = \sqrt{6}, \ s_2 = \sqrt{6 + \sqrt{6}} > s_1 \),

Assume \(s_k > s_{k-1} \), for some \(k \in \mathbb{N} \), then

\[
s_{k+1} = \sqrt{6 + s_k} > \sqrt{6 + s_{k-1}} = s_k
\]

So by induction \(\{s_k\} \) is monotone.

Assume \(s_k < 100 \) for some \(k \), then

\[
s_{k+1} = \sqrt{6 + s_k} < \sqrt{106} < 11 < 100
\]

Hence by induction \(\{s_n\} \) is bounded.

1. \(s_n \) converges.

To find its limit, solve

\[
s = \sqrt{6 + s} \quad \Rightarrow \quad s^2 = 6 + s \quad \Rightarrow \quad s^2 - s - 6 = 0
\]

So \(s \in \{-3, 2\} \)

Since \(s_n > 0 \) for \(k \), \(s = 2 \).

(18.8) \(s_1 = k, \ s_{n+1} = \sqrt{4s_n - 1} \)

Note the sequence is monotone, since for some \(n \)

If \(s_n > s_{n-1} \), then \(s_{n+1} = \sqrt{4s_n - 1} > \sqrt{4s_{n-1} - 1} = s_n \), so \(\{s_n\} \) is increasing.

If \(s_n < s_{n-1} \), then similarly \(\{s_n\} \) is decreasing.

Hence to know which values of \(k \) \(s_n \) will be increasing we need to find out what value makes \(s_2 > s_1 \), i.e. we need to solve for \(k \):

\[
\sqrt{4k - 1} > k
\]

So \(4k - 1 > k^2 \Rightarrow k^2 - 4k + 1 < 0 \Rightarrow (k - (2 + \sqrt{3}))(k - (2 - \sqrt{3})) < 0 \)

To make sure the LHS is negative we need

\[
2 - \sqrt{3} < k < 2 + \sqrt{3}
\]

Similarly \(\{s_n\} \) will be monotone decreasing for

\[
k < 2 - \sqrt{3} \quad \text{and} \quad k > 2 + \sqrt{3}
\]
a) \(S = \{0\} \), \(\limsup = \liminf = 0 \)

b) \(S = \mathbb{N} \), \(\limsup = \infty \), \(\liminf = 0 \)

19.7

a) True, by Thm 19.7 every bounded sequence has a convergent sequence and every convergent sequence is Cauchy (19.10)

b) False, \(S_n = n \), \(t_n = \frac{n}{n+1} \), \(S_n > t_n > 0 \)

c) True, take \(r_n = \frac{1}{n} + c \), \(t_n = \frac{1}{n} - c \), where \(c > 0 \)

14.9

Suppose \(\lim s_n = r \) and \(r \neq s \)

If \(r > s \) then, since \(r \) is a subsequential limit

\[S = \limsup (s_n) > r > s \] , contradiction.

Similarly, if \(r < s \)

Hence \(r \) must be equal to \(s \)

19.15

a) Let \(s = \liminf (s_n) \), \(t = \liminf (t_n) \)

Then for \(\forall \varepsilon > 0 \), \(\exists N \) s.t. \(\forall n > N_n \), \(s_n > s - \varepsilon \)

and \(s_n < s + \varepsilon \)

Similarly, \(\exists N_2 \) s.t. \(\forall n > N_2 \), \(t_n > t - \varepsilon \)

and \(t_n < t + \varepsilon \)

Let \(N = \max \{N_1, N_2\} \), then for \(n > N \) \[\text{note that } N \text{ depends on } \varepsilon \]

\[s + 2\varepsilon < s_n + t_n < s + t + 2\varepsilon \]

Now let \(\varepsilon = \frac{1}{2k} \), then for each \(k \), \(\exists N_k > N \) s.t.

\[|(s_n + t_n) - (s + t)| > \frac{1}{2} / k \]

as \(k \to \infty \),

\[s_n + t_n \to s + t \]

Hence \(s + t \in \{ \text{set of subsequential limits of } (s_n + t_n) \} \)

Since \(\liminf (s_n + t_n) \) is the infimum of this set (ie greatest lower bound)

\[\liminf (s_n + t_n) \geq s + t = \liminf (s_n) + \liminf (t_n) \]

b) Take \(s_n = (-1)^n \), \(t_n = (-1/n) \), note \(s_n + t_n = 0 \) \(\forall \ n \)

while \(s = t = -1 \)